
© 2020 Dr. Detlef Meyer-Eltz

Delphi2C#

Delphi2C#2

© 2020 Dr. Detlef Meyer-Eltz

1 Introduction

Short description

Delphi2C# helps to convert Delphi source code to C#. Both languages are designed by the Danish
software engineer Anders Hejlsberg and have a lot of concepts and even classes in common.
However C# uses managed code while some basic units of the Delphi RTL heavily makes use of
pointers. The core of the Delphi RTL is rebuilt for C# and some classes to simulate pointers are
provided too. So the translation of "normal" user code works well. Nevertheless a manual post-
processing of the produced code still will be required. It is aim of the program to keep the amount of
the post-processing as small as possible.

Delphi2C# is built on the experience with the earlier "Delphi2Cpp" and the current "DelphiXE2Cpp11".
The main difference between these converters to C++ and Delphi2C# concerns the use of pointers. A
more detailed comparison of Delphi2C# and Delphi2Cpp/DelphiXE2Cpp11 is here.

Availability

The actual version of Delphi2C# can be obtained from the TextTransformer websites:

http://www.TextTransformer.com

http://www.TextTransformer.de

2 Installation

The installation is done by the installer Delphi2C#Install.exe. All files for projects, examples, source
code etc.are copied into the chosen installation directory.

The default path is a sub-folder Delphi2C# in the user documents folder, like:

C:\Users\User\Documents\Delphi2C#

Regardless of the path, that you chose for the installation, the license file Delphi2C#Lic.dat will be
written at that default path.

3 Registration

If you have bought a license of Delphi2C#, you will get a link to a version of Delphi2C#, which you
can register.

The registration of Delphi2C#, i.e. the removal of trial limitations and the permanent activation of the
features, has to be done by the menu: Help->Registration. Following dialog is shown:

Registration 3

© 2020 Dr. Detlef Meyer-Eltz

If you are on line and click the Buy Now button, a webpage is show, where you can transmit a user
name (at least eight characters), a company name and your address details and the details on the
method of payment. In addition the program ID is required,which is shown in the dialog instead of
"xxxx-xxxx-xxxx-xxxx-xxxx-xxxx-xxxx-xxxx". . This program ID is copied into the clipboard if you click
the button at the right.

The program ID is specific for your hardware configuration. It's also called the machines fingerprint.
The registered software can be executed only on the computer on which it originally was installed.

After the check of your credit card has been carried out, an e-mail which includes the registration data
(user name, company and key) is sent to you automatically.
You also will get a link to a version of Delphi2C#, which you can register.

It is important to know that if you are downloading Delphi2C# to use on a different
computer than the one on which you originally downloaded it, you should transfer it
immediately onto removable media, and not register it on the first computer.

User name, Company and the key then have to be copied unchanged from the e-mail into the
corresponding entry fields of the dialog box.Then a click on the button Register will close the dialog
automatically and a message appears, which confirms the success of the registration. A license file
Delphi2C#Lic.dat is created now in the user documents Delphi2C# folder.

Delphi2C#4

© 2020 Dr. Detlef Meyer-Eltz

If the program is registered already the Register button will not be shown any more.

4 How to start

You will get good C# translations of your Delphi code only, if you make the correct settings in dialog for

the translation options, which can be shown by the button .

1. Paths to your code

Delphi2C# has to know the types and signatures of procedures and functions in your Delphi source
code to make a correct translation. That's no problem as far as these information stems from your own
source code. You simply have to set the paths to your source code at the in the options dialog.

2. Paths to the Delphi RTL/VCL

The paths to the files of the used Delphi RTL/VCL also have to be set into a Delphi2C# project. If you
are using Delphi2C# for the first time and you are curious to get some first results, you may select the
paths to the original Delphi RTL/VCL as search path for the files not to convert. But unfortunately the
original Delphi source code.has bugs and in longer term it is recommended, that you prepare a copy of
Embarcadero's code.

3. Extended System.pas

You should use also an "extended System.pas". This file corrects and completes the original
"System.pas".

4. Setting the correct definitions

If you have selected the search paths to the Delphi RTL/VCL, your code still will not be translated
correctly, if you haven't set the necessary definitions.
As default MSWINDOWS is.defined. If that would not be the case, even the original Sysutils.pas could
be parsed, because e.g. the following code, would not be valid:

function AdjustLineBreaks(const S: string; Style: TTextLineBreakStyle =
 {$IFDEF LINUX} tlbsLF {$ENDIF}
 {$IFDEF MSWINDOWS} tlbsCRLF {$ENDIF}): string;

5. Starting the translation

After you have set your translation options you can save them by the button and open the first file to

to translate with the button .. The source file is shown in the left window of the user interface. You
can start the translation with the button . As soon as it is finished the C# source code is shown in
the windows on the right side of the application. Also the content on the left side might have changed:

How to start 5

© 2020 Dr. Detlef Meyer-Eltz

now the preprocessed Delphi code is shown there. You can save the translated code by the button .

5 User interface

The main window of the Delphi2C# application consists in a menu, a tool bar and in three windows for
the input and for the output.

--

By this button the texts in all windows is cleared and then you are asked, whether the type information
that was learned from the previous translations shall be cleared too.

--

This button does the same as the previous and than inserts the frame for a new unit. So you can
quickly write some code snippets into the frame, to translate them.

--

You can load a Delphi source file into the first window by CTRL+O or by the button:

--

Before you start the translation, you can set some options in the according dialog, which is shown by
the button

--

Options can be saved and reloaded by the buttons

--

There are two buttons which can have two states each If the PP-button is down, the preprocessor is
enabled, if the PP-button is up, the preprocessor is disabled. If the T-button is down, the translator is
enabled, if the T-button is up, the translator is disabled.

You can disable the translator either to check the preprocessing of a source file. But the feature to
disable the translator mainly has been implemented, to give you the possibility to create a

Delphi2C#6

© 2020 Dr. Detlef Meyer-Eltz

preprocessed copy of the VCL or your Delphi source files, by means of the file manager. By use of
preprocessed files the repeated translation can be accelerated. If you chose the search paths to the
directories with the preprocessed VCL and you also select your preprocessed Delphi sources, only
enabling of the translator suffices for translation and the time for the pre-processing is saved. If parts
of your files aren't preprocessed, you have to enable both, the preprocessor and the translator. This
will still be faster than don't to use preprocessed files, because the preprocessor hardly needs time to
preprocess files again, which already were preprocessed.
The initial state of these buttons is saved with the options.
The overwritten System.pas gets always preprocessed, even if the button is disabled.

--

The translation is started with F9 or

--

The dialog for the translation of groups of files is shown by the button:

--

All information that once has been obtained from the interface parts of the processed files is
remembered for the translation of further files. Types and variables can be cleared by the button:

--

Finally you can save the generated C# code by CTRL+S or by

At first a file dialog for the header appears and as soon as you have saved the header file the dialog
appears again for the C# source file. If the translated file is a library, the file dialog appears for a third
time, to save a module definition file.

--

Shows a dialog to find expressions in the text of the actual window.

--

Shows the position, where the parser found an error in the Delphi code.

--

This help is shown with F1 or by the button

User interface 7

© 2020 Dr. Detlef Meyer-Eltz

5.1 Windows

There are two windows in the user interface:

1. the left window shows the Delphi source code or the pre-processed code, after a translation has
been executed.

2. the right window shows the generated C# source code

5.2 Log panel

The Log panel displays logging messages and errors.

Delphi2C#8

© 2020 Dr. Detlef Meyer-Eltz

The kind of a message is marked by the colored boxes, which are displayed to the left of the node’s
labels:

neutral message

starting the translation without errors

results of the preprocessor

including another file

success

warning

error

The picture above is a typical example:
The first line occurs, because no definitions are set in the options.
The red box in front of the filename in the second line means, that there were errors when the file was
processed. The cause of the error is marked by the innermost error SysUtils: unexpected token. This
error is propagated to it's parent nodes.

When SysUtils.pas is opened and the translation is started, it stops at:

function AdjustLineBreaks(const S: string; Style: TTextLineBreakStyle =
): string;

This is a wrong result of the preprocessor. You can reload the original SysUtils.pas and find the
position of TTextLineBreakStyle:

function AdjustLineBreaks(const S: string; Style: TTextLineBreakStyle =
 {$IFDEF LINUX} tlbsLF {$ENDIF}
 {$IFDEF MSWINDOWS} tlbsCRLF {$ENDIF}): string;

Because neither LINUX nor MSWINDOWS had been defined, after preprocessing there is no value
assigned to TTextLineBreakStyle.

--

User interface 9

© 2020 Dr. Detlef Meyer-Eltz

In the next image you can see an example of the Log panel after use of the file manager, The results
of all files are listed in the tree:

5.3 User options

User options can be accessed in the Options menu at the item "Show user options". These options are
saved in the Windows registry and thus persist between different sessions with Delphi2C#.

Window positions
Customization

5.3.1 Window positions

Size positions and state of the main window and the file manager can be stored into the registry and
restored from the registry. You can decide to store the values once and than to deactivate a new
storage. So the windows will at a new start of Delphi2C# always have the properties that were stored,
even if they were change in the previous session.

Delphi2C#10

© 2020 Dr. Detlef Meyer-Eltz

5.3.2 Customization

5.4 Translation options

In the options dialog there are six groups of options and a button to open a refactoring dialog:

Input options

User interface 11

© 2020 Dr. Detlef Meyer-Eltz

Processor options
Substitution options
Type options
Tuning options
Output options
Refactoring

You can save and reload the translation options as a project file (*.prj).

5.4.1 Input options

The input options are part of the translation options and specify all contents which either shall be
translated or which are required for a translation.

Search paths
Unit Scope Names
System.pas

While the items above specify the input files, the definitions determine, which parts of a file are
used.

Definitions

Delphi2C#12

© 2020 Dr. Detlef Meyer-Eltz

5.4.1.1 Search paths

For a correct translation of a Delphi source file the type information of used constants, variables,
functions etc.is necessary. If this information is not contained in the actual file, the other used files
have to be scanned. As far as these files are in the folder of the source file, they will be found
automatically. The folders for other used files have to be specified explicitly - this also applies to files in
subdirectories. You can select these folders at the input options of the options dialog.

These directories are separated into

the folders of files for which only the interfaces are needed and
the folders of files, which really shall be translated.

Both kinds of folders are to be set in a dialog like the one below:

As soon as you have clicked at the "-Button and select a folder, you have the option either to add
this folder only or this directory recursively together with all of it's sub-directories. Once a folder is in
the list the "Add"- and the "Add recursive"-button will be disabled for this item. If you want to add sub-
directories of an existing item recursively, you first have to delete the item from the list. This behavior

User interface 13

© 2020 Dr. Detlef Meyer-Eltz

prevents duplicates in the list.

5.4.1.1.1 Paths to the VCL/RTL

If you use C# Builder, there is already a converted version of the VCL. So you don't have to translate
the according files. Nevertheless the translator has to know the interface parts of the original Delphi
VCL, to make a correct translation of the files, which depend on the VCL. So you have to set the
folders of the original or of the preprocessed VCL.

There might be other files, which don't have to be converted, perhaps because you already have
translated them. The paths to those files should be set here too.

The paths of the VCL may look like:

C:\Program Files (x86)\CodeGear\RAD Studio\6.0\source\Win32\vcl
C:\Program Files (x86)\CodeGear\RAD Studio\6.0\source\Win32\rtl\common
C:\Program Files (x86)\CodeGear\RAD Studio\6.0\source\Win32\rtl\sys
C:\Program Files (x86)\CodeGear\RAD Studio\6.0\source\Win32\rtl\win

5.4.1.1.2 Paths to the source files

The paths to the folders of the files, which shall be translated, can be set by a second dialog,
analogously the paths to the VCL. Delphi2C# - as Delphi - doesn't make a recursive lookup in the
folders. So sub-folders have to be set explicitly too.

5.4.1.2 Unit scope names

A list of unit scope names, which help to find used file, can be entered in the following dialog, which
can be opened at the Input-Options.

Delphi2C#14

© 2020 Dr. Detlef Meyer-Eltz

These identifiers are prefixes in dotted unit names. E.g. System is the prefix of the unit System.
Classes whose file is System.Classes.pas. If a unit uses a file it suffices to indicate the name without
the prefix, if the prefix is in the list of Unit scope names. At the example above:

uses Classes;

instead of

uses System.Classes;

So, if System is in the list of unit scope names, Delphi2C# nevertheless will lookup the file System.
Classes.pas.

5.4.1.3 Extended "System.pas"

"System.pas" is a source file of special importance in Delphi projects.Fundamental type definitions,
procedures and functions are defined in the System unit, which is implicitly included in every unit. For
example TObject is defined there. There are other intrinsic definitions like the Read, Write or Str
function, which are accessible in every unit too. These intrinsic function are built into the Delphi
compiler. Delphi2C# must know the signatures of such intrinsic functions and tries to find them in the
System.pas. So the original incomplete System.pas either has to be replaced by an extended copy or
a the original System.pas has to be supplemented by an additional source file.

User interface 15

© 2020 Dr. Detlef Meyer-Eltz

In the options dialog you can set the name of such an additional System.pas extension file.

Such an individual System.pas called d2c_system.pas is in the Source folder of the Delphi2C#
installation. No matter which name the file has, it internally is renamed to "d2c_system". With this
name it is shown in the log-tree.

If an individual System.pas is used, the specially treated RTL/VCL functions and some compile time
functions (Abs, High, Low, Odd, Pred, Succ) might have to be defined in this file for types, that cannot
be handled by the built-in translation alternatives.

The overwritten System.pas gets always preprocessed, even if the option to pre-process files is
disabled for all other files.
Because this file is very basic, it may not use other files.

Lookup algorithm

Delphi2C# looks up system types and functions etc. in following order::

1. Delphi2C# will look for declarations at first in your own System.pas, if it exists.
2. If the declaration is not found there, Delphi2C# will look in the System.pas of your Delphi installation,

if the path to this file is set in the options..
3. If neither an own System.pas exists nor the path to the original System.pas is set, Delphi2C#

simulates the most important parts of this file.

5.4.1.4 Definitions

Delphi code often contains directives for conditional compilation of parts of the source text. Delphi2C#
evaluates such directives too. You can set the definitions in the option dialog

Delphi2C#16

© 2020 Dr. Detlef Meyer-Eltz

There are limitations for the evaluation of such expressions.

If code of the Delphi RTL shall be translated, it is recommended to set PUREPASCAL defined, to
avoid problems with inline assembler code.

Incomplete definition can lead to hard to find bugs, as for example in System.Windows.pas

5.4.1.4.1 Windows.pas

If there is no Definition set either of CPUX86 or of Win64 the Windows.pas cannot be parsed. That's
because of the following code:

function InterlockedBitTestAndComplement(Base: PInteger; Offset: Integer): ByteBool;
{$IFDEF CPUX86}
...
{$ENDIF CPUX86}
{$IFDEF Win64}
...
{$ENDIF CPUX64}

There will remain a function declaration only and the parser will regard all following functions as sub-
functions to this declaration. So nearly the whole file gets parsed, before the missing function body is
discovered. This bug is very hard to find.

User interface 17

© 2020 Dr. Detlef Meyer-Eltz

5.4.2 Processor options

The processor options are part of the translation options and specify the kinds of processing during the
translation from Delphi to C#.

When Delphi code is translated, normally the source at first is preprocessed to remove parts of the
code, which aren't defined. But it is possible too, to disable either the preprocessor or the translator.
That can be done by the according buttons in the tool bar. The initial state of these buttons after the
options are loaded can be set here.

The overwritten System.pas gets always preprocessed, even if the option to do so is disabled.

Normally the learning option is enabled. So the variables and types of every interface are
remembered, once the interface was parsed and the interface has not to be processed again.
However, there are cases, that the definitions are not constant for all common interfaces. A definition
of a current file might enable or disable definitions of a common file. So the result of the conditional
compilation will change too and finally different types and variables might be declared of the same unit,
which is used in different other units. When the learning option is disabled, included units are
preprocessed for every new file again and the result will be correct for each file, but the total
processing time increases very much.

The option Unify notations in "CSharp" sections determines the case sensitivity in "CSharp"-sections.

The option Stop on message directive determine what happens, if a message directive would remain
in the pre-processed code.

Delphi2C#18

© 2020 Dr. Detlef Meyer-Eltz

5.4.2.1 Unification of CSHARP-sections

This option is part of the processor options. It determines how identifiers in "CSHARP"-sections are
treated. If the box is checked, the identifiers are unified as all other unifiers in the rest of the code to. If
the box is unchecked the identifiers will be written unchanged into the output.

5.4.2.2 Stop on message directive

This option is part of the processor options. If the is enabled the pre-processor will stop as soon as
such a message will remain in the code, that means, that the conditions for this code section are true.
It will not stop, if the conditions for the code section with the message aren't true.

Delphi message directive are used in most cases to indicate, that something is wrong in the code. A
typical example of such a directive is:

{$MESSAGE ERROR 'Unknown platform'}

If correct definitions are set, such messages normally will be part of code sections for which the
conditions are false.The option to stop on message directives therefore will not apply. But e.g. the
recommended PUREPASCAL definition is problematic. If it is defined.the definition of ASSEMBLER
should be avoided. But for example in the following code snippet there is no PUREPASCAL
alternative. Therefore the function definition would be reduced to a function declaration.

function Get8087CW: Word;
{$IF defined(CPUX86) and defined(ASSEMBLER)}
asm
 PUSH 0
 FNSTCW [ESP].Word
 POP EAX
end;
{$ELSEIF defined(CPUX64) and defined(ASSEMBLER)}
asm
 PUSH 0
 FNSTCW [RSP].Word
 POP RAX
end;
{$ELSE }
{$MESSAGE ERROR 'Unknown platform'}
{$ENDIF}

->

function Get8087CW: Word;
{$MESSAGE ERROR 'Unknown platform'}

If another function follows, DelphiXE2Cpp11 will regard it as a sub function of the remained function
declaration and the parser will not stop. The parsing error occurs at a much later position then and the
real cause of the error is difficult to find. If the option to stop on messages is enabled, the true error
position is set. DelphiXE2Cpp11 stops and the message is shown on the log-panel:

User interface 19

© 2020 Dr. Detlef Meyer-Eltz

On the other side, there are messages which you might want to ignore. In the following case
DelphiXE2Cpp11 isn't able to calculate the correct result of the condition:

 {$IF SizeOf(Extended) <> SizeOf(TExtended80Rec)}
 {$MESSAGE ERROR 'TExtended80Rec has incorrect size'}
 {$ENDIF }

The consequences of the option to stop on message directives depend on the level of the current file.
If this option is enabled and if this message appears in the actual file, the whole translation for this file
will be stopped. If the message appears in a dependant file, only the processing of that file will be
stopped and the message will be shown without stopping the translation of the actual file.

If the definitions cannot be changed such that the message directives disappear, it's the best to
prepare your Delphi source code accordingly.

5.4.3 Substitution options

The substitution options are part of the translation options and allow to edit lists of identifiers which are
used for different kinds of substitutions during the translation process.

Delphi2C#20

© 2020 Dr. Detlef Meyer-Eltz

There are two possibilities how the pre-processor can substitute identifiers.

1. The notation of identifiers are unified according to a list of given notations
2. Identifiers can be substituted to different ones,

The pre-processor does its work, before the Delphi parser starts. Therefore, you have to take care,
that the pre-processor substitutions leave the Delphi code intact. On the contrary

3. the substitutions by the translator are executed after the code already has been parsed.
4. also some kinds of refactoring can be done.

5. You can change the prefixes for special function names here.

5.4.3.1 List of identifiers

After one or several files have been processed the list of identifiers can be saved, which was created
by the preprocessor to unify their notations: The list can be loaded again for another session, so that
the notations of the identifiers in the generated C# output are the same as in the previous files.

The path to such a list is set on the third register page of the option dialog and is saved together with
the other options.

User interface 21

© 2020 Dr. Detlef Meyer-Eltz

If the path is saved as part of the options, the list is loaded at the same time as the options are loaded.

Whenever additional files are translated and new identifiers were found, you are asked to save them.If
you accept, at first a dialog appears by which you can select a file for the list. If the path to the file is
different to the path which is set in the options or if no path is set there at all, you are asked whether
you want to insert the new path into the options.

Your can edit such a list in an external editor or even create such a list by hand Every line has to
consist in just one identifier. E.g.

...
SetLength
Setscrollinfo
SetSelection
...

If you change "Setscrollinfo" to "SetScrollInfo", all appearances of this identifier will be unified to the
second form.
If the same identifiers occurs more than one time in the list, the latest occurrence will be taken.

If you edit the list in an external editor, you have to reload the list by the button Reload identifiers,
otherwise the changes will not have an effect in the current session.

There also are some fixed identifiers, which cannot be modified by the list of identifiers.

5.4.3.1.1 Fixed identifiers

The notation of most identifiers can be determined by the list of identifiers, which is set in the options.
However there are some identifiers whose notations are fixed:

Char
String
break
continue

implicit
explicit
negative
positive
inc
dec
logicalnot
trunc
round
in
equal
notequal
greaterthan

Delphi2C#22

© 2020 Dr. Detlef Meyer-Eltz

greaterthanorequal
lessthan
lessthanorequal
add
subtract
multiply
divide
intdivide
modulus
logicalor
bitwiseor
logicalxor
bitwisexor
logicaland
bitwiseand
leftshift
rightshift

MinComp
MaxComp
NaN
Infinity
NegInfinity

Sum
SLICE

Sorry, the list may not be complete

5.4.3.2 Substitutions in the preprocessor

A substitution table for the preprocessor can be shown, if you click on the button "List of substitutions"
in the group-box for preprocessor substitutions.

If you click on the button, the following grid is shown.

User interface 23

© 2020 Dr. Detlef Meyer-Eltz

add a new row

remover the actual row

clear the whole table

In the first column the identifiers are listed, which shall be replaced by the preprocessor and in the
second column identifiers are listed, which are inserted in the code instead of the found identifiers of
the first column. The preprocessor recognizes text sections as identifiers, which start with a letter or a
underlined and on which an arbitrarily number of letters, numbers or underlines can follow; i.e. as well
the real Delphi identifiers as the Delphi keywords.

The substitution of identifiers during the pre-processing of the code can fulfill two purposes:

1. a desired notation of the identifiers can be forced.

The same purpose is accomplished by use of the list of identifiers.and this method should be preferred
normally. However the items of this list are overwritten by the items of the substitution table. This may
be a method to quickly check other notations.

2. completely other names can be assigned to certain identifiers.

So e.g., Delphi function names could be replaced by different names of equivalent C# functions.

For example it is recommended to make such substitutions for ampersand-expressions.

Delphi2C#24

© 2020 Dr. Detlef Meyer-Eltz

5.4.3.3 Substitutions of the translator

Similar to the substitution table for the preprocessor there is a second substitution table for the
translator.

There are two differences to the substitutions, which are carried out by the preprocessor:

1. While the preprocessor cannot distinguish identifiers, which are keywords from other identifiers, the
translator does. Only the latter are substituted by the translator, i.e. the names for variables,
functions etc. Therefore, the translator can substitute such names, which are keywords in C#.
Without this substitution, there would be errors in the translated code. E.g.

double float; -> double float_value; .

2. The identifier is already recognized by the translator before the substitution takes place. Therefore it
can be substituted by something completely different, without affecting the translation process. E.g.

StringOfChar -> AnsiString::StringOfChar

This translation table also is applied to the names of helping variables which are needed for the
definition of implicitly defined types, e.g. in set's. So a adjustment of the according names in the C#
Builder VCL is possible, which can be different there from version to version. Also the set type
"System::Set" can be renamed this way now, e.g. for a comfortable integration of Daniel Flower's TSet.

5.4.3.4 Prefixes for properties

In some cases Delphi2C# cannot create direct pendants to Delphi properties in C# and generates
public access methods instead. The prefixes for the names of such methods can be set here:

variable indexed properties

5.4.4 Type options

The type options are part of the translation options. Currently there are no options but only a button by
which a type-map can be shown.

User interface 25

© 2020 Dr. Detlef Meyer-Eltz

5.4.4.1 Type-map

At the type options a type map can be shown. If use user type-map is checked, the cells of the shown
grid can be edited.

In the first column of the type map the names of Delphi built-in types and the second column the
according names of the C# types are listed. In the further columns some properties of the C# types are
given:

Size: size of the type in bytes
Minimum: minimum value of the type
Maximum: maximum value of the type
In System: true, if the type is defined in d2c_system or in System.h, else false.

The last column determines, whether the System namespace is prepended to the according type
name in a header.

Delphi2C#26

© 2020 Dr. Detlef Meyer-Eltz

For example BOOL is a Windows type and therefore has not to be defined in the System namespace.
E.g.:

longbool BOOL 4 -2147483648 2147483647 false

Under Linux however BOOL is unknown and could be defined in d2c_systypes.h

longbool BOOL 4 -2147483648 2147483647 true

5.4.4.2 Meta capabilities

Create meta classes

If the option Create meta classes is enabled at the type options, Delphi2C# creates for each class on
demand an instance of additional meta class (= class reference type). These class reference
instances can be used for factory functions, to create different class types in dependence of the class
reference parameters. These class reference instances also are needed if overridden virtual class
methods have to be used.

To enable this option has drawbacks however. More manual post-processing will be necessary. One
reason for that is, that
a creation of class instances from class references is possible only, if the class has a standard
constructor.

5.4.5 Tuning options

The tuning options are part of the translation options and specify special details at the translation from
Delphi code to C#.

User interface 27

© 2020 Dr. Detlef Meyer-Eltz

Special treatment of some VCL functions

Use "stop" variable in for-loop

Initialize Variables

Try to make const correct

Apply EXTERNAL directive

Apply NODEFINE directive

.

5.4.5.1 Special treatment of some VCL functions

Some Delphi VCL functions are made to member functions in the C#Builder VCL.. Delphi2C# converts
the generated C# code accordingly for some of the frequently used function. You can switch off this
special treatment and write your own C# functions instead.

Delphi2C#28

© 2020 Dr. Detlef Meyer-Eltz

5.4.5.2 Use stop-variable in for-loop

The tuning option Use "stop" variable in for-loop determines the output for for-loops

5.4.5.3 Initialize Variables

If the tuning option Initialize variables is chosen, default values are assigned to all variables.

The initialization of variables is in Delphi and C# is the same. Local automatic variables and normal
variables of a class aren't initialized, while global and static (class) variables are initialized to zero.
Nevertheless Delphi2C# offers the option to initialize all variables explicitly, either to achieve
reproducible behave or just to suppress compiler warnings.

5.4.5.4 Try to make const correct

By the tuning option Try to make const correct the generated code can be made more C#-like.

Delphi doesn't know the concept of const-correctness. However it is an important concept in C#. If this
option is enabled, Delphi2C# makes the getter methods of properties constant as well as the methods
which are called inside of these getter methods. In most cases this will work correctly, but, if member
variables are changed in such a method, the compiler will produce an error

5.4.5.5 Apply EXTERNALSYM directive

If the tuning option "Apply EXTERNALSYM directive" is enabled, type declarations, which are marked
with this directive aren't written into the generated code.

Symbols that are defined in the C++ API of the operation system often have to be redefined in Delphi.
The other way round, if C++ code is generated from Delphi, such symbols have to be omitted. For this
purpose the $EXTERNALSYM directive is used. This directive tells the C++Builder that the according
symbol already exists in C++. DelphiXE2Cpp11 don't writes such symbols into the output. If the option
"Apply EXTERNALSYM directive" is enabled,

See also

5.4.5.6 Apply NODEFINE directive

If the tuning option "Apply NODEFINE directive" is enabled, type declarations, which are marked with
this directive aren't written into the generated code.

See also

5.4.5.7 Virtual class methods as static methods

Because in C# methods cannot be static and virtual at the same time, Delphi virtual class methods
either have to be converted to static non-virtual methods or to virtual non-static methods. This is
determined by the tuning option Virtual class methods as static methods, which is set to true by
default. This is the best option for the frequent case, that there aren't overridden versions to the
method at all. In this case a method like:

class procedure ClassVirtual; virtual;

simply become a non-virtual static function:

static virtual void ClassVirtual();

User interface 29

© 2020 Dr. Detlef Meyer-Eltz

If there are overridden Delphi virtual class methods, the option Virtual class methods as static methods
has to be disabled. The method then becomes

virtual void ClassVirtual(); //#static

Delphi2C# then takes care, that the method is called from an ClassRef-instance of the according
class. This works only, if the creation of meta-classes is enabled.

5.4.6 Output options

The output options are part of the translation options and specify the style of the generated output. At
the moment there is only the Verbose option.

5.4.6.1 Verbose

Per default the Verbose option is set. That means, that comments are inserted into the output at
critical places, where the translation might cause errors. Often such comments simply are quotations
of the original Delphi code, which allow a quick comparison.

To distinguish these comments from converted comments, which stem from the Delphi source code,
they are marked with a hash character (octothorpe) '#'.

E.g.:

WORD Words[4/*# range 0..3*/];

5.4.7 Refactoring

The refactoring dialog is reached from the button on the options dialog. The Dialog shows the list of
refactoring items:

Delphi2C#30

© 2020 Dr. Detlef Meyer-Eltz

Another dialog with the details of a refactoring item is shown, if a new item is added or an existing item
is edited:

User interface 31

© 2020 Dr. Detlef Meyer-Eltz

Variables, functions and constants which shall be changed are looked up according to the criteria,
which are given by the control elements the on the left side of the dialog. At least the original name has
to be specified, the other criteria are optional. On the right side of the dialogs the resulting properties
can be set. Again at least a new name has to be set and the other properties are optional.

"Original name" and "New name"

The original name of a variable, function or constant in the Delphi source code will be changed to the

Delphi2C#32

© 2020 Dr. Detlef Meyer-Eltz

new name in the C# output. The input in the field is treated case insensitive in the same way as the
source code by the pre-processor. For example with input in the image above all occurrences of "Min"
in the source code will be changed to to "Math.Min", regardless whether "Min"; "min", "mIN" or any
other case occurs in the code.
If the identifier for the original name isn't contained in the list of notations, it's notation will be used for
all notations of the identifier in the generated code.

"Original type is:"

The general kind of type of the variable, function or constant which shall be changed can be specified,
to exclude all other kinds from this refactoring. If, as in the image above, "Min" is specified as a
function, variables or constants with the name "Min" will not be changed. If all occurrences of "Min"
shall be changed regardless of the kind, it can be set to "unspecified":
In contrast to the other fields in the dialog, the general kind of type cannot be changed and will remain
the same in the output as in the source code.

"Original type" and "New type"

If "function" is selected "Original type" and "New type" are specifying the result type of the function.
otherwise "Original type" and "New type" specify the type of an built-in type, if this item is selected.
Normally the type should be identical, but there might be cases where it is desired to avoid or to force
typecasts by means of a change of the result type.

For the new type also a free identifier can be set.

"Original pointer" and "New pointer"

Again, normally the pointer of the type should not be changed.

Original unit

The input in the field for the original unit is treated case insensitive in the same way as the source code
by the pre-processor and "Original name" in thid dialog.

Using

In contrast to the "Original unit" field, the input in the "Using" field is case sensitive. Therefore the
"System.math" will produce the output lines

using System.math;
using static System.math.mathClass;

Rename original declaration
Remove original declaration

not implemented yet

User interface 33

© 2020 Dr. Detlef Meyer-Eltz

5.5 Translation

The translation of the loaded Delphi source file to C# starts with the button:

Three steps are executed for a translation:

1. the code is preprocessed
2. the included files are scanned for type information and global variables
3. a parse tree for the actual file is created from which the C# code is written into the output windows.

5.5.1 Preprocessing

A preprocessor fulfils two tasks:

1. the conditional compilation
2. the unification of the notations of identifiers

5.5.1.1 Conditional compilation

Delphi2C# uses a preprocessor (pretranslator), which prepares the source text so that directives for
the conditional compilation are evaluated and removed.
Conditional expressions like

{$IF CompilerVersion >= 17.0}

are evaluated too, but there are some limitations. Only integer values are evaluated and only
operators, which also exist in C#. Sizeof-expressions like tho following are evaluated too

{$IF SizeOf(Extended) >= 10}
 {$DEFINE EXTENDEDHAS10BYTES}
{$ENDIF}

The size is taken from the type-map.

If there is an expression, which cannot be evaluated, a warning is written into the code:

// pre-processor can't evaluate ...

The source code has to be corrected by hand then.

Include directives are executed too.

Delphi2C#34

© 2020 Dr. Detlef Meyer-Eltz

{$I filename}
{$INCLUDE filename}

The file filename is included into the source.

The definitions can be set in the options dialog.

5.5.1.2 Unification of notations

While Delphi code is case insensitive, C# code is case sensitive. So different notations of identifiers
have to be unified. Delphi2C# uses a simple approach to do that. As soon a a new identifier is
recognized it is put into a list and all further notations of this identifier are replaced by the first one
(exception: see below). Identifiers used at the refactoring also have an impact on the notations in the
output.

After one or several files have been processed the list can be saved.

This unification is done by the preprocessor, which also is responsible for the conditional compilation.
For "Cpp"-sections, there is a special option.

Some notations have a special meaning in C# and are fixed. i.e. they are not controlled by the list of
identifiers. These identifiers are:

Char
String
break
continue
explicit
implicit

The following identifiers are fixed, because they denote C# UnicodeString methods:

BytesOf
ByteType
c_str
cat_printf
cat_sprintf
cat_vprintf
CodePage
Compare
CompareIC
CurrToStr
CurrToStrF
data
Delete
ElementSize
EnsureUnicode
FloatToStrF
FmtLoadStr
Format
FormatFloat
Insert

User interface 35

© 2020 Dr. Detlef Meyer-Eltz

IntToHex
IsDelimiter
IsEmpty
IsLeadSurrogate
IsPathDelimiter
IsTrailSurrogate
LastChar
LastDelimiter
Length
LoadStr
LoadString
LowerCase
Pos
printf
RefCount
SetLength
sprintf
StringOfChar
SubString
swap
t_str
ToDouble
ToInt
ToIntDef
Trim
TrimLeft
TrimRight
Unique
UpperCase
vprintf
w_str

5.5.2 Scanning dependencies

Most Delphi units depend on other units, which are included in the uses clause. Delphi2C# scans the
included files in so far, as they are placed either in the same directory as the actual file or in a
directory, which is set in the search paths.
The translation will produce the best results if the Delphi VCL is included. In this case, however, the
translations of the first files will slow down significantly. All information that once has been
obtained from the interface parts of the processed files is remembered for the translation of further
files.

The information can be cleared by the according command in the start menu or the tool bar button .

.

5.5.3 Writing the C++ code

The original Delphi file is split into a C# header and a C# source file. These parts are output into the
two windows on the right side of the main window. The header is written into the upper window and the
source code is written into the lower window.

Delphi2C#36

© 2020 Dr. Detlef Meyer-Eltz

5.6 File manager

The file manager is a dialog, by which you can translate whole directories or other groups of files.
You can reach the file manager either by the menu item File manager of the Start menu or by the
according button in the tool bar:

The button in the tool bar of the manager for executing the translations is deactivated until translation
options are set and source files are selected. Before starting the translations, you can check the list of
the files which will be produced. There is a page of his own for each of these steps in the file manager:

1. Translation options
2. Source files
3. Preview of the list of target files
4. Results

The settings, inclusive of the select folders and files, can be stored as a management and loaded
when required newly.

5.6.1 Translation options

If you like to use the file manager for the translation of your source files, you have to decide where the
resulting files shall be written. The edit box for the target path which is shown in the picture below, is
shown in your application only, if you have selected an option to write the resulting files into a different
place as the source files.

User interface 37

© 2020 Dr. Detlef Meyer-Eltz

1. The most simple case is tor write the C# files just in the same place, where the source file is.
2. All files can be written into a common target directory, regardless of the place of the source file
3. The relative paths of files in a common root directory can be reproduced in the target folder.

If case one or two are selected the field for the target folder/root are shown and a dialog for the

selection of a the target directory is opened by the button:.

If target files shall be written outside of the common target path/root, the checkbox to allow individual
file names or folders can be enabled. In that case an additional column for individual targets are shown
on the source page.

Warning

At the top of this options page either a default path or the path to the currently loaded project is shown.
If you save or load the source paths, they are calculated relatively to this project path. This allows the
exchange the "management"-files between different drives or computers. But you have to pay attention
that source folders and project path fit to each other.

Delphi2C#38

© 2020 Dr. Detlef Meyer-Eltz

5.6.2 Selecting source files

The files which shall be transformed are selected on the second page of the file manager and are
shown in a table.

The page has a tool bar of its own with the buttons:

Insert an empty row

Select a single source file

Select a whole source directory

Deleting a row

Clear the whole table

The choice of a file or a folder is carried out respectively with a corresponding selection box. Several
files also can be selected at once in the selection box.

After the confirmation of the choice a new row is inserted in the table below the tool bar for every file or
every folder.

User interface 39

© 2020 Dr. Detlef Meyer-Eltz

There are five columns in the table:

No

a simple counter

Path

The absolute path of the file or folder.

Filename or filter

For files the file name can be seen here (with extension).
For folders a filter can be specified here. The default filter is "*.pas".

Recursive

The check box in this field can be activated only for folders. If it is activated, then all files in the
sub-folders of the shown directory are transformed too.

Exclude

Normally the check box of this field remains deactivated. However, it can be that you want to except
some files or folders from the translation of a folder. This is possible by producing rows of their own for
these exceptions in the table and activating the excluding check box by mouse.

Target file or folder

This column is shown only, if on the options page the box "allow individual file names or folders" is
checked.Here for each file an arbitrary path or file name as target can be set. If the source is specified
by wildcards, an arbitrary target path can be set.

5.6.3 Preview of the target files

The list of the files which will be produced are shown on the third tab-page of the file manager.

Delphi2C#40

© 2020 Dr. Detlef Meyer-Eltz

Actualize

You can refresh the list of files by the button .

5.6.4 Starting the translation

The translation of the selected files in the file manager is started by the menu item Start translation or
by the button in the main tool bar

When the translations are started, the page is changed to the Results-page automatically.

5.6.5 Results

The rows of the table on the result page of the file manager contain messages which arise during the
translation of files.
Every message is immediately written into a new row of the table after the message was created. So,
the growing row number of the table at the same time shows the progress of the translations.

User interface 41

© 2020 Dr. Detlef Meyer-Eltz

In the first row the status of the message is shown as a color.

Color Status

new source file

neutral information

success message

warning

error message

5.6.6 Management

The sum of the settings of the file manager is called a management here.

By the menu item: Save management as. you can save a management

By the menu item: Open management, you then can reload a management.

Managements are save with the extension "ttm". They are written in the same format as
TextTransformer managements.

The syntax for a management was designed as scarce and simple as possible, so that it also can be
written by hand. A management consists in the extreme case in only one file path.

6 Use in command line mode

Delphi2C#.exe can be called from the command line too. You then have to pass some parameters.

6.1 Parameter

Delphi2C#.exe can be controlled either by a management, which was produced with the file manager
or by parameters for the source and target files.
In the first case a call has the form:

Delphi2C# -p PROJECT -m MANAGEMENT

and in the second case:

Delphi2C# -p PROJECT -s SOURCE [-t TARGET] [-r]

Expressions in brackets are optional.
If a path contains spaces, it has to be quoted.

Parameter Meaning Examples

-p PROJECT Delphi2C# project C#Builder_vcl_ge.prj

Delphi2C#42

© 2020 Dr. Detlef Meyer-Eltz

-m MANAGEMENT a project file made with the
file-manager

my_management.ttm

-s SOURCE Source file(s) C:\dir*.pas
-t TARGET Target file or directory C:\dir2\target
-r RECURSIVE recursively including the files of

the sub-folders
-pause after processing waiting for a key

-p PROJECT

The parameter -p must be followed by the path of the Delphi2C# project, with the options by which the
files of the source directory shall be translated.

-m MANAGEMENT

The parameter -m is followed by the path to a Delphi2C# management, which specifies the source and
target files.
If an -m paramerter is provided, -s, -t and -r are ignored.

-s SOURCE

The parameter -s must be followed by a specification of the files, which shall be translated.
In the simplest case this a specification is the path of a single file, like "C:\dir\source.pas". To
transform all "pas" files of a directory, you can use a mask like: "C:\dir*.pas;*.dpr".
If there is no directory specified in the mask, all according files of the actually directory will be
translated. If there is no special extension specified in the mask, all files of the directory will be
translated. E.g.: "ab?.*" will chose all files of the directory beginning with "ab" followed by a single
character, e.g. "ab1.pas", "ab2.pas" and "ab_.pas". Attention: in this case Delphi2C# will try to
translate also files with other extensions than "*.pas". This will lead to errors for "*.txt" files or
"*.inc"-files etc.

-t TARGET

The specification of a target is optional. If there is no, all translated files will be written into the directory
of the source files. A target directory has to be be specified, if the files shall be preprocessed only.

-r RECURSIVE

By the optional parameter "-r" you can force a recursive search for source files in all subdirectories.

-pause

With the optional parameter "-pause" you can keep the console window opened until a key is pressed.
So you can read the messages, which were produced. Without this parameter the console window is
closed as soon as the translations are finished.

What is translated 43

© 2020 Dr. Detlef Meyer-Eltz

7 What is translated

Delphi2C# handles nearly all kinds of the Delphi syntax.

Tokens
File layout
Types
Variables
Operators
Assignments
Routines
Special RTL/VCL functions
Properties
Statements
Reading and Writing
Method pointers

New features since Delphi 7

7.1 Tokens

At the token level following points have to be regarded:

Case sensitivity
Ampersands
Simple substitutions
String constants vs. single characters

7.1.1 Case sensitivity

Expressions which are different only by case are regarded as identical in Delphi. Therefore a
preprocessor is executed before the real translation. The preprocessor replaces all later occurrences
of expressions which are different from the first occurrence only by the notation by the notation found
first. The preprocessor provides the conditional compilation of the code at the same time.

Unification of the notations isn't applied to the code areas, where CSHARP is defined.

If an identifier for the original name at a refactoring item isn't contained in the list of notations, it's
notation will be used for all notations of the identifier in the generated code.

There are some fixed identifiers, which cannot be modified by the list of identifiers.

7.1.2 Ampersand

By means of an ampersand Delphi keywords can be used as identifiers, e.g. \Embarcadero\Studio
\19.0\source\rtl\win\winrt\WinAPI.ShlObj.pas line 11032:

type

Delphi2C#44

© 2020 Dr. Detlef Meyer-Eltz

 tagDROPDESCRIPTION = record
 &type: TDropImageType;

In such cases it is recommended either to let the pre-processor substitute such expressions or to
modify the source code. Otherwise Delphi2C# simply ignores such ampersands, that means "&type"
becomes "type". In that case the parser will stop at that position, because of the unexpected type
keyword. If "&type" is substituted for example by "amps_type" everything works well. You even can let
the translator make a second substitution from "amps_type" to "type", if you like. This substitution is
made after "amps_type" has been recognized as an identifier.

Another example is in \Embarcadero\Studio\19.0\source\rtl\win\winrt\WinAPI.DataRT.pas line 598:

property &Implementation: Xml_Dom_IXmlDomImplementation read get_Implementation;

\rtl\win\winrt\WinAPI.Devices.pas line 6078:

property &Function: Word read get_Function;

\rtl\win\winrt\WinAPI.CommonTypes.pas line 138/439/544/6163...

&End

7.1.3 Simple substitutions

Many key words and operators can be replaced one to one. There is a long list of such substitutions. A
few examples are:

begin {

end }
record struct
:= =
= ==
<> !=
and &&
boolean bool

7.1.4 String constants and single characters

The apostrophes of the string constants are replaced by quotation marks. The treatment of the
characters is more difficult. Depending on context the apostrophes are left or replaced by quotation
marks.

'1' : -> case '1' :
string_id + '1' -> string_id + "1"

What is translated 45

© 2020 Dr. Detlef Meyer-Eltz

7.2 File layout

Delphi2C# creates for each Delphi source file an according C# target file. Records and classes of the
Delphi interface part, simply become according records and classes in the generated C# file. But in
contrast to Delphi in C# constants, variables and routines cannot be declared outside of a class.
Therefore in C# two classes are declared, which contain the global elements as static members. The
first of these classes contains the constants, variables and routines of the Delphi interface part and the
second class those of the implementation part. If there are records or classes declared in the
implementation part of the Delphi code, theses element also become member of the second class.

In the following example the placements of typical code elements in Delphi on the one side and in C#
on the other side are contrasted:

 Delphi C#

unit test; using static test.testInterface;
 using static test.testImplementation;
interface using System;
 using static System.SystemInterface;

 namespace test
 {
 public class TFoo : TObject
type {
 TFoo = class private void foo()
 private {
 procedure foo; }
 end;
 public TFoo() {}
 };

 public class testInterface
 {
const
 foo = 0; public const int foo = 0;
 procedure foo_proc; public static void foo_proc()
 {
 }

 } // class testInterface

implementation public class testImplementation
 {
const
 bar = 0; public const int bar = 0;

type
TBar = class public class TBar : TObject
private {
 procedure foo; private void foo()
end; {
 }

 public TBar() {}
 };
procedure TFoo.foo;
begin
end;

procedure foo_proc;
begin
end;

procedure TBar.foo;
begin

Delphi2C#46

© 2020 Dr. Detlef Meyer-Eltz

end;

procedure bar_proc; public static void bar_proc()
begin {
end; }

end. } // class testImplementation

 } // namespace test

This diagram also shows, that in C# there is no difference between declaration and implementation of
a routine;. the function body of a routines is written immediately at the place where the Delphi
declaration had been.

At the beginning of the C# file there are two uses clauses, which allow the use of the public elements
of testInterface and of testImplementation inside of the whole file test.cs without qualification. Next
System.cs is included, so that the classes, constants and routines which correspond to the according
entities of the Delphi system can be used without qualification too. Finally with the clause "using static
System.SystemInterface" the constants, variables and routines of the interface part of the System
namespace can be accessed, If the current test file would be used by another unit, accordingly uses
clauses would be created:

Comments can appear at many places in a file,

7.2.1 Uses clauses

Delphi uses clauses become to using directives in C#. For example:

unit test;

interface

uses System.SysUtils;
...

becomes to:

using System.SysUtils;
using static System.SysUtils.SysUtilsInterface;
using static test.testInterface;
using static test.testImplementation;
using System;
using static System.SystemClass;

namespace test
{
 ...

There are two using directives for all used files, because all files that were translated from Delphi with
Delphi2C# contain an extra class with the constants and routines of the interface part of the original
file, as described for the general file layout.

What is translated 47

© 2020 Dr. Detlef Meyer-Eltz

7.2.2 System Namespace

At the translation of Delphi code with Delphi2C# the C# System namespace is extended by the entities
of the Delphi System. Therefore the Delphi2C# installation provides the file System.cs. System.cs
corresponds to System.pas and has roughly the following structure:

namespace System
{

 // System classes
 ...

 public class TObject
 {
 ...

 public class TDateTime
 {
 ...

 public class SystemInterface
 {

 // System constants

 public const int MaxInt = Int32.MaxValue;
 ...

 // System functions

 public static string Concat(params string[] strings)
 {
 ...

 public static void SetLength(ref string xs, int xi)
 {
 ...

 static void System_initialization()
 {
 ...

 static void System_finalization()
 {
 ...

 } // SystemInterface

} // namespace System

System.cs starts with the definitions of some fundamental Delphi classes like TObject, TDateTime etc.
and some helper classes like PChar, Pointer and so on. The second part of System.cs consists of the
definition of a class called SystemInterface which contains public constants and static functions like
e.g. MaxInt, Concat and SetLength, which correspond to the constants and functions of the Delphi
System with the same name.

All C# files which are generated from Delphi with Delphi2C# are using System.cs by means of the
lines:

Delphi2C#48

© 2020 Dr. Detlef Meyer-Eltz

using System;
using static System.SystemInterface;

System.cs cannot be generated automatically from System.pas, because System.pas uses special
Delphi internal conventions. For example the SetLength function is declared there as:

procedure _SetLength(s: _PShortStr; newLength: Byte);

Moreover, System.pas is incomplete on the one hand and on the other hand it contains stuff, which
isn't needed in C#.
There is an extended System.pas, which has to be set in the translation options, to let Delphi2C# know
the signatures of the system routines.

7.2.3 Comments

All comments are output essentially unchanged at the corresponding positions. Line comments remain
totally unchanged, while bracketing is translated from

{...}

or
(*...*)

to

/*...*/

Sometimes there are difficulties to output comments at the desired positions. The following example
shows on the right side what Delphi2C# does with the Delphi source on the left side:

unit comments; using static comments.commentsInterface;
 using static comments.commentsImplementation;
 using System;
interface using static System.SystemInterface;

 namespace comments
type {
 TFoo = class public class TFoo : TObject
 private {
 function foo : boolean;
 end; /*-------------------------
 Name :
 Result :
 ---------------------------*/
 private bool foo()
 {
 bool result = false;
 result = true;
 return result;
 }

 public TFoo() {}
 };

 /*-------------------------

What is translated 49

© 2020 Dr. Detlef Meyer-Eltz

 Name : Foo2
 Result :
 ---------------------------*/
 function foo2: boolean; public static bool foo2()
 {
 bool result = false;
 return result;
 }

 } // class commentsInterface

implementation
 public class commentsImplementation
var {
 bar : integer = 0; // comment to bar
 public static int bar = 0; // comment to bar
(*-------------------------
Name : } // class commentsImplementation
Result :
---------------------------*) } // namespace comments
function TFoo.foo: boolean;
begin
 result := true;
end;

(*-------------------------
Name : Foo2
Result :
---------------------------*)
function foo2: boolean;
begin
end;

end.

The Delphi member function declaration foo and its definition in C# are combined into one text at the
position of the original declaration. A comment before the definition has to be shifted to that place too.
The same applies to the declaration and definition of the free function foo2. The comment to the
variable bar is output directly behind of the variable declaration. Sometimes Delphi2C# cannot clearly
decide, which comment line belongs to a multi line comment in front of a function definition and a
comment which explains an entity afterwards. For the second case Delphi2C# only takes single line
comments, which follow directly on a statement.

7.3 Types

There are built-in types in Delphi and also new types can be defined in sections of a source file which
begin with the type keyword.
The most simple form of a type definition is just to define another name for an existing type. E.g.:

WCHAR = WideChar;

var
 c : WCHAR;

In C# there is no true equivalent of such a type definition. Delphi2C# ignores such definitions and if an
identifier is found which is the name of a type Delphi2C# takes and outputs that name. From the three
lines of code above just remains:

Delphi2C#50

© 2020 Dr. Detlef Meyer-Eltz

char w;

Other types that can be defined are:

Records, Classes and Interfaces
Arrays
Enumerated types
Ranges
Sets

7.3.1 Records, Classes, Interfaces

Delphi and C++ have is the same concept of classes. Delphi records become to structures in C++.
Their concepts are similar too. In C# interface types can be defined similar to Delphi.

7.3.1.1 Record

A record mainly consists in public data elements, but also may have methods and sub-records. In
Delphi a record also may have a variant part.

In C# a record may not have a constructor without parameters.

Delphi records can contain arrays with a fixed size, e.g..:

 TFormatSettings = record
 ...
 ShortMonthNames: array[1..12] of string;

A C# structure however only can contain arrays with undefined size.

 public struct TFormatSettings
 ...
 public string[] ShortMonthNames;

In such and similar case Delphi2C# inserts a method called "CreateRecordMembers" into the
structure, which creates the array with defined size:

 public void CreateFixedArrays()
 {
 ShortMonthNames = new string[12/*# range 1..12*/];
 ...

In addition for all structures a public static function called "CreateRecord" is inserted:

What is translated 51

© 2020 Dr. Detlef Meyer-Eltz

 public static TFormatSettings CreateRecord()
 {
 TFormatSettings tmp = new TFormatSettings();

 tmp.CreateRecordMembers();
 return tmp;
 }

CreateRecord is similar to a Delphi constructor, but it is not called "Create", because the records often
already have "Create" functions, as it is the case for TFormatSettings.

At the places where record variable are declared in the Delphi code, Delphi2C# now writes code like:

 TFormatSettings result = TFormatSettings.CreateRecord();

Every record is initialized in that way, regardless whether it contains fixed array or not. For records
which don't have fixed sized arrays the CreateRecord method simply looks like:

public struct TRecord
{
 ...
 public static TRecord CreateRecord(){return new TRecord();}
};

However, if a record type is replaced by another one by refactoring, the initialization is done by "new":

 Guid result = new Guid();

7.3.1.1.1 Variant parts in records

C# structures cannot have variant parts as Delphi records can have. However by means of the
StructLayout(LayoutKind.Explicit) and FieldOffset attributes, the behavior can be reproduced.

 TRect = packed record
 case Integer of
 0: (Left, Top, Right, Bottom: Longint);
 1: (TopLeft, BottomRight: TPoint);
 end;

 ->

[StructLayout(LayoutKind.Explicit)]
public struct TRect
{
 /*# 0*/
 [FieldOffset(0)]
 public int Left;
 [FieldOffset(4)]
 public int Top;
 [FieldOffset(8)]
 public int Right;
 [FieldOffset(12)]
 public int Bottom;
 /*# 1*/
 [FieldOffset(0)]
 public TPoint TopLeft;
 [FieldOffset(4)]
 public TPoint BottomRight;
 public static TRect CreateRecord(){return new TRect();}

Delphi2C#52

© 2020 Dr. Detlef Meyer-Eltz

};

7.3.1.2 Class

A typical class consists may have following additional elements:

Ancestor
Constructor
Destructor
Class methods
Abstract methods

7.3.1.2.1 Ancestors

If no ancestor type is specified when declaring a new object class, Delphi automatically uses TObject
as the ancestor. In C# TObject has to be quoted explicitly.

TNewClass = class ...

->

class TNewClass : TObject ...

7.3.1.2.2 Constructors

In Delphi a declaration of constructors start with the keyword constructor followed by an arbitrary
name. In C# is the name of the of the class also the name of the constructor.

constructor classname.foo; -> classname::classname ()

Constructor of the base class
Initialization lists
Addition of missing constructors
Virtual constructors
Problems with constructors

7.3.1.2.2.1 Constructor of the base class

In Delphi and C# the order of construction of the derived and the base classes is differently. In Delphi
the derived class is constructed first, while in C# the constructors of the base classes are executed
automatically, before the constructor of the derived class is executed. If the base class has no
standard constructor (= constructor without parameters) the base class constructor has to be called in
the initialization list with the according parameters.The constructors of the ancestor classes are
executed in Delphi only, if they are called explicitly from in the written code. In such cases Delphi2C#
tries to find this call and puts it into the initialization list:

type
TFoo = class
 constructor Create(Owner: TComponent);

What is translated 53

© 2020 Dr. Detlef Meyer-Eltz

end;

implementation

constructor TFoo.Create(Owner: TComponent);
begin
 inherited Create(Owner);
end;

->

public class foo : TObject
{
 public foo(TComponent Owner)
 : base(Owner)
 {
 }

};

There is a second reason, why this shift is necessary: in C# the explicit call of an ancestor constructor
in the derived constructor has no effect. (A temporary instance of the base class will be created only.)

Base class constructors without parameters are called automatically in C#. Delphi2C# preserves the
original calls of such constructors as line comments.

constructor foo.Create();
begin
 inherited Create;
end;

->

__fastcall foo::foo ()
{

// inherited::Create;
}

The example above was shortened. In fact Delphi2C# for each constructor creates a second function
with the function body of the Delphi constructor.

type
TFoo = class
 constructor Create(Owner: TComponent);
end;

implementation

constructor TFoo.Create(Owner: TComponent);
begin
 inherited Create(Owner);
end;

->

public class foo : TObject
{
 public foo(TComponent Owner)
 : base(Owner)
 {
 Create(Owner);
 }
 public void Create(TComponent Owner)
 {
 //# base.Create(Owner);
 }

Delphi2C#54

© 2020 Dr. Detlef Meyer-Eltz

 public foo() {}
};

This additional method isn't a good programming style and even can produce errors, but it is needed,
when a constructor is called directly to initialize an existing instance again.

var
 foo : TFoo;
begin
 foo := TFoo.Create;
 foo := TFoo.Create(...):

7.3.1.2.2.2 Initialization lists

In Delphi and C# member variables like other variables too are initialized automatically with according
default values. But array with fixed size - as FCoord in the following example - have to be created at
construction of a class instance. If a field is a record, it will be initialized too by a call of CreateRecord.

. Delphi source C# translation

 TBase = class public class TBase : TObject
 public {
 constructor Create(arg : Integer); public TBase(int arg)
 destructor Destroy; {
 private Create(arg);
 FList : TList; }
 FCoords: array[0..3] of Longint; public void Create(int arg)
 FTimeOut: Longint; {
 end; }
 ~TBase()
 constructor Base.Create(arg : Integer); private TList FList;
 begin private int[] FCoords = new int[4/*# range 0.. 3*/];
 end; private int FTimeOut;

 public TBase() {}
 };

If the members are initialized explicitly in Delphi, Delphi2C# tries to find the according statements and
puts them into the initialization list of the class constructor:

constructor Base.Create(arg : Integer); __fastcall Base::Base(int arg)
begin : FI(arg),
 FList := TList.Create; FList(new TList),
 FI := arg; FTimeOut(0)
 if arg <> $00 then {
 FTimeOut := arg if (arg != 0x00)
 else FTimeOut = arg;
 FTimeOut := DefaultTimeout; else
end; FTimeOut = DefaultTimeout;
 }

The use of initialization lists is more efficient in C# than to initialize the variables in the body of the
constructor. But sometimes there is a problem with this method. For example, the initialization of the
member FTimeOut depends of the value of the arg parameter. As shown in the next example
Delphi2C# tries to take care about such cases. But Delphi2C# cannot find all such hidden
dependencies, as in the following example:

What is translated 55

© 2020 Dr. Detlef Meyer-Eltz

constructor Derived.Create; __fastcall Derived::Derived()
var : inherited(i),
 i : Integer; FB(false)
begin {
 i := SomeFunction; int i = 0;
 inherited Create(i); i = SomeFunction;
end; }

In such cases constructors have to be corrected manually like:

__fastcall Derived::Derived()
 : inheritd(SomeFunction())
{
}

Unfortunately, there is another problem with the order of the initializations. in C# the order in the
initializer list is ignored. Member variables are always initialized in the order they appear in the class
declaration. In the following example:

TInit = class(TObject)
 FName1, FName2, FName4, FName3 : String;
 constructor Create(Name1, Name2, Name3 : String);
end;

implementation

constructor TInit.Create(Name1, Name2, Name3 : String);
begin
 FName1 := Name1;
 FName2 := Name2;
 FName3 := Name3;
 FName4 := FName3;
end;

a strict initialization of the member variables in the order in which they are declared would lead to:

__fastcall TInit::TInit(String Name1, String Name2, String Name3)
 : FName1(Name1),
 FName2(Name2),
 FName4(FName3),
 FName3(Name3)
{
}

Obviously, this is not correct. Therefore Delphi2C# uses the following strategy: as long as the
initialization statements in the constructor are in the order of the declarations, they are shifted into the
initializer list. For all other member variables follows initialization code in the body of the constructor.

__fastcall TInit::TInit(String Name1, String Name2, String Name3)
 : FName1(Name1),
 FName2(Name2),
 FName3(Name3)
{
 FName4 = FName3;
}

Delphi2C#56

© 2020 Dr. Detlef Meyer-Eltz

7.3.1.2.2.3 Addition of missing constructors

Unlike in Delphi, constructors of base classes cannot be called directly in C#. Additional constructor
have to be defined in the derived class. Delphi2C# inserts missing constructors in C# automatically.
So, resuming the previous example, an additional standard constructor is created, which can be used
with all classes, which are derived from TObject:
Unlike in Delphi, constructors of base classes cannot be called directly in C#. If there are public
constructors in the base classes with different signatures as any constructor of the derived class, these
constructors are generated for the derived class too. Especially in Delphi all classes are derived from
TObject and inherit its default constructor. Therefore Delphi2C# generates a default constructor for
each derived class, even if such a constructor doesn't exist in the original Delphi code.

Sometimes a lot of additional code has to be produced for C# classes. For example a class, which is
derived from Exception has more than ten constructors. Inside of each constructor the constructor of
the base class has to be called in the initialization list

public class MyException : Exception
{
 public EArgumentException(string Msg) : base(Msg) {}
 public EArgumentException(string Msg, object[] Args) : base(Msg, Args) {}
.
.
.

};

7.3.1.2.2.4 Virtual constructors

In Delphi constructors can be used like virtual functions in C#. This can be demonstrated at the
example, which is also used in the section about class method. A class method might be called for a
base class and another class derived from it:

pBase := TBase.Create;
pDerived1 := TDerived1.Create;

pDerived1->ClassMethod(pDerived1, 1);

Inside of the class method a new object of the class is created:

class function TBase.ClassMethod(xi: Integer): Integer;
begin
 with Create do <-- new object from virtual constructor
 begin
 Init; <-- virtual method
 Done;
 Free;
 end;
 result := xi;
end;

The Init method might be virtual. In this case the Init method of TDerived1 will be called. That means,
an instance of TDerived1 has been created, because ClassMethod was called for a TDerived1 object.
If ClassMethod were called for a TBase object, a TBase object would have been created and TBase.
Init would have been called.

What is translated 57

© 2020 Dr. Detlef Meyer-Eltz

7.3.1.2.2.5 Problems with constructors

Summarizing, there remain two problems for which the translated constructors have to be checked:

1. the order of construction of the derived and the base classes is differently in Delphi and C#
2. member variables should be initialized in at the beginning of the constructor code in the initialization

list. But sometimes the value can depend on other calculations and Delphi2C#cannot recognize
this.

There is still another problem with special constructors. In Delphi there can be several constructors with the same signature but with different names.. E.g.:

TCoordinate = class(TObject)
public
 constructor CreateRectangular(AX, AY: Double);
 constructor CreatePolar(Radius, Angle: Double);
private
 x,y : Double;
end;

constructor TCoordinate.CreateRectangular(AX, AY: Double);
begin
 x := AX;
 y := AY;
end

constructor TCoordinate.CreatePolar(Radius, Angle: Double);
begin
 x := Radius * cos(Angle);
 y := Radius * sIn(Angle);
end

After translation the two constructors become ambiguous:

public class TCoordinate : TObject
{
 public TCoordinate(double AX, double AY)
 {
 CreateRectangular(AX, AY);
 }
 public void CreateRectangular(double AX, double AY)
 {
 x = AX;
 y = AY;
 }
 public TCoordinate(double Radius, double Angle)
 {
 CreatePolar(Radius, Angle);
 }
 public void CreatePolar(double Radius, double Angle)
 {
 x = Radius * cos(Angle);
 y = Radius * sIn(Angle);
 }
 private double x;
 private double y;

 public TCoordinate() {}
};

In such cases the conflict has to be avoided manually.

Delphi2C#58

© 2020 Dr. Detlef Meyer-Eltz

7.3.1.2.3 Destructors

In Delphi a declaration of destructors start with the keyword destructor followed by an arbitrary name.
In C# the name of the of the class is also the name of the destructor preceded by the the character '~'.

destructor classname.foo; -> classname::~classname ()

Delphi2C# tempts to find calls of destructors of the base class and to comment them out in C#.
Thereby is assumed that the destructor of the base class is virtual. This has to be checked by the user.

destructor foo.Destroy(); -> foo::~foo ()
begin {
 FreeAndNil(m_Messages); FreeAndNil (m_Messages);
 inherited Destroy; // todo check: inherited::Destroy;
end;

7.3.1.2.4 class methods

Delphi class methods are similar to C# static methods, but there are two differences:

1. Delphi class methods can be virtual, C# static methods cannot.Therefore Delphi2C# has to use a
tricky construction to reproduce this ability of Delphi.

2. In the defining declaration of a class method, the identifier Self represents the class where the
method is called. In C++ however inside of a static function there is no counterpart to Delphi's Self (
this isn't defined her).

Therefore the two cases have to be distinguished at the translation of Delphi class methods to C++
and Delphi's Self-instance requires additional treatment:

non virtual class methods
virtual class methods
Self instance

7.3.1.2.4.1 non virtual class methods

Delphi non virtual class methods are converted to C# static methods. They can be called through a
class reference or an object reference:

type
 TBase = class(TObject)
 public
 class function ClassMethod(xi: Integer): Integer;
 end;

...

var
 pBase: TBase;
 i : Integer;
begin
 i := TBase.ClassMethod(0); // calling through a class reference
 // ...

What is translated 59

© 2020 Dr. Detlef Meyer-Eltz

 i := pBase.ClassMethod(0); // calling through an object reference

This is translated in the following way:

public class TBase : TObject
{
 public static int ClassMethod(int xi)
 {
 ...

};

...

TBase* pBase = NULL;
int i = 0;
TBase.ClassMethod(0); // calling through a class reference
// ...
TBase.ClassMethod(0); // calling through an object reference

The class method cannot be called through an object reference.

7.3.1.2.4.2 virtual class methods

Because there are no virtual static methods in C# Delpi2C# has an option, which allows to convert
virtual class methods either to static non-virtual methods or to virtual non-static methods.

The first case results into the same code as for non-virtual class methods. If the virtual class methods
aren't overridden, this is obviously the best option. But if the methods are overwritten, the virtual class
methods have to be converted to virtual C# methods. Then these methods cannot be called through a
class type expression in C# any more, If they are called that way in the Delphi code, an adequate
instance of the class has to be provided in C#. If the option to create meta classes is enabled
Delphi2C# provides these instances automatically:

TBase = class(TObject)
public
 class function ClassVirtual(xi: Integer): Integer; virtual;

var
 base : TBase;
begin
 base.ClassVirtual(0);
 TBase.ClassVirtual(0);
 TDerived.ClassVirtual(0);

->

public class TBase : TObject
{
 public /*#static*/ virtual int ClassVirtual(int xi)
 {

base.ClassVirtual(0);
ClassRef<TBase>.getClassInstance().ClassVirtual(xi);
ClassRef<TDerived>.getClassInstance().ClassVirtual(xi);

Delphi2C#60

© 2020 Dr. Detlef Meyer-Eltz

By calling ClassVirtual through the TBase pointer base, the correct version of ClassVirtual will be
called as for for non-static methods too. The correct version of ClassVirtual will be called in C# too, if
the class name is used in Delphi, because Delphi2C# replaces the class names by the according class
reference instances.

7.3.1.2.4.3 Self instance

Like the "this" pointer in C++ is an implicit parameter to all member functions, in Delphi the "Self"
instance is an implicit parameter to class functions. Other class methods can be called there through
this instance and they can be called by hidden use of "Self". "Self" must not appear in the code. For
example:

class function TBase.ClassMethod(xi: Integer): Integer;
begin

 with Create do <-- new object from a virtual constructor of Self
 begin
 Init;
 Done;
 Free;
 end;
 result := xi;
end;

Delphi2C# can convert this code adequately only, if the option to create meta classes is enabled. The
code then becomes to:

public static int ClassMethod(int xi)
{
 int result = 0;
 /*# with Create do */
 {
 TBase with0 = (TBase) SCreate();
 with0.Init();
 with0.Done();
 with0.Free();
 }
 result = xi;
 return result;
}

"SCreate" is a static method, which returns a new instance of TBase.

7.3.1.2.5 abstract methods

Like Delphi also C# knows abstract methods. The most natural way of translation is for example:

function Get(Index: Integer): Integer; virtual; abstract;
->
abstract public int Get(int Index)/*# virtual */;

What is translated 61

© 2020 Dr. Detlef Meyer-Eltz

7.3.1.2.6 Visibility of class members

In Delphi a private or protected member is visible anywhere in the module where its class is declared.
In C# a private or protected member is visible only in the class.

7.3.1.2.7 Creation of instances of classes

VCL classes have to be created with new in C#.

TList.Create(NIL) -> new TList(NULL)

7.3.1.3 Interfaces

In Delphi interface types can be defined like in the following lines of code:

IConverter = interface
 ['{GUID}']
 function convert(Source : String): String;
end;

TConverter = class(TInterfacedObject, IConverter)
public
 //...
 function convert(Source : String): String;
end;

C# also knows this keyword, but the GUID has to be written differently:

[Guid("GUID"), ComVisible(true)]
public interface IConverter : IInterface
{
 string convert(string Source);
};

public class TConverter : TInterfacedObject, IConverter
{

 //...
 public string convert(string Source)
 {
 ...
};

All Interfaces inherit from at least from IInterface.

Delphi2C#62

© 2020 Dr. Detlef Meyer-Eltz

7.3.2 Arrays

Delphi distinguishes between Static arrays with a fixed size and Dynamic arrays with a variable size.
Both can be passed to routines as parameters. There is a third kind of array: Open arrays, which can
be passes to routines. Open arrays are arrays of unspecified size with elements, that all have the
same type.

Some of the following examples stem from: http://www.delphibasics.co.uk/RTL.asp?Name=array

7.3.2.1 Static arrays

Static arrays can have one or more dimensions. The declarations in C# can be derived from the Delphi
declarations in a straightforward manner.:

var
 // Define static arrays
 wordArray : Array[Word] Of Integer; // Static, size=High(Word)
 multiArray : Array[byte, 1..5] Of char; // Static array, 2 dimensions
 rangeArray : Array[5..20] Of string; // Static array, size = 16

->
 // Define static arrays
 int[] wordArray = new int[65536/*# word*/]; // Static, size=High(Word)
 char[,] multiArray = new char[256/*# byte*/, 5/*# range 1.. 5*/]; // Static array, 2 dimensions
 string[] rangeArray = new string[16/*# range 5.. 20*/]; // Static array, size = 16

While in Delphi the lower bound and the upper bound have to be defined, in C# arrays are always zero
based, Array indices are corrected by Delphi2C#.

7.3.2.2 Dynamic arrays

Dynamic arrays become C# arrays:

var
 // Define dynamic arrays
 byteArray : Array Of byte; // Single dimension array
 multiArray : Array Of Array Of string; // Multi-dimension array

What is translated 63

© 2020 Dr. Detlef Meyer-Eltz

->
 // Define dynamic arrays
 byte[] byteArray = new byte[]{}; // Single dimension array
 string[][] multiArray = new string[][]{}; // Multi-dimension array

Dynamic arrays are accepted as parameters only, if the type of the array is defined explicitly and if the
function expects this type.

System.Generics.Collections
FSysLangs: TArray<TLangRec>;

private List<TLangRec> FSysLangs = new List<TLangRec>();

 TLangRec tmp0 = FSysLangs[FSysLangs.Count - 1 /*# High(FSysLangs) */];
 tmp0.FName = GetLocaleDataW(AID, (uint) LOCALE_SLANGUAGE);
 FSysLangs[FSysLangs.Count - 1 /*# High(FSysLangs) */] = tmp0;

7.3.2.3 Array indices

While in Delphi the lower bound and the upper bound of a static array have to be defined, in C# arrays
are always zero based, i.e. the undermost index is 0 and the topmost index is the size of the array
minus 1.

If the lower bound of an array isn't null, Delphi2C# corrects an index by which the array is accessed
automatically by subtraction of the lower bound.
Example:

var
arr : array [1..3] of integer;
i : integer;
begin
 for i := low(arr) to high(arr) do
 arr[i] := 0;
end;

is translated to:

int arr [3];
int i;
for (i = 1; i <= 3; i++)
 arr[i - 1] = 0;

7.3.2.4 Initializing arrays

The initialization of arrays in Delphi and C# looks very similar. For example the initialization of an array
of TStyleRecord's:

type
TStyleRecord = record
 Name : string;
 Color : TColor;
 Style : TFontStyles;
end;
TStylesArray = Array[0 .. 2] Of TStyleRecord;

Delphi2C#64

© 2020 Dr. Detlef Meyer-Eltz

const

DefaultStyles : TStylesArray = (
 (Name : 'tnone'; Color : clBlack; Style : []),
 (Name : 'tstring'; Color : clMaroon; Style : []),
 (Name : 'tcomment'; Color : clNavy; Style : [fsItalic])
);

->

public struct TStyleRecord
{
 public string Name;
 public int /*-0x7FFFFFFF - 1..0x7FFFFFFF*/ Color;
 public TSet Style;
 public static TStyleRecord CreateRecord(){return new TStyleRecord();}
};

public static readonly TStyleRecord[] DefaultStyles = {new TStyleRecord{Name="tnone", Color=claBlack, Style=new TSet()},
new TStyleRecord{Name="tstring", Color=claMaroon, Style=new TSet()},
new TStyleRecord{Name="tcomment", Color=claNavy, Style=new TSet() << (int) TArrays_FontStyle.fsaItalic}};

7.3.2.5 Array parameters

Static and dynamic arrays can be passed in Delphi to the same function, if it expects an open array
parameter. In the C# translation static and dynamic arrays are incompatible types. Static arrays are
passed to functions as open array. Dynamic array can be passed to a function only, if the type of the
dynamic array is defined explicitly and the function expects this type. Array of const parameters allow
to pass an array on the fly.

7.3.2.5.1 Open array parameters

The concept of open arrays allow arrays of different sizes to be passed to the same procedure or
function.

function Sum(Arr: Array of Integer): Integer;
var
 i: Integer;
begin
 Result := 0;
 for i := Low(Arr) to High(Arr) do
 Result := Result + Arr[i];
end;

In the C# translation the array member functions GetUpperBound and GetLowerBound are used
instead of the Delphi functions High and Low.

public static int Sum(int[] Arr)
{
 int result = 0;
 int i = 0;
 int stop = 0;
 result = 0;
 for(stop = Arr.GetUpperBound(0), i = Arr.GetLowerBound(0); i <= stop; i++)
 {
 result = result + Arr[i];
 }

What is translated 65

© 2020 Dr. Detlef Meyer-Eltz

 return result;
}

If a temporary set of values can be passed as open array parameter too:

procedure Log(strings : array of string)
begin end;

procedure foo;
begin
Log(['one', 'two', 'three']);
end;

->

public static void Log(string[] strings)
{
}

public static void foo()
{
 Log(new string[]{"one", "two", "three"});
}

7.3.2.5.2 Static array parameter

A static array is passed to functions as an open array parameter. The additional second parameter for
the upper bound of the array is inserted into the declaration of the function automatically and is passed
to the function automatically too. The upper bound of the array is calculated by means of a macro:

#define MAXIDX(x) (sizeof(x)/sizeof(x[0]))-1

procedure foo(Arr: Array of Char)
begin end;

procedure bar();
var
 chararray : Array [1..10] of Char;
begin
 foo(chararray);
end;

is translated to:

public static void foo(char[] Arr)
{
}

public static void bar()
{
 char[] charArray = new char[10/*# range 1.. 10*/];
 foo(charArray);
}

7.3.2.5.3 Dynamic array parameter

A Delphi function accepts a dynamic array as parameter, if it is defined explicitly:

type
strarray = Array of String;
procedure Check(aSources : strarray)
begin end

Delphi2C#66

© 2020 Dr. Detlef Meyer-Eltz

->
public static void Check(string[] aSources)
{
}

7.3.2.5.4 array of const

"Array of const" parameters look similar to open array parameters.

procedure foo(Args : array of const);

However, while all elements of an open array have the same type, elements of different types can be
passed as an array of const. Indeed the array of const is an open array of TVarRec elements and
TVarRec is a variant type which which can contain the single values of different types.
For C# TVarRec hasn't to be re-coded. Because in C# all value types can be converted to object,
object can be used instead of TVarRec.

procedure foo(Args : array of const)
begin end;

->

public static void foo(object[] Args)
{
}

A following complex example is from:
[****]
https://stackoverflow.com/questions/19532228/how-do-i-build-an-array-of-const

function VarRecToStr(AVarRec : TVarRec) : string;
 const
 bool : array[boolean] of string = ('False', 'True');
 begin
 case AVarRec.VType of
 vtInteger: result := IntToStr(AVarRec.VInteger);
 vtBoolean: result := bool[AVarRec.VBoolean];
 vtChar: result := AVarRec.VChar;
 vtExtended: result := FloatToStr(AVarRec.VExtended^);
 vtString: result := AVarRec.VString^;
 // vtPointer
 vtPChar: result := AVarRec.VPChar;
 vtObject: result := AVarRec.VObject.ClassName;
 vtClass: result := AVarRec.VClass.ClassName;
 vtWideChar: result := AVarRec.VWideChar;
 //vtPWideChar: Result := AVarRec.PWideChar^;
 vtAnsiString: result := string(AVarRec.VAnsiString);
 vtCurrency: result := CurrToStr(AVarRec.VCurrency^);
 vtVariant: result := string(AVarRec.VVariant^);
 //vtInterface: (VInterface: Pointer);
 vtWideString: result := string(AVarRec.VWideString);
 //vtInt64: Result := AVarRec.PInt64^;
 vtUnicodeString: result := string(AVarRec.VUnicodeString);
 //Reserved1: NativeInt;
 //VType: Byte;
 else
 result := '';
 end;
 end;

function VarArrayToStr(AVarArray : array of const) : string;
 var
 i : Integer;

What is translated 67

© 2020 Dr. Detlef Meyer-Eltz

 begin
 result := '';
 for i := 0 to High(AVarArray) do
 result := result + VarRecToStr(AVarArray[i]);
 end;

procedure foo;
var
 s : string;
begin
 s := VarArrayToStr([1, true, 'a', 1.2, 'hello']);
end;

The conversion to an object is implicit and it's called boxing. The reverse unboxing operation, the
conversion of an objet to the contained value type, is explicit, that means for each value type the an
according cast has to be done.

public static string VarRecToStr(object AVarRec)
{
 string result = string.Empty;
 string[] bools = new string[2/*# boolean*/]{"False", "True"};
 switch(Type.GetTypeCode(AVarRec.GetType()))
 {
 case vtInteger:
 result = (((int)AVarRec)).ToString();
 break;
 case vtBoolean:
 result = bools[Convert.ToInt32(((bool)AVarRec))];
 break;
 case vtChar:
 result = ((char)AVarRec).ToString();
 break;
 case vtExtended:
 result = FloatToStr(((double)AVarRec));
 break;
 case vtString:
 result = ((string)AVarRec);
 break;
 // vtPointer
 case vtPChar:
 result = ((string)AVarRec);
 break;
 case vtObject:
 result = AVarRec.ClassName;
 break;
 case vtClass:
 result = AVarRec.ClassName;
 break;
 case vtWideChar:
 result = ((char)AVarRec).ToString();
 break;
 //vtPWideChar: Result := AVarRec.PWideChar^;
 case vtAnsiString:
 result = ((string) ((string)AVarRec));
 break;
 case vtCurrency:
 result = CurrToStr(((decimal)AVarRec));
 break;
 case vtVariant:
 result = ((string) AVarRec);
 break;
 //vtInterface: (VInterface: Pointer);
 case vtWideString:
 result = ((string) ((string)AVarRec));
 break;
 //vtInt64: Result := AVarRec.PInt64^;
 case vtUnicodeString:
 result = ((string) ((string)AVarRec));
 break;
 //Reserved1: NativeInt;
 //VType: Byte;

Delphi2C#68

© 2020 Dr. Detlef Meyer-Eltz

 default:
 result = "";
 break;
 }
 return result;
}

public static string VarArrayToStr(object[] AVarArray)
{
 string result = string.Empty;
 int i = 0;
 int stop = 0;
 result = "";
 for(stop = AVarArray.Length - 1 /*# High(AVarArray) */, i = 0; i <= stop; i++)
 {
 result = result + VarRecToStr(AVarArray[i]);
 }
 return result;
}

public static void foo()
{
 string s = string.Empty;
 s = VarArrayToStr(new object[]{1, true, 'a', 1.2D, "hello"});
}

There are ambiguous cases however. For example in C# the different string types are nor
distinguished. Delphi2C# cannot decide, which string case is the best. Here manual post-Processing is
necessary.

7.3.2.5.5 Array of const vs. set

DelphiXE2Cpp11 decides by the expected parameter type how the set argument is translated:

type
TCharSet = set of Char;

procedure foo(arr : array of const);
procedure bar(set : TCharSet);

foo(['hello', 'world']);
bar(['hello', 'world']);

 ->

 foo(new object[]{'h', 'w'});
 bar(new TSet() << 'h' << 'w');

7.3.3 Enumerated types

The explicit definition of enumeration types is easy to translate.

Day = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
->
public enum Day {Mon,
 Tue,
 Wed,
 Thu,

What is translated 69

© 2020 Dr. Detlef Meyer-Eltz

 Fri,
 Sat,
 Sun };

However, an implicit definition is also possible in object Pascal within a variable declaration. It is
decomposed for C# into an explicit type definition and the real declaration of the variable. The name of
the type is derived from the name of the unit (...) by appending two underscores and a counter.

procedure foo;
var
 Day : (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
begin end;

->

public enum test__0 {Mon,
 Tue,
 Wed,
 Thu,
 Fri,
 Sat,
 Sun };

public class testClass
{

public static void foo()
{
 test__0 Day = test__0.Mon;
}

If the size of an array is specified by an enumerated type, the size is evaluated from the smallest and
greatest value of the type.

type
 TEnum = (cm1, cm2, cm3, cm4, cm5, cm6);

var
 foo : Array[TEnum] Of String;

->

public enum TEnum {cm1,
 cm2,
 cm3,
 cm4,
 cm5,
 cm6 };
public static string[] foo = new string[6/*# TEnum*/];

7.3.4 Ranges

Numeric ranges don't exist in C#. If a variable has a range type Delphi2C# deduces an underlying type
of the range - mostly integer - and writes the original limits into the translated code as a comment:

type
TYearType = 1..12;

var
 year : TYearType;

->

private static int /*1..12*/ year = 0;

Delphi2C#70

© 2020 Dr. Detlef Meyer-Eltz

7.3.5 Sets

A Delphi set is simulated in the C# VCL by the class TSet in DelphiSets.cs.

public class TSet : IEnumerable

Every TSet consists of 256 bits, which can be set or unset.

var
CharSet: set Of 'a'..'z';
NumberSet: set Of 1..10;

->

private static TSet CharSet = new TSet();
private static TSet NumberSet = new TSet();

A set is created on the fly, if there is no explicit type-declaration of a set, as e.g. in:

MySet := ['a','b','c'];

->

MySet = new TSet() << 'a' << 'b' << 'c';

An example of a set constant is:

type
 TDay = (dMon, dTue, dWed, dThu, dFri, dSat, dSun);

const
 cDays: set Of TDay = [dMon .. dSun];

->

public enum TDay {dMon,
 dTue,
 dWed,
 dThu,
 dFri,
 dSat,
 dSun };

public static TSet cDays = TSet() <<
 (int) dMon << (int) dTue << (int) dWed << (int) dThu << (int) dFri << (int) dSat <<
 (int) dSun;

What is translated 71

© 2020 Dr. Detlef Meyer-Eltz

7.3.6 Order of lookup

The order by which symbols are looked up is different in Delphi and C#. Delphi tries to find a symbol in
the last used unit at first and if it isn't there Delphi will continue with the previous used unit. If both used
units contain the same symbol, but defined differently, this doesn't matter, because Delphi will take just
the definition, that it finds first. In the following example MyType will be an integer:

uses lookupinunits2, // LType = TestRecord;
 lookupinunits1; // LType = Integer;

Type
 MyType = LType;

implementation

procedure foo;
var
 i : integer;
 m : MyType;
 t : TestRecord;
begin
 m := i;
// m := t; E2010 incompatibe types: 'Integer' and 'TestRecord'
end;

In the translated C# code there are no type definitions, but m correctly becomes an integer, not a
TestRecord.

public static void foo()
{
 int i = 0;
 int m = 0;
 TestRecord T = null;
 m = i;
 // m := t; E2010 incompatibe types: 'Integer' and 'TestRecord'
}

Remark:
In C++ both definitions of LType would conflict. If LType would denote pointer types, then there would
be an ambiguity.

7.4 Variables

In Delphi declarations of variables in done in a section of code which begins with the var keyword. A
single declaration then consists in a name followed by a double point and the type:

var
 str : AnsiString;

In C# the type is followed by the name.

AnsiString str;

But beneath these "normal" variables, special kinds of variables also can be declared in sections

Delphi2C#72

© 2020 Dr. Detlef Meyer-Eltz

starting with:

threadvar
resourcestring

7.4.1 threadvars

In Delphi the keyword threadvar is used to declare variables using the thread-local storage.

threadvar
 x: Integer;

In C# the ThreadStatic attribute can be used:

[ThreadStatic]
int x;

7.4.2 Resource strings

Delphi compiler has built-in support for resource strings. In Delphi there is a complex management of
modules Delphi2C# makes resource strings to normal string constants

resourcestring
SIndexError = 'Index out of bounds: %d';

gets translated to:

public static string SIndexError = "Index out of bounds: %d";

 In the code for Delphi2C# there is an additional makeshift. TResStringRec is rewritten as:

public struct TResStringRec
{
 //public Pointer<HMODULE> Module;
 //public Pointer<uint> Module;
 //public uint Identifier;

 public static implicit operator TResStringRec(string s)
 {
 return new TResStringRec() { FMessage = s };
 }

 public string FMessage {get; set;}
};

The implicit operator lets compile calls like:

ConvertError(new Pointer<TResStringRec>(SFormatTooLong));

In a constructor of an Exception the message is fetched by:

 public Exception(Pointer<TResStringRec> ResStringRec)
 : base(ResStringRec.Deref().FMessage)
 {
 }

What is translated 73

© 2020 Dr. Detlef Meyer-Eltz

7.5 Operators

Some of the names of Delphi operators are the same in C# as for example '>' and '>=', others are
named differently as for example the assignment operator ':=' is '=' in C# and the equality operator '='
is '==' in C#. At the translation from Delphi to C# for most operators it suffices just to substitute the
name of the operator. But there are two difficulties:

In C# two manners of use of the Delphi operators "and" and "or" have to be distinguished.
The operator precedence in Delphi and C# is different.
The in-operator has to be substituted in a special ways.

Also operator overloading has a different syntax.

7.5.1 boolean vs. bitwise operators

In C# two manners of use of the Delphi operators "and" and "or" have to be distinguished.

If these operators are between expressions which result in boolean values, then the complete
expression results in a boolean value in accordance with the boolean logic. The boolean "and"
operator in C# is "&&" and the boolean "or" operator in C# is "||".

If the "and" operator or the "or" operator is, however, enclosed by expressions which don't yield
boolean values, then the results are connected bitwise. In this case the corresponding C# operators
are "|" and " &".

7.5.2 operator precedence

In complex expressions, rules of precedence determine the order in which operations are performed.
Delphi has four levels:

level operators
1. @, not
2. *, /, div, mod, and, shl, shr, as
3. +, -, or, xor
4. =, <>, <, >, <=, >=, in, is

The first level is the highest precedence and the fourth level is the lowest. The equivalent operators
are spread in C# like in C++ on 11 levels.

level operators
1. (address) & ! ~ // dereference *, unarary + -
2. * / %
3. + -
4. << >>
5. < > <= >=
6. == !=
7. &
8. ^
9. |

Delphi2C#74

© 2020 Dr. Detlef Meyer-Eltz

10. &&
11. ||

To reproduce the order in which expressions are performed in Delphi appropriate parenthesis must be
inserted in C#.

For example, while in Delphi the And and Or operators have a higher priority than the equality
operators, in C# equality operators are evaluated first. So at the translation of the following condition:

if attr And flag = flag then

according parenthesis are set in the C# output:

if((attr & flag) == flag)

7.5.3 in-operator

The in-operator of Delphi is replaced by the "Contains" function of the Set class in C#.
There is a special translation of the in-Operator in a for-in loop.

7.6 Assignments

A simple assignment statement in Delphi looks like:

A := B;

This becomes in C# to

A = B;

However, some simple assignments in Delphi are producing warnings or even bugs in C#. Therefore

explicit casts

are necessary in C#.

7.6.1 Explicit casts

Generally, if a variable of one type is assigned to another variable with another type this is possible
without problems, if no information is lost. For example, if a shortint variable is assigned to an integer
variable, there is no problem, because the size of shortint is one byte and the size of an integer
variable is at least two bytes. If the assignment goes the other way round however in C# an explicit
cast is necessary:

 si : shortint;
 i : integer;
begin
 i := si;
 si := i;

becomes to:

What is translated 75

© 2020 Dr. Detlef Meyer-Eltz

 sbyte si = 0;
 int i = 0;
 i = si;
 si = (sbyte) i;

Delphi2C# always inserts the according casts, also when such casts are necessary to pass
parameters to functions.

7.7 Routines

There are two kinds of routines in Delphi: procedures and functions. Both kinds may be declared first
and defined later.

If a routine has no parameters in contrast to Delphi the calls of the routine in C# have to end with
parenthesis.

foo; -> foo();

There are different kinds of parameters, which have to be translated accordingly. Sometimes
parameters cannot be passed directly as in Delphi, but a temporary variable has to be created at fist,
which then is passed.

Delphi nested routines also can be reproduced in C#.

7.7.1 Procedures and functions

Procedures are translated to void-functions

procedure foo; -> void foo();

The translation of functions is more complicated, because there aren't return-statements in Object-
Pascal. Instead, the return value is assigned to a variable Result, which is implicitely declared in each
function. In C# this variable must be declared explicitly and returned at the end of the function. Also to
the Exit-function has to be replaced by a return-statement in C#.

function foo(i : Integer) : bar; -> bar __fastcall foo (int i)
begin {
 Result := 0; bar result;
 if i < 0 then result = 0;
 EXIT if (i < 0)
 else return result;
 Result := 1; else
end; result = 1;
 return result;

In addition, the function name itself acts as a special variable that holds the function’s return value, as
does the predefined variable Result. So the same translation as above results from:

function foo(i : Integer) : bar;
begin
 foo := 0;
 if i < 0 then
 EXIT
 else
 foo := 1;
end;

Delphi2C#76

© 2020 Dr. Detlef Meyer-Eltz

7.7.2 Declaration and definition

Routines may be declared first in the interface part of a unit and defined later in the implementation
part. If a routine is the member of a class, the declaration always has to be separated from the
definition.

interface

type
 TFoo = class
 private
 procedure foo;
 end;

 procedure foo;

implementation

procedure TFoo.foo;
begin
 ...
end;

procedure foo;
begin
 ...
end;

In C# this difference doesn't exist, there is only one place for a routine.

public class TFoo : TObject
{
 private void foo()
 {
 ...
 }

 public TFoo() {}
};

public class ...Class
{
 public static void foo()
 {
 ...
 }

} // ...Class

Member routines are written inside of the class definition and free routines become public static
members of the extra class which is created for each unit.

7.7.3 Parameter types

Parameters either are passed to routines by value or be reference.Strings are passed as references,
but behave as if they were passed by value (because of its copy-on-write technique). Further there are

What is translated 77

© 2020 Dr. Detlef Meyer-Eltz

constant parameters and untyped parameters - and array parameters.The different cases of single
parameters and how they are translated are listed below. The Delphi var keyword becomes to ref in C#
and const doesn't exist in C#.

type

MyRecord = record
end;

PInteger = ^Integer;

procedure Foo(param : Integer);
procedure Foo(const param : Integer);
procedure Foo(var param : Integer);
procedure Foo(out param : Integer);

procedure Foo(param : String);
procedure Foo(const param : String);
procedure Foo(var param : String);
procedure Foo(out param : String);

procedure Foo(param : Pointer);
procedure Foo(const param : Pointer);
procedure Foo(var param : Pointer);
procedure Foo(out param : Pointer);

procedure Foo(param : PChar);
procedure Foo(const param : PChar);
procedure Foo(var param : PChar);
procedure Foo(out param : PChar);

procedure Foo(param : PInteger);
procedure Foo(const param : PInteger);
procedure Foo(var param : PInteger);
procedure Foo(out param : PInteger);

procedure Foo(param : MyRecord);
procedure Foo(const param : MyRecord);
procedure Foo(var param : MyRecord);
procedure Foo(out param : MyRecord);

// untyped parameters
procedure Foo(const param);
procedure Foo(var param);
procedure Foo(out param);

->

public static void Foo(int param);
public static void Foo(int param);
public static void Foo(ref int param);
public static void Foo(ref int param);

public static void Foo(Pointer param);
public static void Foo(Pointer param);
public static void Foo(ref Pointer param);
public static void Foo(ref Pointer param);

public static void Foo(string param);
public static void Foo(string param);
public static void Foo(ref string param);
public static void Foo(ref string param);

public static void Foo(PChar param);
public static void Foo(PChar param);
public static void Foo(ref PChar param);
public static void Foo(ref PChar param);

public static void Foo(Pointer<int> param);
public static void Foo(Pointer<int> param);

Delphi2C#78

© 2020 Dr. Detlef Meyer-Eltz

public static void Foo(ref Pointer<int> param);
public static void Foo(ref Pointer<int> param);

public static void Foo(MyRecord param);
public static void Foo(MyRecord param);
public static void Foo(ref MyRecord param);
public static void Foo(ref MyRecord param);

// untyped parameters
public static void Foo(Pointer param);
public static void Foo(ref Pointer param);
public static void Foo(ref Pointer param);

Pointer, PChar and Pointer<T> are classes to simulate pointers.
 .

7.7.4 Temporary variables

The function StrUpper expects an PWideChar parameter. In Delphi an array of char can be passed
too. In C# a temporary PChar variable is created from from the array. After the call the result is
converted byk to the character array.

var
 S: array[0..20] of char = 'A fUnNy StRiNg';
begin
 upper:= StrUpper(S);

->

 char[] S = "A fUnNy StRiNg".ToCharArray();
 PChar tmp0 = new PChar(S);
 upper = StrUpper(new PChar(tmp0));
 S = tmp0.ToCharArray();

7.7.5 Calls of inherited procedures and functions

For each class, which inherits from another a typedef is inserted into the C# code, like

class foo: public bar {
 typedef bar inherited;

So, if in Object Pascal "inherited" is followed by a method identifier, it can be translated easily to C#.

inherited.foo -> inherited::foo()

When "inherited" has no identifier after it, it refers to the inherited method with the same name as the
enclosing method. In this case, inherited can appear with or without parameters; if no parameters are
specified, it passes to the inherited method the same parameters with which the enclosing method was
called. For example,

procedure foo.bar(b : BOOLEAN);
begin
 inherited;
end;

What is translated 79

© 2020 Dr. Detlef Meyer-Eltz

->

void __fastcall foo::bar (bool b)
{
 inherited::bar(b);
}

7.7.6 Nested routines

In Delphi functions can be nested. Fortunately C# local functions are quite similar.

type
TNested = class
public
 iClassVar : Integer;
 function Test(iOuterParam, iTwiceParam : Integer; s : String): Integer;
end;

implementation

function TNested.Test(iOuterParam, iTwiceParam : Integer; s : String): Integer;
const
 cSeparate = ':';
var
 iFunctionVar : Integer;

 procedure NestedTest(iInnerParam, iTwiceParam : Integer);
 begin
 result := iClassVar + iOuterParam + iFunctionVar + iInnerParam + iTwiceParam;
 end;

begin
 iClassVar := 1;
 iFunctionVar := 2;
 NestedTest1(3, 4);
 result := result + iTwiceParam;
end;

->

public class TNested : TObject
{
 public int iClassVar;
 public int test(int iOuterParam, int iTwiceParam, string s)
 {
 int result = 0;
 const char cSeparate = ':';
 int iFunctionVar = 0;
 void NestedTest(int iInnerParam, int iTwiceParam_1)
 {
 result = iClassVar + iOuterParam + iFunctionVar + iInnerParam + iTwiceParam_1;
 };
 iClassVar = 1;
 iFunctionVar = 2;
 NestedTest1(3, 4);
 result = result + iTwiceParam;
 return result;
 }

 public TNested() {}
};

There are some restrictions in C# however. In the example the outer and the inner routine both have a
parameter called "iTwiceParam". In C# this isn't allowed. the parameter for the inner routine is rename
d to "iTwiceParam_1" therefore. The "_1" stands for level one.

Delphi2C#80

© 2020 Dr. Detlef Meyer-Eltz

7.8 Special RTL/VCL-functions

Some functions of the Delphi RTL/VCL either don't exist in the C#Builder counterpart or have become
to member functions of the String classes. The conversion of calls of the latter kind of functions into
calls of the according member functions is done automatically by Delphi2C#. For Delphi I/O routines
there is a ready translated C# file. In addition the calls of some compile time functions and some other
special functions is done automatically. See the following examples:

var
 i, j : Integer;
 p1 : Pointer;
 s1, s2 : String;
 iset : set Of int;
 obj : TObject;
 e :TEnum;
 / std::string
begin
 Assigned(obj); -> (obj != NULL);
 Copy(s1, i, j); -> s1.SubString(i, j); / s1.substr(i - 1, j);
 Dec(i); -> i--;
 Dec(i, j); -> i -= j;
 Dec(e1); -> e1--;
 Delete(s1, i, j); -> s1.Delete(i, j); / s1.erase(i - 1, j);
 Dispose(p1); -> delete p1;
 Exclude(iset, i); -> iset >> i;
 FreeAndNil(p1); -> delete p1; p1 = NULL;
 High(TEnum); -> /*# High(TEnum) */ 2;
 High(strarray); -> strarray.High;
 High(type); -> High<type>(); // defined in d2c_system.pas
 Inc(i); -> i++;
 Inc(i, j); -> i += j;
 Inc(e1); -> e1++;
 Include(iset, i); -> iset << i;
 Insert(s1, s2, i); -> s2.Insert(s1, i); / s2.insert(i - 1, s1);
 Length(s1); -> s1.Length(); / s1.length();
 Length(strarray); -> strarray.Length;
 Low(TEnum); -> /*# Low(TEnum) */ 0;
 Low(strarray); -> strarray.Low;
 Low(type); -> Low<type>(); // defined in d2c_system.pas
 New(obj); -> obj = new obj;
 PAnsiChar(s1); -> s1.c_str();
 Pos(s1, s2); -> s2.Pos(s1); / no longer from 1.4.9 on: s2.find(s1); (at least 1 should be added)
 SetLength(s1, i); -> s1.SetLength(i); / s1.resize(i);
 Str(d:8:2, S); -> Str(d, 8, 2, S);

 RegisterComponents(s1, [a,b,c]); ->

 TComponentClass classes[4] = { __classid(a), __classid(b), __classid(c) };
 RegisterComponents(s1 , classes, 3);

You can switch off the special treatment of this functions..

7.8.1 I/O routines

Delphi has text and file I/O library routines, which are quite different from C# I/O routines. So they
cannot be substituted automatically by according routines of the C# standard library. A direct
counterpart of the Delphi in C# was made instead by translation and adaptation of the according parts
of the free pascal FCL. It is contained in the files d2c_sysfile.h and d2c_sysfile.cpp in the source
folder of the Delphi2C# installation. The GNU Lesser General Public License which apply to the FCL
also applies to these files. The translation was made for Windows with the 0x86 processor. The best

What is translated 81

© 2020 Dr. Detlef Meyer-Eltz

matching declarations are contained in d2c_system.pas.

With d2c_file.h and d2c_sysfile.cpp the behavior of the Delphi I/O routines is reproduced in C# quite
exactly. For example:

var
 t : TextFile;

begin
 AssignFile(t, 'Test.txt');
 ReWrite(t);

becomes:

 TTextRec t;
 AssignFile(t, "Test.txt");
 ReWrite(t);

There are differences however in the cases, that Read(Ln)/Write(Ln) routines are called with several
arguments and that formatting parameters are appended in the Write(Ln) routines.

The BlockRead and BlockWrite routines only work with plain old data types (POD types), which
don't contain pointers to data. In C#, types may not be POD types any longer, which in Delphi are such
types. E.g. structures containing Strings will not be POD types in C# any longer.

7.8.2 Read(Ln)/Write(Ln) routines

The Read(Ln)/Write(Ln) routines can be called in Delphi with an arbitrary number of arguments.
Delphi2C# divides them into a series of function calls:

WriteLn('Hello ', name, '!');

becomes:

WriteLn("Hello "); WriteLn(name); WriteLn('!');

7.8.3 Formatting parameters

The Write(Ln) and the Str routines can be called with Width and Decimals formatting parameters in
Delphi, by use of a special syntactical extension:

 Write(t, d:8:2);
 Str(d:8:2, S);

In the translated code, the Width and Decimals become normal comma separated parameters.

 Write(t, d, 8, 2);
 Str(d, 8, 2, S);

This is possible also for the Write(Ln) procedure, which accepts further output parameters too,
because such calls are divided into a series calls by Delphi2C#.

Delphi2C#82

© 2020 Dr. Detlef Meyer-Eltz

7.9 Properties

Delphi allows to access class fields or arrays via properties. Each class may have one default array-
property which can be accessed in a simplified notation.

7.9.1 Field properties

There are properties in C# similar to properties in Delphi. The Delphi read and write access via
properties become to get and set property accessors in C#. The following example is taken from the
Embarcadero documentation:

type
 THeading = 0..359;
 TCompass = class(TControl)
 private
 FHeading: THeading;
 procedure SetHeading(Value: THeading);
 published
 Property Heading: THeading read FHeading write SetHeading;
 // ...
 end;
->

public class TCompass : TControl
{
 private int /*0..359*/ FHeading;
 //# private void SetHeading(int /*0..359*/ Value);
 /*property Heading : THeading read FHeading write SetHeading;*/
 public int /* 0.. 359*/ Heading
 {
 get
 {
 return FHeading;
 }
 set
 {
 SetHeading(value);
 }
 }
 // ...
};

C# also has e pendant to Delphi's default
.

7.9.2 Indexed properties

Values which are specified by an index can be set or get by an indexed property. The index either can
be a constant as in the example below or a variable as in the example following afterwards:

 TRectangle = class
 private
 fCoords: array[0..3] of LongInt;
 function GetCoord(Index: Integer): LongInt;
 procedure SetCoord(Index: Integer; Value: LongInt);
 public
 Property Left : LongInt Index 0 read GetCoord write SetCoord;
 Property Top : LongInt Index 1 read GetCoord write SetCoord;

 Property Right : LongInt Index 2 read GetCoord write SetCoord;
 Property Bottom : LongInt Index 3 read GetCoord write SetCoord;
 end;

What is translated 83

© 2020 Dr. Detlef Meyer-Eltz

->

public class TRectangle : TObject
{
 private int[] fCoords = new int[4/*# range 0.. 3*/];
 //# private int GetCoord(int Index);
 //# private void SetCoord(int Index, int Value);
 /*property Left : int read GetCoord write SetCoord;*/
 public int Left
 {
 get
 {
 return GetCoord(0);
 }
 set
 {
 SetCoord(0, value);
 }
 }
 /*property Top : int read GetCoord write SetCoord;*/
 public int Top
 {
 get
 {
 return GetCoord(1);
 }
 set
 {
 SetCoord(1, value);
 }
 }
 /*property Right : int read GetCoord write SetCoord;*/
 public int Right
 {
 get
 {
 return GetCoord(2);
 }
 set
 {
 SetCoord(2, value);
 }
 }
 /*property Bottom : int read GetCoord write SetCoord;*/
 public int Bottom
 {
 get
 {
 return GetCoord(3);
 }
 set
 {
 SetCoord(3, value);
 }
 }

 public TRectangle() {}
};

The get and set accessors are looking similar as those of simple values, but there is an additional
constant parameter in the called getter and setter methods.

If the index value isn't constant one might think, that the C# indexer notation could be a good
candidate as counterpart in C#. However there can be only one indexer in a C# class, but there can be
several indexed properties in Delphi. Therefore Delphi2C# reserves the indexer syntax for the Delphi
default array-property. For other indexed properties with variable index Delphi2C# creates two public
methods which redirect the parameters to the private getter and setter methods. The name of these
additional methods are constructed from the name of the C# property with a prefix, which can be set in
the project options. The default suffices are "Readproperty" and "Writeproperty":

Delphi2C#84

© 2020 Dr. Detlef Meyer-Eltz

TRectangle = class
private
 fCoords: array[0..3] of LongInt;
 function GetCoord(Index: Integer): LongInt;
 procedure SetCoord(Index: Integer; Value: LongInt);
public
 Property Coords[Index: Integer] : LongInt read GetCoord write SetCoord;
end;

->

public class TRectangle : TObject
{
 private int[] fCoords = new int[4/*# range 0.. 3*/];
 //# private int GetCoord(int Index);
 //# private void SetCoord(int Index, int Value);
 /*property Coords [Index: integer]: int read GetCoord write SetCoord;*/
 public int ReadPropertyCoords(int Index) { return GetCoord(Index);}
 public void WritePropertyCoords(int Index, int Value){SetCoord(Index, Value);}

 public TRectangle() {}
};

7.9.3 Default array-property

If a class has a default property, you can access that property in Delphi with the abbreviation object
[index], which is equivalent to object.property[index]. C# has an analogue indexer notation which
Delphi2C# uses to translate default array-properties

type
 // Class with Indexed properties
 TRectangle = class
 private
 fCoords: array[0..3] of Longint;
 function GetCoord(Index: Integer): Longint;
 procedure SetCoord(Index: Integer; Value: Longint);
 public
 property Coords[Index: Integer] : Longint
 read GetCoord write SetCoord; Default;
 end;

->

private class TRectangle : TObject
{
 private int[] fCoords = new int[4/*# range 0.. 3*/];

 //# private int GetCoord(int Index);

 //# private void SetCoord(int Index, int Value);
 /*property Coords [Index: integer]: int read GetCoord write SetCoord default ;*/
 public int ReadPropertyCoords(int Index) { return GetCoord(Index);}
 public void WritePropertyCoords(int Index, int Value){SetCoord(Index, Value);}
 public int this[int Index]
 {
 get
 {
 return GetCoord(Index);
 }
 set
 {
 SetCoord(Index, value);
 }
 }

 public TRectangle() {}
};

What is translated 85

© 2020 Dr. Detlef Meyer-Eltz

In addition Delphi2C# creates the same ReadProperty and WriteProperty methods as for non default
indexed properties. The existence of these additional methods makes it easier translate calls to
indexed properties in a general way.

7.10 Statements

The translation of most statements is straightforward. There are some specials with:

for loop's
finally-statements
with-statements
Initialization/Finalization

7.10.1 for loop's

In Delphi there are for-loops where a variable is incremented or decremented to or down to a special
value and there are for-in loops. For the first kind of loops the for-loop parameters are evaluated only
once, before the loop runs. This complicates a correct translation to C++ a little bit. The number of
loops in the following example is determined by the variable n:

procedure test;
var
 I, n : Integer
begin
 n := 10;
 for I:=1 to n do
 begin
 DoSomething;
 n := 11;
 end;
end;

A straightforward translation of this code would be;

int I = 0, n = 0;
n = 10;
for (I = 1; I <= n; I++)
{
 DoSomething();
 n = 11;
}

However, in C# an additional loop would be executed, because n is changed in the loop and the
number of loops is recalculated with this new value. Therefore a correct translation has to remember
the original loop count like in the following code:

int I = 0, n = 0;
n = 10;
for (int stop = n, I = 1; I <= stop; I++)
{
 DoSomething();
 n = 11;
}

Delphi2C# can produce both code variants, depending on the option to Use "stop" variable in for-loop
or not..

Delphi2C#86

© 2020 Dr. Detlef Meyer-Eltz

7.10.1.1 for-in loop

for-in loops are a special kind of Delphi for-loops which have the syntax:

var
 a : typename;
begin
for a in B do
 DoSomething(a);

where 'a' may be a character in a string 'B' or 'a' may be an element of an array 'B' or 'a' may be a
member of a set 'B'. All these cases are translated to a C# for_each statements:

typename a;

foreach (typename element_0 : B)
{
 a = element_0;
 DoSomething(a);
}

7.10.2 with-statements

In C# there are no with-statements. Therefore Delphi2C# inserts a temporary helping variable of the
with-type. This type is easily obtained by use of the C#11 auto keyword:

type TDate = record -> struct TDate {
 Day: Integer; int Day;
 Month: Integer; int Month;
 Year: Integer; int Year;
end; };

procedure test(OrderDate: TDate); void Test(TDate OrderDate)
begin {
 with OrderDate do /*# with OrderDate do */
 if Month = 12 then {
 begin auto& with0 = OrderDate;
 Month := 1; if(with0.Month == 12)
 Year := Year + 1; {
 end with0.Month = 1;
 else with0.Year = with0.Year + 1;
 Month := Month + 1; }
end; else
 with0.Month = with0.Month + 1;
 }
 }

7.10.3 finally

The finally keyword after a try block opens a block of code, which is executed regardless of what
happened in the try block. Here some cleanup can be done and acquired resources can be freed.
Fortunately C# has this keyword too.

What is translated 87

© 2020 Dr. Detlef Meyer-Eltz

7.10.4 Initialization/Finalization

There isn't any direct counterpart for the sections "initialization" and "finalization" of a Unit in C#. These
sections are therefore translated as two functions which contain the respective instructions. In addition,
a global variable of a class is defined. In the constructor of this class the initialization routine is called
and in destructor the routine for the finalization is called.

initialization

pTest := CTest.Create;

finalization

pTest.Free();

->

void Tests_initialization()
{
 pTest = new CTest;
}

void Tests_finalization()
{
 delete pTest;
}

class Tests_unit
{
public:
Tests_unit(){ Tests_initialization(); }
~Tests_unit(){ Tests_finalization(); }
};
Tests_unit _Tests_unit;

7.11 class-reference type

In Delphi methods of a class can be called without creating an instance of the class at first. That's
similar to C++ static methods. But in C++ it is not possible to assign classes as values to variables and
then to create instances of the class by calling a virtual constructor function from such a class
reference. This is possible in Delphi however, as shown in the following example code:

type
 TBase = class
 end;

 TBaseClass = class of TBase;

 TDerived = class(TBase)
 end;

 TDerivedClass = class of TDerived;

Delphi2C#88

© 2020 Dr. Detlef Meyer-Eltz

function make(Base: TBaseClass): TBase;
begin
 result := Base.Create; // will create TBase or TDerived in dependence of the passed parameter
end;

The variables TBaseClass and TDerivedClass are called "class references" of TBase or TDerived
respectively.
There is no direct counterpart to class references in C#, but if the option to create meta-classes is
enabled, Delphi2C# creates a framework to simulate class references. Parallel to the existing classes,
a second hierarchy of class references "ClassRef<T>" is created then and additional methods are
written into the original classes, which allow to simulate the most important basic class functions as for
example the Create-method. For exceptions there is another but similar hierarchy of ExceptionRef<T>
classes.

7.11.1 ClassRef

In System.cs of the accompanying code to Delphi2C# there is a class TMetaClass defined.
TMetaClass is the class reference type for TObject and it is the base class of all class reference types
of all other classes. These class references are defined as instances of a class ClassRef, which is a
generic class:

public sealed class ClassRef<Class> : TMetaClass where Class : TObject, new()

where the template parameter denotes the original class. That way for a hierarchy of classes, which
are derived one from another, there is a parallel hierarchy of class references. The class references
are implemented as singletons and only created, if needed. The exact definition of the ClassRef class
is tricky and works only, because Delphi2C# also inserts some additional helper code into every class
declaration. The following code demonstrates how a small class factory using class references is
converted from Delphi to C++:

type
 TBase = class
 public
 function GetName: String; virtual;
 end;

 TBaseClass = class of TBase;

 TDerived = class(TBase)
 public
 function GetName: String; override;
 end;

 TDerivedClass = class of TDerived;

implementation

function make(Base: TBaseClass): TBase;
begin
 result := Base.Create;
end;

function testTactory: boolean;

What is translated 89

© 2020 Dr. Detlef Meyer-Eltz

var
 s : String;
 p : TBase;
begin
 p := make(TDerived1);
 result := p.GetName = 'TDerived';
end;

->

public class TBase : TObject
{

 //...

 public TBase() {}
 public override string ClassName() {return "TBase";}
 public override TMetaClass ClassType(){return class_id<TBase>();}
 public override TMetaClass ClassParent(){return class_id<TObject>();}
 public override TObject Create(){return new TBase();}
 public static new TBase SCreate() {return new TBase();}
};

// ClassRef<TBase> TBaseClass;

public class TDerived : TBase
{

 //...

 public TDerived() {}
 public override string ClassName() {return "TDerived";}
 public override TMetaClass ClassType(){return class_id<TDerived>();}
 public override TMetaClass ClassParent(){return class_id<TBase>();}
 public override TObject Create(){return new TDerived();}
 public static new TDerived SCreate() {return new TDerived();}
};

// ClassRef<TDerived> TDerivedClass;

public class TestInterface
{

} // class TestInterface

public class TestImplementation
{

public static TBase Make(TMetaClass Base)
{
 TBase result = null;
 result = (TBase) Base.Create();
 return result;

Delphi2C#90

© 2020 Dr. Detlef Meyer-Eltz

}

public static bool testTactory()
{
 bool result = false;
 string S = string.Empty;
 TBase P = null;
 P = Make(TDerived1->ClassType());
 result = P.GetName == "TDerived";
 return result;
}

The central point in this code is the call of the class_id-function:

P = make(class_id<TDerived>());

The class_id-function delivers class references. In the example the class_id-function delivers the class
reference to the class TDerived.

If TDerived wouldn't have a standard constructor, instead of the line

 static TDerived* Create() {return new TDerived();}

the line

 static TDerived* Create() {ThrowNoDefaultConstructorError(ClassName()); return nullptr}

would have been written. If TDerived were an abstract class, the line would have been:

 static TDerived* Create() {ThrowAbstractError(ClassName()); return nullptr}

Other uses of Delphi class references are reproduced in C++ too. For example:

 ClassRef := Sender.ClassType;

 while ClassRef <> NIL do
 begin
 s := ClassRef.ClassName);
 ClassRef := ClassRef.ClassParent;
 end;

is converted to:

TClass ClassRef = Sender->ClassType();

while(ClassRef != nullptr)
{
 s = ClassRef->ClassName();
 ClassRef = ClassRef->ClassParent();
}

However only a minimal frame for class reference manipulations is created and there have to be
standard constructors for all classes with used class references.

What is translated 91

© 2020 Dr. Detlef Meyer-Eltz

7.11.2 ExceptionRef

There is a special problem with exceptions: while Delphi exceptions as all other classes are derived
from TObject, this isn't possible in C#. In C# only classes derived from System.Exception can be
thrown and catched. Therefore ClassRef''s, which are made to create TObject types cannot be used
for exceptions. Delphi2C# uses an analogously ExceptionRef<T> instead. The definition of this class is
inserted on top of the manually prepared System.External.ExcUtils.cs. Like ClassRef<T>
ExceptionRef<T> is derived from TMetaClass, but instead of the function

public override TObject Create()

ExceptionRef<T> has the function:

public override System.Exception Create(string s)

This function uses the CreateInstance function from System.Reflection to create exceptions. The base
function:

public virtual Exception Create(string s)

has been added to TMetaClass for this reason.

By use of the ExceptionRef<T> hierarchy for example the following line of code in System.Sysutils:

 E := ExceptTypes[ExceptMap[ErrorCode].EClass].Create(ExceptMap[ErrorCode].EIdent);

is translated to C# quite natuaral to:

 E = (System.SysUtils.Exception) ExceptTypes[(int) ExceptMap[ErrorCode -
3].EClass].Create(ExceptMap[ErrorCode - 3].EIdent);

7.12 Reading and Writing

Delphi has Stream classes to read and write files similar to those in C#. But there are also an classic,
non-object oriented Pascal routines for this purpose. For this classic approach there are three file
types, which have no counterpart in C#

1. File; declares an untyped file to read or write binary data
2. Text or TextFile; declares a text file to read or write ASCII data
3. File of [type]; declares a typed file to read and write sequences of that type (records).

Delphi2C# tries to convert this classic approach to the C# object-oriented approach. For all three file
types in C# a Stream is created at first. In a second step in dependence of the different Delphi file
types different kinds of Streams are created from the first basic stream. For example a StreamWriter
will be created, if ASCII data shall be written to a Text file:

var
 myFile : Text;

begin

 AssignFile(myFile, 'Test.txt');
 Rewrite(myFile);

->

 Stream myFile_stream;

Delphi2C#92

© 2020 Dr. Detlef Meyer-Eltz

 myFile_stream = new FileStream("Test.txt", FileMode.Create);
 using (StreamWriter myFile = new StreamWriter(myFile_stream)) {
 ...
 }

In Delphi the access mode of these file types are specified by the FileMode variable. In C# there also
exists a FileMode, but this variable specifies how to open a file, eg. create a new file or append to an
existing file. Therefore the Delphi FileMode variable cannot be defined in the C# code. In translated
code the Delphi FileMode is passed as explicit parameter to the file opening commands, "
FileMode.Create" in the example above. "FileMode.CreateOrOpen" is the FileMode for readers.The
kind of opening a file in Delphi is determined by the command which is used to open the file. The
ReWrite command and the Reset command are truncating an existing file or creating a new file,
whereas the Append command opens a file to add output to the existing content of a file.

The default FileMode in Delphi is fmOpenReadWrite (=2). but in C# a stream cannot have read and
write access at the same time. Delphi2C# therefore looks at the subsequent use of the stream. If
writing operations are following a Writer is created else a Reader is created. If the Delphi code really
reads and writes to the file without resetting it, the translation will fail.

If a Write function is called with a file as first parameter, the output will be written into that file.
Otherwise the Output is written to the console:

WriteLn(myFile, 'Hello');
WriteLn('Hello');

->

myFile.WriteLine("Hello");
Console.WriteLine("Hello");

The same for Read-functions:

Read(myFile, Letter);
Read(Letter);

->

Letter = (char) myFile.Read();
Letter = (char) Console.Read();

For Files and Files of a type Delphi2C# creates BinaryReader and BinaryWriter. Delphi2C# only
converts uses of File of [builtin type] An automatic treatment of files of records might partly be
possible, but hasn't be done so far.

var
 myWord : WORD;
 myFile : File of WORD;

begin
 AssignFile(myFile, 'Test.cus');
 Rewrite(myFile);

 While not Eof(myFile) do
 begin
 Read(myFile, myWord);
 end;

 CloseFile(myFile);

What is translated 93

© 2020 Dr. Detlef Meyer-Eltz

->

ushort myWord = 0;
Stream myFile_stream;

myFile_stream = new FileStream("Test.cus", FileMode.OpenOrCreate);
using (BinaryReader myFile = new BinaryReader(myFile_stream, System.Text.Encoding.ASCII)) {

while(!(myFile.PeekChar() < 0))
{
 myWord = (ushort) myFile.ReadInt16();
}
myFile.Close();
} // using

Delphi2C# also converts Rename commands.
The width and precision arguments in write operations aren't converted correctly yet.

7.13 Method pointers

Delphi's event handling is implemented by means of method pointers. Such method pointers are
declared by addition of the words "of object" to a procedural type name. E.g.

TNotifyEvent = procedure(Sender: TObject) of object;

Delphi2C# converts them into delegates:

public delegate void TNotifyEvent(TObject Sender);

At the current state Delphi2C# doesn't deal with event handling.

8 New features since Delphi 7

The Delphi language has been extended since Delphi 7 by following items:

Unicode
Unit scope names (Dotted filenames)
Operator overloading
Class helpers
Class-like records
Nested classes
Anonymous methods
Generics

Delphi2C#94

© 2020 Dr. Detlef Meyer-Eltz

.

8.1 Unicode

Delphi2C# is able to process Delphi files which uses non ANSI characters for identifiers or in
comments. For example:

unit Unicode;

interface

(* Delphi2C# Unicode *)

type

 = record
 : string;
 : string;
 end;

implementation

 // (xìngzhì)
 procedure (A :);
 begin
 WriteLn(A .);
 WriteLn(A .);
 end;

end.

becomse to:

using static Unicode.UnicodeClass;
using System;
using static System.SystemClass;

namespace Unicode
{

public struct
{
 public string ;
 public string ;
 public static CreateRecord(){return new ();}
};
public class UnicodeClass
{

/* Delphi2C# Unicode */

 // (xìngzhì)

public static void (A)
{
 WriteLn(A .);
 WriteLn(A .);
}

} // UnicodeClass

} // namespace Unicode

New features since Delphi 7 95

© 2020 Dr. Detlef Meyer-Eltz

8.2 Unit scope names

Delphi2C# is able to process names with unit scopes. For example:

System.SysUtils

does express, that the unit SysUtils is part of the unit scope System. Delphi2C# as well can open files
with such dotted names as well as it can process such names correctly.

8.3 Operator Overloading

http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Operator_Overloading_(Delphi)

The following table maps the signatures of Delphi operators to the signatures of the according
operators in C#:

Delphi Declaration
Signature

Symbo
l
Mappin
g

C# Declaration Signature

Implicit(a : type) :
resultType;

implici
t
typecas
t

public static implicit operator resultType (type a)

Explicit(a: type) :
resultType;

explici
t
typecas
t

public static exlicit operator resultType (type a)

Negative(a: type) :
resultType;

- public static type operator - (type a)

Positive(a: type):
resultType;

+ public static type operator + (type a)

Inc(a: type) :
resultType;

Inc public static type operator ++ (type a)

Dec(a: type): resultType; Dec public static type operator -- (type a)
LogicalNot(a: type):
resultType;

not public static resultType operator ! (type a)

Trunc(a: type):
resultType;

Trunc public static resultType Trunc(type Value)

Round(a: type):
resultType;

Round public static resultType Round(type Value)

In(a: type; b: type) :
Boolean;

in public static bool IsContained(type a, type b)

Equal(a: type; b: type) :
Boolean;

= public static bool operator == (type a, type b)

NotEqual(a: type; b:
type): Boolean;

<> public static bool operator != (type a, type b)

GreaterThan(a: type; b:
type) Boolean;

> public static bool operator > (type a, type b)

GreaterThanOrEqual(a:
type; b: type): Boolean;

>= public static bool operator >= (type a, type b)

LessThan(a: type; b:
type): Boolean;

< public static bool operator < (type a, type b)

Delphi2C#96

© 2020 Dr. Detlef Meyer-Eltz

LessThanOrEqual(a: type;
b: type): Boolean;

<= public static bool operator <= (type a, type b)

Add(a: type; b: type):
resultType;

+ public static resultType operator + (type a, type b)

Subtract(a: type; b:
type) : resultType;

- public static resultType operator - (type a, type b)

Multiply(a: type; b:
type) : resultType;

* public static resultType operator * (type a, type b)

Divide(a: type; b:
type) : resultType;

/ public static resultType operator / (type a, type b)

IntDivide(a: type; b:
type): resultType;

div public static resultType operator / (type a, type b)

Modulus(a: type; b:
type): resultType;

mod public static resultType operator % (type a, type b)

LeftShift(a: type; b:
type): resultType;

shl public static resultType operator << (type a, type b)

RightShift(a: type; b:
type): resultType;

shr public static resultType operator >> (type a, type b)

LogicalAnd(a: type; b:
type): resultType;

and public static resultType operator && (type a, type b)

LogicalOr(a: type; b:
type): resultType;

or public static resultType operator || (type a, type b)

LogicalXor(a: type; b:
type): resultType;

xor // doesn't exist

BitwiseAnd(a: type; b:
type): resultType;

and public static resultType operator & (type a, type b)

BitwiseOr(a: type; b:
type): resultType;

or public static resultType operator | (type a, type b)

BitwiseXor(a: type; b:
type): resultType;

xor // doesn't exist

Examples for:

· binary operators
· unary operators.
· conversion operators
· Finally there are more operators in Delphi like Trunc or In which aren't operators in C#.

8.3.1 binary operators

The translation of overloaded binary operators is straightforward. This is shown in the following
example:

class operator TMyClass.Add(a, b: TMyClass): TMyClass;
var
 returnrec : TMyrClass;
begin
 returnrec.payload := a.payload + b.payload;
 Result:= returnrec;
end;

becomes in C# to:

public static TOperatorClass operator + (TOperatorClass a, TOperatorClass b)
{
 TOperatorClass result = TOperatorClass.CreateRecord();
 TOperatorClass returnrec = TOperatorClass.CreateRecord();
 returnrec.payload = a.payload + b.payload;
 result = returnrec;
 return result;

New features since Delphi 7 97

© 2020 Dr. Detlef Meyer-Eltz

}

Problematic are the operator IntDivide and LogicalXor because they don't have counterparts in C#.
Delphi2C# converts IntDivide to a normal Divide operator /. As long as there isn't an additional Divide
operator this will work. There is no automatic for LogicalXor yet.

8.3.2 unary operators

Example of a negative operator:

class operator TMyClass.Negative(a: TMyClass): TMyClass;
var
 b : TMyClass;
begin
 b:= -a.payload;
 Result:= b;
end;

Delphi2C# converts this to:

public static TMyClass operator - (TMyClass a)
{
 TOperatorClass result = TMyClass.CreateRecord();
 TOperatorClass b = TMyClass.CreateRecord();
 b = -a.payload; // Use the implicit conv here?
 result = b;
 return result;
}

8.3.3 conversion operators

A class may be converted into another type:

class operator TMyClass.Implicit(a: TMyClass): Integer;
var
 myint : integer;
begin

Delphi2C#98

© 2020 Dr. Detlef Meyer-Eltz

 myint:= a.payload;
 Result:= myint;
end;

This becomes in C# to:

public static implicit operator int (TMyClass a)
{
 int result = 0;
 int myint = 0;
 myint = a.payload;
 result = myint;
 return result;
}

If the other way round another type is converted to the class::

class operator TMyClass.Implicit(a: Integer): TMyClass;
var
 returnrec : TMyClass;
begin
 returnrec.payload:= a;
 Result:= returnrec;
end;

this becomes to:

public static implicit operator TMyClass (int a)
{
 TMyClass result = TMyClass.CreateRecord();
 TMyClass returnrec = TMyClass.CreateRecord();
 returnrec.payload = a;
 result = returnrec;
 return result;
}

For explicit operators:

class operator TMyClass.explicit(a: TMyClass): double;
var
 b : double;
begin
 b:= a.payload;
 Result:= b;
end;

->

public static explicit operator double (TMyClass a)
{
 double result = 0.0D;
 double b = 0.0D;
 b = (double) a.payload;
 result = b;
 return result;
}

class operator TOperatorClass.explicit(a: TOperatorClass): boolean;

New features since Delphi 7 99

© 2020 Dr. Detlef Meyer-Eltz

begin
 Result:= True;
end;

->

public static explicit operator bool (TOperatorClass a)
{
 bool result = false;
 result = true;
 return result;
}

8.3.4 more operators

In Delphi there the operators Round, Trunc and In, which have no counterparts in C#. These operators
are defines as static member functions in C#.

public static long Round(TOperatorClass Value)
{
 long result = 0;
 result = (long) Math.Round(((double) Value), 0); // cast to double prevents from cycle
 return result;
}

At positions, where these operators are used, Delphi2C# creates explicit calls to the member function.
For example:

var
 x: TMyClass;
 d : Double;
begin
 d := Round(x);

becomes to:

TMyClass X = {0};
double d = 0.0;

d = TMyClass.Round(X);

Delphi2C#100

© 2020 Dr. Detlef Meyer-Eltz

8.4 Class helpers

A quite similar feature to Delphi's helper records and helper classes are the extension methods of C#.
Therefore these helper are converted to classes containing the according extension methods. Taking
the example from:

http://delphi.about.com/od/oopindelphi/a/understanding-delphi-class-and-record-helpers.htm

TStringsHelper = class Helper for TBase
private
 function GetTheObject(const AString: String): TObject;
 procedure SetTheObject(const AString: String; const Value: TObject);
public
 property ObjectFor[const AString : String]: TObject Read GetTheObject Write SetTheObject;
end;

becomes with Delphi2C# to

public static class TStringsHelper
{
 public static TObject GetTheObject(this TStrings helped, string aString)
 {
 ...
 }
 public static void SetTheObject(this TStrings helped, string aString, TObject Value)
 {
 ...
 }
 /*property ObjectFor [aString: string]: TObject read GetTheObject write SetTheObject;*/
 public static TObject ReadPropertyObjectFor(this helped, string aString) { return GetTheObject(helped, aString);}
 public static void WritePropertyObjectFor(this helped, string aString, TObject Value){SetTheObject(helped, aString, Value);}
};

Regardless whether a helper class is defined in the interface part of a Delphi source file or in the
implementation part, the generated C# class is put in front of the C# file outside of the class that is
constructed for global parts of the unit, because extension methods must be defined in a top level
static class.

If fields of the helped type shall be changed by an extension method, the "this" parameter has to be
passed by reference.

Remark

Till the Delphi compiler 10 Seattle it was allowed to access private members of the helped class via its
class helper regardless in which unit the helped class was declared. With the just described C#
pendant this is not possible. However, this possibility broke OOP encapsulation rules and was
regarded as a bug, which was fixed with Delphi compiler 10.1 Berlin. You can read more about this
bug fix here:

http://blog.marcocantu.com/blog/2016-june-closing-class-helpers-loophole.html

New features since Delphi 7 101

© 2020 Dr. Detlef Meyer-Eltz

8.4.1 this ref

For record helpers the the "this" parameter is passed by reference. This allows to change the helped
type itself as in the following example:

TRec = record
 X, Y: Double;
end;

TRecHelper = record helper for TRec
public
 procedure Add(Y: Double);
end;

procedure TRecHelper.Add(Y: Double);
begin
 X := X + Y;
end;

->

 public static void Add(this ref TRec helped, double Y)
 {
 helped.X = helped.X + Y;
 }

A call of the Add-Function with a value of 10 will increment the value of the X-field of the record.

 var R: TRec;
 begin
 R.X := 10;
 R.Add(R, 10); // => R.X = 20

->

 TRec R = TRec.CreateRecord();
 R.X = 10;
 R.Add(R, 10);

A this-parameter of an extension method may not be passed by reference however, if the helped type
is a class. See:

https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.2/readonly-ref.md#refin-
extension-methods

In this case Delpi2C# writes the following warning:

/*#helped will not be changed!*/

8.5 Class-like records

Since Delphi 7 the abilities of records have been expanded to more class-like structures with
properties, methods and nested types. Here an example from

http://docwiki.embarcadero.com/RADStudio/Rio/en/Structured_Types_(Delphi)

Delphi2C#102

© 2020 Dr. Detlef Meyer-Eltz

#Records_.28advanced.29

type
 TMyRecord = record
 type
 TInnerColorType = Integer;
 var
 Red: Integer;
 class var
 Blue: Integer;
 procedure printRed();
 constructor Create(val: Integer);
 property RedProperty: TInnerColorType read Red write Red;
 class property BlueProp: TInnerColorType read Blue write Blue;
 end;

implementation

 constructor TMyRecord.Create(val: Integer);
 begin
 Red := val;
 end;

 procedure TMyRecord.printRed;
 begin
 Writeln('Red: ', Red);
 end;

Delphi2C# converts these new features to:

public struct TMyRecord
{
 public int Red;
 public static int Blue;
 public void printRed()
 {
 { Write("Red: "); WriteLn(Red); };
 }
 public TMyRecord(int val)
 {
 Red = val;
 }
 public void Create(int val)
 {
 Red = val;
 }
 /*property RedProperty : TInnerColorType read Red write Red;*/
 public int RedProperty
 {
 get
 {
 return Red;
 }
 set
 {
 Red = value;
 }
 }
 /*property BlueProp : TInnerColorType read Blue write Blue;*/
 public static int BlueProp
 {
 get
 {
 return Blue;
 }
 set
 {
 Blue = value;
 }
 }
 public static TMyRecord CreateRecord(){return new TMyRecord();}
};

New features since Delphi 7 103

© 2020 Dr. Detlef Meyer-Eltz

8.6 Nested classes

The possibility to work with nested classes is new since Delphi 7. Here an example from:

http://docwiki.embarcadero.com/RADStudio/Rio/en/Nested_Type_Declarations

type
 TOuterClass = class
 strict private
 myField: Integer;

 public
 type
 TInnerClass = class
 public
 myInnerField: Integer;
 procedure innerProc;
 end;

 procedure outerProc;
 end;

implementation

procedure TOuterClass.TInnerClass.innerProc;
begin
 // ...
end;

procedure foo;
var
 x: TOuterClass;
 y: TOuterClass.TInnerClass;

begin
 x := TOuterClass.Create;
 x.outerProc;
 //...
 y := TOuterClass.TInnerClass.Create;
 y.innerProc;
end;

Delphi2C# converts this to:

public class TOuterClass : TObject
{
 private int myField;

 public class TInnerClass : TObject
 {
 public int myInnerField;
 public void innerProc()
 {

 // ...
 }

 public TInnerClass() {}
 };
 //# public void outerProc();

 public TOuterClass() {}
};

public class testClass

Delphi2C#104

© 2020 Dr. Detlef Meyer-Eltz

{

public static void foo()
{
 TOuterClass x = null;
 TOuterClass.TInnerClass y = null;
 x = new TOuterClass();
 x.outerProc();
 //...
 y = new TOuterClass.TInnerClass();
 y.innerProc();
}

} // testClass

8.7 Anonymous Methods

The corresponding C# feature to Delphi's anonymous methods are delegates. The translation is quite
straight forward:

The following examples are taken from

http://docs.embarcadero.com/products/rad_studio/delphiAndcpp2009/HelpUpdate2/EN/html/
devcommon/anonymousmethods_xml.html

· Assignment to a method reference
· Assignment to a method
· Using anonymous methods
· Variable binding
· Use as events

8.7.1 Assignment to a method reference

An anonymous method type can be declared as a reference to a method. It becomes in C# to a
delegate:

type
 TFuncOfInt = reference to function(x: Integer): Integer;

var
 adder: TFuncOfInt;
begin
 adder := function(X: Integer) : Integer
 begin
 Result := X + Y;
 end;
 WriteLn(adder(22)); // -> 42

->

public delegate int TFuncOfInt(int x);

 TFuncOfInt adder = null;
 adder = delegate(int x)
 {
 int result = 0;
 result = x + Y;

New features since Delphi 7 105

© 2020 Dr. Detlef Meyer-Eltz

 return result;
 };
 WriteLn(adder(22)); // -> 42

Here the example from Embarcadero is simplified to remove a problem, which is discussed in the
context of variable binding.

8.7.2 Assignment to a method

As well as anonymous methods can be assigned to a method reference (see above), a normal method
can be assigned to it. In C# this is done by means of std::bind. The expression of this assignment
looks quite complicated however, because std::placeholders are needed to represent unbound
variables.

type
 TMethRef = Reference to procedure(X: Integer);

TAn3Class = class(TObject)
 procedure method(X: Integer);
end;

procedure Test;
var
 m: TMethRef;
 i: TAn3Class;
begin
 // ...
 m := i.method;
end;

->

typedef std::function<void (int)> TMethRef;

public class TAn3Class : TObject
{
 public bool Method(int x)
 {
 ...
 }

 public TAn3Class() {}
};

void Test()
{
 TMethRef m = null;
 TAn3Class i = null;
 // ... todo: i = new TAn3Class();
 m = i.Method;
}

Here remains a problem. the assignment of "i.Method" only works, if i isn't null.

Delphi2C#106

© 2020 Dr. Detlef Meyer-Eltz

8.7.3 Using anonymous methods

Anonymous methods in Delphi as well as lambda expressions in C# can be returned by functions and
passed to functions as parameters. The following example demonstrates the use as a parameter:

type
 TFuncOfIntToString = Reference to function(X: Integer): String;

procedure AnalyzeFunction(Proc: TFuncOfIntToString);
begin
 Proc(3);
end;

->

public delegate string TFuncOfIntToString(int x);

public static string AnalyzeFunction(TFuncOfIntToString proc)
{
 string result = string.Empty;
 result = proc(3);
 return result;
}

The use as return value is demonstrated in the next example.

8.7.4 Variable binding

There is a subtle difference between anonymous methods and lambda expressions: while anonymous
methods extend the lifetime of captured references, this is not the case for lambda expressions. In the
following Delphi code snippet the anonymous method, which is assigned to the variable adder, binds
the value 20 to the parameter variable y.The lifetime of y is extended in Delphi, until adder is
destroyed.

type
 TFuncOfInt = reference to function(x: Integer): Integer;

function MakeAdder(y: Integer): TFuncOfInt;
begin
Result := function(x: Integer) : Integer
 begin
 Result := x + y;
 end;
end;

procedure TestAnonymous1;

New features since Delphi 7 107

© 2020 Dr. Detlef Meyer-Eltz

var
 adder: TFuncOfInt;
begin
 adder := MakeAdder(20);
 Writeln(adder(22));
end;

->

public delegate int TFuncOfInt(int x);

public static void TestAnonymous1()
{
 TFuncOfInt adder = null;
 adder = MakeAdder(20);
 Writeln(adder(22));
}

public static TFuncOfInt MakeAdder(int Y)
{
 TFuncOfInt result = null;
 result = delegate(int x)
 {
 int result_1 = 0;
 result_1 = x + Y;
 return result_1;
 };
 return result;
}

8.7.5 Use as events

Method reference types can be used as a kind of event in Delphi and become delegates by translation
to C#.

type
 TAnProc = Reference to procedure;

 TAn4Component = class(TComponent)
 private
 FMyEvent: TAnProc;
 public
 property MyEvent: TAnProc Read FMyEvent Write FMyEvent;
 end;

procedure TestAnonymous4;
var
 C : TAn4Component;
begin
 C := TAn4Component.Create;

Delphi2C#108

© 2020 Dr. Detlef Meyer-Eltz

 C.MyEvent := procedure
 begin
 ;
 end;
end;

->

 using static anonymous4.anonymous4Class;

public class TAn4Component : TObject
{
 private TAnProc FMyEvent;
 public bool FResult;
 // MyEvent property serves as an event:
 /*property MyEvent : TAnProc read FMyEvent write FMyEvent;*/
 public TAnProc MyEvent
 {
 get
 {
 return FMyEvent;
 }
 set
 {
 FMyEvent = value;
 }
 }

 public TAn4Component() {}
};

public class anonymous4Class
{
public delegate void TAnProc();
public static void TestAnonymous4()
{
 TAn4Component c = null;
 c = new TAn4Component();
 c.MyEvent = delegate()
 {
 ...
 };

8.8 Generics

The following discussion of the translation of Delphi generics to C# templates goes along the
Embarcadero documentation

http://docwiki.embarcadero.com/RADStudio/Tokyo/de/Generics_-_Index

Declaration
Nested types

New features since Delphi 7 109

© 2020 Dr. Detlef Meyer-Eltz

Base types
Procedural types
Parameterized methods

Delphi2C# cannot distinguish a generic type and a normal type with the same name in the same unit.
There are such cases in System-pas. E.g.

IEnumerator = interface(IInterface)
IEnumerator<T> = interface(IEnumerator)

8.8.1 Declaration

type
 TPair<TKey,TValue> = class

 private
 FKey: TKey;
 FValue: TValue;
 public
 function GetKey: TKey;
 procedure SetKey(key: TKey);
 function GetValue: TValue;
 procedure SetValue(Value: TValue);
 property key: TKey Read GetKey Write SetKey;
 property Value: TValue Read GetValue Write SetValue;
 end;

implementation

function TPair<TKey,TValue>.GetValue: TValue;
 begin
 Result := FValue;
 end;

->

public class TPair<TKey, TValue> : TObject
{
 public TKey FKey;
 public TValue FValue;
 public TValue GetValue()
 {
 TValue result;
 result = FValue;
 return result;
 }

 public TPair() {}
};

Delphi2C#110

© 2020 Dr. Detlef Meyer-Eltz

8.8.2 Nested types

A nested type within a generic is itself a generic.

type
 TFoo<T> = class
 type
 TBar = class
 X: Integer;
 // ...
 end;
 end;

 // ...
 TBaz = class
 type
 TQux<T> = class
 X: Integer;
 // ...
 end;
 // ...
 end;

var
 n: TFoo<Double>.TBar;

->

private class TFoo<T> : TObject
{

 public class TBar : TObject
 {
 public int X;
 // ...

 public TBar() {}
 };

 public TFoo() {}
};

 // ...

private class TBaz : TObject
{

 public class TQux<T> : TObject
 {
 public int X;
 // ...

 public TQux() {}
 };
 // ...

 public TBaz() {}
};
private static TFoo<double>.TBar N = null;

A generic can also be declared within a regular class as a nested type:

type
 TOuter = class
 type
 TData<T> = class
 FFoo1: TFoo<Integer>; // declared with closed constructed type
 FFoo2: TFoo<T>; // declared with open constructed type

New features since Delphi 7 111

© 2020 Dr. Detlef Meyer-Eltz

 FFooBar1: TFoo<Integer>.TBar; // declared with closed constructed type
 FFooBar2: TFoo<T>.TBar; // declared with open constructed type
 FBazQux1: TBaz.TQux<Integer>; // declared with closed constructed type
 FBazQux2: TBaz.TQux<T>; // declared with open constructed type
 //...
 end;
 var
 FIntegerData: TData<Integer>;
 FStringData: TData<String>;
 end;

->

public class TOuter : TObject
{
 public class TData<T> : TObject
 {
 public TFoo<int> FFoo1; // declared with closed constructed type
 public TFoo<T> FFoo2; // declared with open constructed type
 public TFoo<int>.TBar FFooBar1; // declared with closed constructed type
 public TFoo<T>.TBar FFooBar2; // declared with open constructed type
 public TBaz.TQux<int> FBazQux1; // declared with closed constructed type
 public TBaz.TQux<T> FBazQux2; // declared with open constructed type
 //...

 public TData() {}
 };
 public TData<int> FIntegerData;
 public TData<string> FStringData;

 public TOuter() {}
};

8.8.3 Base types

The base type of a parameterized class or interface type might be an actual type or a constructed type

 type
 TFoo1<T> = class(TBar) // Actual type
 end;

 TFoo2<T> = class(TBar2<T>) // Open constructed type
 end;

 TFoo3<T> = class(TBar3<Integer>) // Closed constructed type
 end;

->

Delphi2C#112

© 2020 Dr. Detlef Meyer-Eltz

// Actual type
public class TFoo1<T> : TBar
{
 public TFoo1() {}
};
// Open constructed type
public class TFoo2<T> : TBar2<T>
{
 public TFoo2() {}
};
// Closed constructed type
public class TFoo3<T> : TBar2<int>
{
 public TFoo3() {}
};

Class, interface, record, and array types can be declared with type parameters.

type
 TRecord<T> = record
 FData: T;
 end;

 type
 IAncestor<T> = interface
 function GetRecord: TRecord<T>;
 end;

 IFoo<T> = interface(IAncestor<T>)
 procedure AMethod(Param: T);
 end;

 type
 TFoo<T> = class(TObject, IFoo<T>)
 FField: TRecord<T>;
 procedure AMethod(Param: T);
 function GetRecord: TRecord<T>;
 end;

->

public struct TRecord<T>
{
 public T FData;
 public static TRecord<T> CreateRecord(){return new TRecord<T>();}
};

public interface IAncestor<T> : IInterface
{
 TRecord<T> GetRecord();
};

public interface IFoo<T> : IAncestor<T>
{
 void AMethod(T Param);
};

public class TFoo<T> : TObject, IFoo<T>
{
 public TRecord<T> FField = TRecord<T>.CreateRecord();
 public void AMethod(T Param){...}
 public TRecord<T> GetRecord(){...}

 public TFoo() {}
};

New features since Delphi 7 113

© 2020 Dr. Detlef Meyer-Eltz

8.8.4 Procedural types

The procedure type and the method pointer can be declared with type parameters. Parameter types
and result types can also use type parameters.

 type
 TMyProc<T> = procedure(Param: T);
 TMyProc2<Y> = procedure(Param1, Param2: Y) of object;
 type
 TFoo = class
 procedure Test;
 procedure MyProc(X, Y: Integer);
 end;

 procedure sample(Param: Integer);
 begin
 ...
 end;

 procedure TFoo.MyProc(X, Y: Integer);
 begin
 ...
 end;

 procedure TFoo.Test;
 var
 X: TMyProc<Integer>;
 Y: TMyProc2<Integer>;
 begin
 X := sample;
 X(10);
 Y := MyProc;
 Y(20, 30);
 end;

procedure Test;
var
 F: TFoo;
begin
 F := TFoo.Create;
 F.Test;
 F.Free;
end;

->

public delegate void TMyProc<T>(T Param);
public delegate void TMyProc2<Y>(Y Param1, Y Param2);

private class TFoo : TObject
{

 public void Test()
 {
 TMyProc<int> X = null;
 TMyProc2<int> Y = null;
 X = Sample;
 X(10);
 Y = MyProc;
 Y(20, 30);

Delphi2C#114

© 2020 Dr. Detlef Meyer-Eltz

 }

 public void MyProc(int X, int Y)
 {
 ...
 }

 public TFoo() {}
};

public static void Sample(int Param)
{
 ...
}

public static void Test()
{
 TFoo F = null;
 F = new TFoo();
 F.Test();
 F = null;
}

8.8.5 Paremeterized methods

Methods can be declared with type parameters. Parameter types and result types can use type
parameters.

type
 TFoo = class
 procedure Test;
 procedure CompareAndPrintResult<T>(X, Y: T);
 end;

procedure TFoo.CompareAndPrintResult<T>(X, Y: T);
begin
end;

procedure TFoo.Test;
begin
 CompareAndPrintResult<String>('Hello', 'World');
 CompareAndPrintResult('Hello', 'Hello');
 CompareAndPrintResult<Integer>(20, 20);
 CompareAndPrintResult(10, 20);
end;

procedure Test;
var
 F: TFoo;
begin
 F := TFoo.Create;
 F.Test;
 ReadLn;
 F.Free;
end;

->

private class TFoo : TObject
{
 public void Test()
 {
 CompareAndPrintResult<string>("Hello", "World");
 CompareAndPrintResult("Hello", "Hello");
 CompareAndPrintResult<int>(20, 20);

New features since Delphi 7 115

© 2020 Dr. Detlef Meyer-Eltz

 CompareAndPrintResult(10, 20);
 }

 public void CompareAndPrintResult<T> (T X, T Y)
 {
 }

 public TFoo() {}
};

public static void Test()
{
 TFoo F = null;
 F = new TFoo();
 F.Test();
 ReadLn();
 F = null;
}

9 What is partially translated

Some features of Delphi can ba translated partly only.

Variant parts in records
Visibility of class members
Virtual class methods
Abstract classes cannot be created, they have to made non-abstract before
Not all PInvoke calls are working without post-processing of the used signatures.

9.1 Pointers

Pointers may be used in C# in an unsafe context only. For the translation of Delphi code using pointers
in normal context Delphi2C# provides three pointer classes, which simulate the behavior of pointers.
The first is class for void pointers Pointer, the second a generic class Pointer<T>, where T is the type
at the memory address that the Delphi-pointer denotes. For the special case of character types, the
third pointer class is used. As name for this third class PChar is reused. The C# PChar class
simulates the behavior of Delphi's PChar and of the other Delphi character pointers.

The Pointer class is more a as placeholder than a real substitution for the original void-pointer and has
to be corrected by hand. The typed pointer classes simply reflect the memory layout of pointers. A
pointer to a type T is the address of a variable of this type in the memory. There may be more such
variables at adjacent memory positions. In that case the pointer just points to the first element of an
array of variables of the type T. The typed pointer classes are working on copies of such arrays into
data containers. The location to which the pointer points is reproduced as an integer offset to the first
element. The operations that can be done with a pointer are reproduced by member functions of the
pointer classes. For example the incrementation of a pointer becomes to the incrementation of the
index member and deferencing the pointer becomes to a call of the Deref member function, which
returns the element at the current index. The Delphi2C# translator is responsible for the correct
substitution of of pointer operations to the according member functions.

All pointer classes have a common interface: IPointer. Pointer<T> and PChar differ on the used data
containers.

Delphi2C#116

© 2020 Dr. Detlef Meyer-Eltz

IPointer
Pointer
Pointer<T>
PChar

How the translation works can be seen in the following example:

var
 pc : PChar;
 s : string;
begin
 s := 'hello';
 pc := PChar(s);
 Inc(pc);
 pc^ := 'a';

->

 PChar pc = null;
 string s = string.Empty;
 s = "hello";
 pc = new PChar(s);
 ++pc;
 pc.Assign('a');
 pc.Synchronize(ref s);

The code is translated line by line, but at the end there is an additional line in C#. By the Synchronize
method the changed pointer content is copied back to the original string. The result is the same as in
Delphi, where the string data are manipulated directly in the memory.

Limitations of the pointer classes

· While Delphi2C# automatically adds a call of the Synchronize method at the and of the code block,
where a character pointer is defined from a string, such synchronization isn't guaranteed for other
pointers and all cases. For example the first pointer might be assigned to a second one. Then
changes of the content of one of them will not affect the content of the other.

· Sometimes Delphi uses a general-purpose pointer type Pointer, For a Pointer no type is specified to
which it points.Such a Pointer might be simulated too, but it in Delphi it is used interoperably with
other typed pointers. This feature cannot be reproduced in C#.

9.1.1 IPointer

IPointer is the common interface of the two C# classes Pointer<T> and PChar, which are used for the
simulation of Delphi pointers.

What is partially translated 117

© 2020 Dr. Detlef Meyer-Eltz

 public interface IPointer<T>
 {

 int Length
 {
 get;
 }

 int Position
 {
 get;
 }

 bool IsNull();
 void SetNull();
 T Deref();
 void Assign(T c);
 void Inc(int i);
 void Dec(int i);
 };

9.1.2 Pointer

The Pointer class is a quite bad placeholder for the original void-pointer. Code where these Pointers
seldom works without post-processing. Sometimes a simple object is a better candidate than Pointer,
but often Pointer can be substituted by typed Pointe<T>. However Delphi2C# cannot determine
automatically which type is the most adequate type for T.

9.1.3 Pointer<T>

The generic class Pointer<T> is used to simulate Delphi pointers to a variable of type T or to an array
of such variables. However, for the case that this type is a character type, there is a special PChar
class. Both classes have the common IPointer interface.

Pointer<T> has a T[] member variable and a second variable for the current index:

 public class Pointer<T>: IPointer<T> where T : new()
 {
 protected T[] m_Array = null;
 protected int FPosition = -1;

Delphi2C#118

© 2020 Dr. Detlef Meyer-Eltz

9.1.4 PChar

The PChar class is used to simulate Delphi's PChar type or other character pointer types.

PChar can store a character array either a a string or as a StringBuilder and has a second member
variable for the current index.

 public class PChar : IPointer<char>
 {
 private StringBuilder m_StringBuilder = null;
 private string m_String = null;
 private int FPosition = -1;

Whether the string or the StringBuilder is used depends on the construction and on the use of PChar.
When PChar is constructed from a string, m_String becomes a reference of the original string. That
means, there are minimal costs to represents the character array of a Delphi string.

 public PChar(string S, int Index = 0)
 {
 m_String = S;
 FPosition = Index;
 }

As long as there is read only access to the pointer nothing but the index variable is changed. But as
soon as there is a writing access to PChar, m_String will be copied into m_StringBuilder and all
further operations will be done on it. For example the the following code is
executed if a character is assigned to the deferenced pointer:

 public void Assign(char c)
 {
 if(m_StringBuilder == null && m_String != null)
 {
 m_StringBuilder = new StringBuilder();
 m_StringBuilder.Append(m_String);
 }

 m_StringBuilder[FPosition] = c;
 }

But the real purpose of the modifications is the modification of the original string. Therefore the
changes at PChar finally have to be copied back. For this there is the Synchronize method.

public void Synchronize(ref string s)

Delphi2C# automatically adds a call of this method at the and of the code block, where the pointer is
defined.

The StringBuilder member is used also in cases that PChar is not constructed from a string:

What is partially translated 119

© 2020 Dr. Detlef Meyer-Eltz

 public PChar(int Size)
 public PChar(char c)
 public PChar(char[] arr, int Index = 0)

9.2 inline assembler

Inline assembler code isn't converted. It is put into comments instead, so that the translated code will
not stop to compile because of invalid assembler parts. In the professional version of Delphi2Cpp,
there is a minimalistic option to convert Delphi comments and Delphi expressions and to substitute
identifiers. The option wasn't taken over here to Delphi2C#, because it is of little use and because in
the actual Delphi RTL the definition of PUREPASCAL can be set, to avoid the use of assembler code
at all,

9.3 const-correctness

Compared with the concept the const-correctness in C# the use of const in Delphi is very limited. In
the Delphi const-section true constants are declared whose values cannot change and the keyword
const also can be used to declare constant parameters. No values can be assigned to constant
parameters and they cannot be passed to routines, where var parameters are expected. But unlike C#,
Delphi does not permit methods to be marked as const. The VCL pendant of the C#Builder is not
designed for C# const-correctness.

If the translated Delphi code simply should compile, it would be the best to ignore the const-qualifier
totally. But it is the aim of Delphi2C#, that the created C# code should be C#-like code and the
translation also is orientated at the way the C#Builder produces C#-header files from Delphi sources.
C#Builder leaves the const qualifiers for parameters. For example:

TMyClass = class
private
 FObject : TObject;
public
 constructor Create(const Obj: TObject);

The declaration of a constructor is translated by C#Builder and accordingly by Delphi2C# to

__fastcall TMyClass(const TObject* Obj);

But this leads to a problem in the body of the constructor, where the parameter is assigned to a
member of the class:

__fastcall TMyClass::TMyClass(const TObject* Obj)
 : FObject(Obj)
{
}

Compiling this code produces the error: E2034 conversion of 'const TObject *' to 'TObject *' not

Delphi2C#120

© 2020 Dr. Detlef Meyer-Eltz

possible. So a cast is necessary, which strips the const qualifier away:

__fastcall TMyClass::TMyClass(const TObject* Obj)
 : FObject((TObject*)Obj)
{
}

or more precisely:

__fastcall TMyClass::TMyClass(const TObject* Obj)
 : FObject(const_cast<TObject*>(Obj))
{
}

This example suggests to leave out the const-qualifier at the translation anyway as mentioned above.
You can correct the code in this way, but there are other cases where the const-qualifier should be
preserved.

For other compilers than C#Builder the methods, which are created for the read-specifiers of
properties are made const-methods.

10 Unit Tests

The quality of the translation results of Delphi code to C# with Delphi2C# is guaranteed by a collection
of test files. The test cases mostly are modified examples from Embarcadero and from Delphi Basics:

http://www.delphibasics.co.uk

The output operations in the examples were replaced by boolean expressions which can be checked
at the execution of the tests. The modified files then were inserted into a DUnit application. (DUnit is a
testing framework which is integrated into the RAD Studio.)

After verification that the tests are working correctly in Delphi, the code is translated with Delphi2C# to
C#. The translated test files then are inserted into a C# test application. There the tests are repeated
then in C#.

Unit Tests 121

© 2020 Dr. Detlef Meyer-Eltz

The examples below are only a small selection of the whole test suite, which comprises more than a
hundred of such test files.

Format
TDictionary

TStringList

10.1 Format

The formatting routines account for a considerable part of the SysUtils unit. Some of them are nested
and consist in about 1000 lines of code. Nevertheless the translated code works nearly perfect.
Examples to the formatting routines from

http://www.delphibasics.co.uk/RTL.asp?Name=format

were modified slightly to be able to use them for test purposes. The code translated with Delphi2C#
compiles and works without additional manual processing without faults.

using static dbsc_format.dbsc_formatInterface;
using static dbsc_format.dbsc_formatImplementation;
using System;
using static System.SystemInterface;
using System.SysUtils;
using static System.SysUtils.SysUtilsInterface;

Delphi2C#122

© 2020 Dr. Detlef Meyer-Eltz

namespace dbsc_format
{

public class dbsc_formatInterface
{
//http://www.delphibasics.co.uk/RTL.asp?Name=Format
//http://www.delphibasics.co.uk/RTL.asp?Name=FloatToStr
//http://www.delphibasics.co.uk/RTL.asp?Name=FormatFloat
public static bool FormatTest()
{
 bool result = false;
 result = true;
 result = result && FormatTest1();
 result = result && FormatTest2();
 result = result && FloatToStrTest1();
 result = result && FormatFloatTest1();
 return result;
}

} // class dbsc_formatInterface

public class dbsc_formatImplementation
{

public static bool FormatTest1()
{
 bool result = false;
 result = true;
 // Just 1 data item
 result = result && (Format("%s", new object[]{"Hello"}) == "Hello");

 // A mix of literal text and a data item
 result = result && (Format("String = %s", new object[]{"Hello"}) == "String = Hello");
 //ShowMessage('');

 // Examples of each of the data types
 result = result && (Format("Decimal = %d", new object[]{-123}) == "Decimal = -123");
 result = result && (Format("Exponent = %e", new object[]{12345.678D}) == "Exponent = 1,23456780000000E+004");
 result = result && (Format("Fixed = %f", new object[]{12345.678D}) == "Fixed = 12345,68");
 result = result && (Format("General = %g", new object[]{12345.678D}) == "General = 12345,678");
 result = result && (Format("Number = %n", new object[]{12345.678D}) == "Number = 12.345,68");
 result = result && (Format("Money = %m", new object[]{12345.678D}) == "Money = 12.345,68 €");
 // makes no sense under C#
 // result := result and (Format('Pointer = %p', [addr(text)]) = 'Pointer = 0069FC90');
 result = result && (Format("String = %s", new object[]{"Hello"}) == "String = Hello");
 result = result && (Format("Unsigned decimal = %u", new object[]{123}) == "Unsigned decimal = 123");
 result = result && (Format("Hexadecimal = %x", new object[]{140}) == "Hexadecimal = 8C");
 return result;
}

public static bool FormatTest2()
{
 bool result = false;
 result = true;
 // The width value dictates the output size
 // with blank padding to the left
 // Note the <> characters are added to show formatting
 result = result && (Format("Padded decimal = <%7d>", new object[]{1234}) == "Padded decimal = < 1234>");

 // With the '-' operator, the data is left justified
 result = result && (Format("Justified decimal = <%-7d>", new object[]{1234}) == "Justified decimal = <1234 >");

 // The precision value forces 0 padding to the desired size
 result = result && (Format("0 padded decimal = <%.6d>", new object[]{1234}) == "0 padded decimal = <001234>");

 // A combination of width and precision
 // Note that width value precedes the precision value
 result = result && (Format("Width + precision = <%8.6d>", new object[]{1234}) == "Width + precision = < 001234>");

 // The index value allows the next value in the data array
 // to be changed
 result = result && (Format("Reposition after 3 strings = %s %s %s %1:s %s", new object[]{"Zero", "One", "Two", "Three"}) == "Reposition after 3 strings = Zero One Two One Two");

Unit Tests 123

© 2020 Dr. Detlef Meyer-Eltz

 // One or more of the values may be provided by the
 // data array itself. Note that testing has shown that an *
 // for the width parameter can yield EConvertError.
 result = result && (Format("In line = <%10.4d>", new object[]{1234}) == "In line = < 1234>");
 result = result && (Format("Part data driven = <%*.4d>", new object[]{10, 1234}) == "Part data driven = < 1234>");
 result = result && (Format("Data driven = <%*.*d>", new object[]{10, 4, 1234}) == "Data driven = < 1234>");
 return result;
}

public static bool FloatToStrTest1()
{
 bool result = false;
 double amount1 = 0.0D;
 double amount2 = 0.0D;
 double amount3 = 0.0D;
 result = true;
 amount1 = 1234567890.123456789D; // High precision number
 amount2 = 1234567890123456.123D; // High mantissa digits
 amount3 = 1E100D; // High value number
 result = result && (FloatToStr(amount1) == "1234567890,12346");
 result = result && (FloatToStr(amount2) == "1,23456789012346E15");
 result = result && (FloatToStr(amount3) == "1E100");
 return result;
}

public static bool FormatFloatTest1()
{
 bool result = false;
 double flt = 0.0D;
 result = true;
 // Set up our floating point number
 flt = 1234.567D;

 // Display a sample value using all of the format options

 // Round out the decimal value
 result = result && (FormatFloat("#####", flt) == "1235");
 result = result && (FormatFloat("00000", flt) == "01235");
 result = result && (FormatFloat("0", flt) == "1235");
 result = result && (FormatFloat("#,##0", flt) == "1.235");
 result = result && (FormatFloat(",0", flt) == "1.235");

 // Include the decimal value
 result = result && (FormatFloat("0.####", flt) == "1234,567");
 result = result && (FormatFloat("0.0000", flt) == "1234,5670");

 // Scientific format
 result = result && (FormatFloat("0.0000000E+00", flt) == "1,2345670E+03");
 result = result && (FormatFloat("0.0000000E-00", flt) == "1,2345670E03");
 result = result && (FormatFloat("#.#######E-##", flt) == "1,234567E3");

 // Include freeform text
 result = result && (FormatFloat("\"Value = \"0.0", flt) == "Value = 1234,6");

 // Different formatting for negative numbers
 result = result && (FormatFloat("0.0", -1234.567D) == "-1234,6");
 result = result && (FormatFloat("0.0 \"CR\";0.0 \"DB\"", -1234.567D) == "1234,6 DB");
 result = result && (FormatFloat("0.0 \"CR\";0.0 \"DB\"", 1234.567D) == "1234,6 CR");

 // Different format for zero value
 result = result && (FormatFloat("0.0", 0.0D) == "0,0");
 result = result && (FormatFloat("0.0;-0.0;\"Nothing\"", 0.0D) == "Nothing");
 return result;
}

} // class dbsc_formatImplementation

} // namespace dbsc_format

Delphi2C#124

© 2020 Dr. Detlef Meyer-Eltz

10.2 TDictionary

Delphi's class TDictionary is defined in the unit System.Generics.Collections. It is relatively complex
and it uses much parts of the RTL. The correctness of the translation of code in which this class is
used is guaranteed by a unit test which is derived from an Embarcadero example.

http://docwiki.embarcadero.com/CodeExamples/Rio/en/Generics_Collections_TDictionary_
(Delphi)">Generics.Collections.TDictionary

As for all test cases, the output operations have been replaced by boolean expressions which are
checked at the execution of the test.
The translation with Delphi2C# doesn't require any further manual post-processing and is shown
below.

using static docu_tdictionary.docu_tdictionaryInterface;
using static docu_tdictionary.docu_tdictionaryImplementation;
using System;
using static System.SystemInterface;
using System.Types;
using static System.Types.TypesInterface;
using System.SysUtils;
using static System.SysUtils.SysUtilsInterface;
using System.math;
using static System.math.mathInterface;
using System.Generics.Collections;
using static System.Generics.Collections.CollectionsInterface;

namespace docu_tdictionary
{

public class docu_tdictionaryInterface
{

//http://docwiki.embarcadero.com/CodeExamples/Rio/en/Generics_Collections_TDictionary_(Delphi)
public static bool TestDictionary()
{
 bool result = false;
 result = TestDictionary1();
 return result;
}

} // class docu_tdictionaryInterface

public class docu_tdictionaryImplementation
{

public class TCity : TObject
{
 public string country = string.Empty;
 public double Latitude;
 public double Longitude;

 public TCity() {}
 public override string ClassName() {return "TCity";}
 public override TMetaClass ClassType(){return class_id<TCity>();}
 public override TMetaClass ClassParent(){return class_id<TObject>();}
 public override TObject Create(){return new TCity();}
 public static new TCity SCreate() {return new TCity();}
};
public const double Epsilon = 0.0000001D;

public static bool TestDictionary1()
{
 bool result = false;
 TDictionary<string, TCity> Dictionary = null;
 TCity city = null;
 TCity Value = null;

Unit Tests 125

© 2020 Dr. Detlef Meyer-Eltz

 string Key = string.Empty;
 bool bTest = false;
 string S = string.Empty;
 result = true;
 /* Create the dictionary. */
 Dictionary = new TDictionary<string, TCity>();
 city = new TCity();
 /* Add some key-value pairs to the dictionary. */
 city.country = "Romania";
 city.Latitude = 47.16D;
 city.Longitude = 27.58D;
 Dictionary.Add("Iasi", city);
 city = new TCity();
 city.country = "United Kingdom";
 city.Latitude = 51.5D;
 city.Longitude = -0.17D;
 Dictionary.Add("London", city);
 city = new TCity();
 city.country = "Argentina";
 /* Notice the wrong coordinates */
 city.Latitude = 0;
 city.Longitude = 0;
 Dictionary.Add("Buenos Aires", city);

 /* Display the current number of key-value entries. */
 result = result && (Dictionary.Count == 3);

 // Try looking up "Iasi".
 if(Dictionary.TryGetValue("Iasi", ref city) == true)
 {
 result = result && (city.country == "Romania");
 }
 else
 result = false;

 /* Remove the "Iasi" key from dictionary. */
 Dictionary.Remove("Iasi");

 /* Make sure the dictionary's capacity is set to the number of entries. */
 Dictionary.TrimExcess();

 /* Test if "Iasi" is a key in the dictionary. */
 if(Dictionary.ContainsKey("Iasi"))
 result = false;

 /* Test how (United Kingdom, 51.5, -0.17) is a value in the dictionary but
 ContainsValue returns False if passed a different instance of TCity with the
 same data, as different instances have different references. */
 if(Dictionary.ContainsKey("London"))
 {
 Dictionary.TryGetValue("London", ref city);
 if((city.country == "United Kingdom") && (CompareValue(city.Latitude, 51.5D, Epsilon) == EqualsValue) && (CompareValue(city.Longitude, -0.17D, Epsilon) == EqualsValue))
 result = result && (city.country == "United Kingdom");
 else
 result = false;
 city = new TCity();
 city.country = "United Kingdom";
 city.Latitude = 51.5D;
 city.Longitude = -0.17D;
 if(Dictionary.ContainsValue(city))
 result = false;
 city = null;
 }
 else
 result = false;

 /* Update the coordinates to the correct ones. */
 city = new TCity();
 city.country = "Argentina";
 city.Latitude = -34.6D;
 city.Longitude = -58.45D;
 Dictionary.AddOrSetValue("Buenos Aires", city);

 /* Generate the exception "Duplicates not allowed". */
 try

Delphi2C#126

© 2020 Dr. Detlef Meyer-Eltz

 {
 bTest = false;
 Dictionary.Add("Buenos Aires", city);
 }
 catch(System.SysUtils.Exception)
 {
 bTest = true;
 }
 result = result && (bTest == true);
 bTest = false;
 /* Display all countries. */
 foreach(TCity element_0 in Dictionary.Values)
 {
 Value = element_0;
 if(Value.country == "Argentina")
 bTest = true;
 }
 result = result && (bTest == true);
 bTest = false;
 /* Iterate through all keys in the dictionary and display their coordinates. */
 foreach(string element_0 in Dictionary.Keys)
 {
 Key = element_0;
 S = FloatToStrF(Dictionary[Key].Longitude, TFloatFormat.ffFixed, 4, 2);
 if(S == "-58,45")
 bTest = true;
 }
 result = result && (bTest == true);

 /* Clear all entries in the dictionary. */
 Dictionary.Clear();

 /* There should be no entries at this point. */
 result = result && (Dictionary.Count == 0);

 /* Free the memory allocated for the dictionary. */
 Dictionary = null;
 city = null;
 return result;
}

} // class docu_tdictionaryImplementation

} // namespace docu_tdictionary

10.3 TStringList

A frequently used Delphi class is TStringList. The translation of the defining code in System.Classes
needs little manual post-processing. However there are some streaming operations namely in the
base class TPersitent, which aren't implemented. But the example from

http://www.delphibasics.co.uk/RTL.asp?Name=tstringlist

compiles and works without manual post-processing. (Again, the original code has been slightly
modified for the testing purpose.)

using System.Classes;
using static System.Classes.ClassesInterface;
using static dbsc_tstringlist.dbsc_tstringlistInterface;

Unit Tests 127

© 2020 Dr. Detlef Meyer-Eltz

using static dbsc_tstringlist.dbsc_tstringlistImplementation;
using System;
using static System.SystemInterface;

namespace dbsc_tstringlist
{

public class dbsc_tstringlistInterface
{

//http://www.delphibasics.co.uk/RTL.asp?Name=TStringList
public static bool TStringListTest()
{
 bool result = false;
 result = true;
 result = result && TStringListTest1();
 result = result && TStringListTest2();
 result = result && TStringListTest3();
 return result;
}

} // class dbsc_tstringlistInterface

public class dbsc_tstringlistImplementation
{

public static bool TStringListTest1()
{
 bool result = false;
 TStringList animals = null; // Define our string list variable
 int i = 0;
 result = true;
 // Define a string list object, and point our variable at it
 animals = new TStringList();

 // Now add some names to our list
 animals.Add("Cat");
 animals.Add("Mouse");
 animals.Add("Giraffe");

 // Now display these animals
 // for i := 0 to animals.Count-1 do
 // ShowMessage(animals[i]); // animals[i] equates to animals.Strings[i]
 result = result && (animals[0] == "Cat");
 result = result && (animals[1] == "Mouse");
 result = result && (animals[2] == "Giraffe");

 // Free up the list object
 animals = null;
 return result;
}

public static bool TStringListTest2()
{
 bool result = false;
 TStringList Names = null; // Define our string list variable
 string ageStr = string.Empty;
 int i = 0;
 result = true;
 // Define a string list object, and point our variable at it
 Names = new TStringList();

 // Now add some names to our list
 Names.CommaText = "Neil=45, Brian=63, Jim=22";

 // And now find Brian's age
 ageStr = Names.ReadPropertyValues("Brian");

 // Display this value
 // ShowMessage('Brians age = '+ageStr);
 result = result && (ageStr == "63");

Delphi2C#128

© 2020 Dr. Detlef Meyer-Eltz

 // Now display all name and age pair values
 for(i = 0; i <= Names.Count - 1; i++)
 {
 //ShowMessage(names.Names[i]+' is '+names.ValueFromIndex[i]);
 if(i == 0)
 result = result && (new PChar(Names.ReadPropertyNames(i)).ToString() == "Neil") && (new PChar(Names.ReadPropertyValueFromIndex(i)).ToString() == "45");
 if(i == 1)
 result = result && (new PChar(Names.ReadPropertyNames(i)).ToString() == "Brian") && (new PChar(Names.ReadPropertyValueFromIndex(i)).ToString() == "63");
 if(i == 2)
 result = result && (new PChar(Names.ReadPropertyNames(i)).ToString() == "Jim") && (new PChar(Names.ReadPropertyValueFromIndex(i)).ToString() == "22");
 }

 // Free up the list object
 Names = null;
 return result;
}

public static bool TStringListTest3()
{
 bool result = false;
 TStringList cars = null; // Define our string list variable
 int i = 0;
 result = true;
 // Define a string list object, and point our variable at it
 cars = new TStringList();

 // Now add some cars to our list - using the DelimitedText property
 // with overriden control variables
 cars.Delimiter = ' '; // Each list item will be blank separated
 cars.QuoteChar = '|'; // And each item will be quoted with |'s
 cars.DelimitedText = "|Honda Jazz| |Ford Mondeo| |Jaguar \"E-type\"|";

 // Now display these cars
// for i := 0 to cars.Count-1 do
// ShowMessage(cars[i]); // cars[i] equates to cars.Strings[i]
 result = result && (cars[0] == "Honda Jazz");
 result = result && (cars[1] == "Ford Mondeo");
 result = result && (cars[2] == "Jaguar \"E-type\"");

 // Free up the list object
 cars = null;
 return result;
}

} // class dbsc_tstringlistImplementation

} // namespace dbsc_tstringlist

11 What is not translated

There are some principle problems - listed below - at the conversion of Delphi code to C++ which
cannot be resolved by an automatic translator. But even things which Delphi2C#, normally can handle
may fail in complex nested cases. Sometimes Delphi2C# generates explicit "todo"-comments where
something has to be completed manually.

Some Delphi constructs, which aren't, automatically translated yet are:

· Parts of the RTL operate directly on the virtual method table of objects. These parts aren't
reproduced. The most important consequence of this lack is, that streaming of forms and other

What is not translated 129

© 2020 Dr. Detlef Meyer-Eltz

types isn't possible in Delphi manner.
· Inline assembler code in Delphi and C# almost are identically. Delphi2C# doesn't translate these

parts.but only copies them
· virtual class methods.
· Delphi2C# always assumes unique names.But e.g. there might be symbols from the operation

system, which differ in notation.
· Some problems with constructors remain. E.g. Delphi2C# cannot distinguish constructors with equal

signatures.
· Class helpers cannot change the fields of the helped class itself, though this is possible for records
· Manual post-processing to achieve const-correctness is necessary.
· The consequences of the ZEROBASEDSTRING directive are not corrected automatically
· While typed pointers can be simulated,the compilation of code using untyped pointers often fails.
· The keyword absolute cannot be converted adequately
· Little effort has been done to test the COM technologies of the Delphi ActiveX framework.
· At the current state Delphi2C# doesn't deal with event handling

Special problems:

lifetime extension of bound variables

Most of the basic input output types and functions are converted, but not all. E.g. the writing and
reading "file of record" isn't possible yet. Also the width and precision arguments in write operations
aren't converted correctly yet.

12 PInvoke

"PInvoke" or "P/Invoke" are the abbreviated notations for "Platform invoke" or "Platform invocation
services". Generally that's the technology to access unmanaged code from managed code. With
regard to Dellpi2C# only the use of the Windows API matters. Especially the big Winapi.Windows.pas
nearly completely consists in calls of functions of the Windows API, but but there are other units of the
VCL/RTL too, where such calls take place.

It's often not easy to find the correct signatures for such calls. This is indicated by the amount of
tutorials and forum questions to this subject in the internet and there even is a complete website,
where a lot of users have assembled and discussed the PInvoke signatures, that they found out.

http://www.pinvoke.net

In Delphi the calls of external API's is managed in a systematic way. It should be possible therefore to
convert the Delphi signatures to C# PInvoke signatures. At the development of Delphi2C# much time
was spent to this subject and there are many API calls that are converted correctly. But unfortunately
there also remain a calls, where the signatures have to be post-processed manually. In such cases
pinvoke.net is a valuable source. Often there also may be a direct pendant in C# for the needed API
function.

For call of a Windows API function attributes have to be specified, at least the DllImport attribute. For

Delphi2C#130

© 2020 Dr. Detlef Meyer-Eltz

parameters and return values further attributes can be added, which specify the manner, how the
according types are passed. This treatment is called "marshalling". The most simple case is, that the
data types have a common representation in both managed and unmanaged memory. An additional
attribute is necessary, if arrays of a fixed size are passed.

The conversion becomes more difficult when pointers have to be passed, because C# hasn't pointers
at all. In such cases Delphi2C# creates adapter-functions, which are called with the pointer simulating
types. Adapter functions are created too, if a buffer of characters or a string has to be retrieved from
the unmanaged code.

The most complicated case is, that an API function uses a function pointer as parameter.

12.1 DllImport

For call of a Windows API function attributes have to be specified. The minimal attribute to call a
function from from an external dll is "DllImport" with the name of the dll as parameter:

[DllImport(kernel32)]

In this example the routine is looked up in the kernel32.dll.

12.2 SetLastError

The default attributes that Delphi2C# creates for Windows API calls are:

[DllImport(kernel32, SetLastError=true)]

"SetLastError=true" asserts, that additional error information (an unsigned 32 bit error code), which
can be retrieved by a call of "GetLastError", is not overwritten with errors, which might be caused of the
CLR, after the call returns from unmanaged to managed code.

Though it makes sense to set this attribute only for calls, which can change the last error, Delphi2C#
cannot distinguish these cases and always sets this attribute.It doesn't harm in those case, where it
wouldn't be useful.

12.3 Common datatypes

The most simple case of calling Windows API functions from C# is, that all parameter and return types
are isomorphic, i.e. they have a common representation in both managed and unmanaged memory. A
simple example is the function GetCurrentThreadId. The Delphi code imports this funtion with the
following lines of code:

function GetCurrentThreadId: DWORD; stdcall;
{$EXTERNALSYM GetCurrentThreadId}

implementation

function GetCurrentThreadId; external kernel32 name 'GetCurrentThreadId';

In C# this simply becomes to:

PInvoke 131

© 2020 Dr. Detlef Meyer-Eltz

[DllImport(kernel32, SetLastError=true)]
public static extern uint /*stdcall*/ GetCurrentThread();

This function can be called in the code e.g. by:

uint CurThread = GetCurrentThreadId();

The conversion of the Delphi code also is straightforward in the following example of GetLocalTime,
where a TSysteTime var parameter is passed.

 type
 _SYSTEMTIME = record
 wYear: Word;
 wMonth: Word;
 wDayOfWeek: Word;
 wDay: Word;
 wHour: Word;
 wMinute: Word;
 wSecond: Word;
 wMilliseconds: Word;
 end;
 {$EXTERNALSYM _SYSTEMTIME}
 TSystemTime = _SYSTEMTIME;
 SYSTEMTIME = _SYSTEMTIME;
 {$EXTERNALSYM SYSTEMTIME}

procedure GetLocalTime(var lpSystemTime: TSystemTime); stdcall;
{$EXTERNALSYM GetLocalTime}

implementation

procedure GetLocalTime; external kernel32 name 'GetLocalTime';

The _SYSTEMTIME structure, that Delphi2C# generates for C# only consists in fields with data types,
which need no special marshalling.

public struct _SYSTEMTIME
{
 public ushort wYear;
 public ushort wMonth;
 public ushort wDayOfWeek;
 public ushort wDay;
 public ushort wHour;
 public ushort wMinute;
 public ushort wSecond;
 public ushort wMilliseconds;
 public static _SYSTEMTIME CreateRecord(){return new _SYSTEMTIME();}
};

Therefore the GetLocalTime function also is converted quite easily:

[DllImport(kernel32, SetLastError=true)]
public static extern void /*stdcall*/ GetLocalTime(
 ref _SYSTEMTIME lpSystemTime);

GetLocalTime is called inside of the SysUtils.Date-function:

var
 SystemTime: TSystemTime;
begin
 GetLocalTime(SystemTime);

Delphi2C#132

© 2020 Dr. Detlef Meyer-Eltz

Delphi2C# automatically generates the following call:

 _SYSTEMTIME SYSTEMTIME = _SYSTEMTIME.CreateRecord();
 GetLocalTime(ref SYSTEMTIME);

12.4 Array size attribute

In the next example a record is marshalled, which has array fields with a fixed array size.

type
 PCPInfo = ^TCPInfo;
 {$EXTERNALSYM _cpinfo}
 _cpinfo = record
 MaxCharSize: UINT; { max length (bytes) of a char }
 DefaultChar: array[0..MAX_DEFAULTCHAR - 1] of Byte; { default character }
 LeadByte: array[0..MAX_LEADBYTES - 1] of Byte; { lead byte ranges }
 end;
 TCPInfo = _cpinfo;
 {$EXTERNALSYM CPINFO}
 CPINFO = _cpinfo;

{$EXTERNALSYM GetCPInfo}
function GetCPInfo(CodePage: UINT; var lpCPInfo: TCPInfo): BOOL; stdcall;

implementation

function GetCPInfo; external kernel32 name 'GetCPInfo';

In this case attributes have to be set to the according fields:

public struct _cpinfo
{
 public uint MaxCharSize; /* max length (bytes) of a char */
 [MarshalAs(UnmanagedType.ByValArray, SizeConst=2)] public byte[] DefaultChar; /* default character */
 [MarshalAs(UnmanagedType.ByValArray, SizeConst=12)] public byte[] LeadByte; /* lead byte ranges */
 public static _cpinfo CreateRecord(){return new _cpinfo();}
};

[DllImport(kernel32, SetLastError=true)]
public static extern int /*stdcall*/ GetCPInfo(
 uint CodePage,
 ref _cpinfo lpCPInfo);

The function is called in Delphi with:

var
 AnsiCPInfo: TCPInfo;

GetCPInfo(CP_ACP, AnsiCPInfo);

PInvoke 133

© 2020 Dr. Detlef Meyer-Eltz

and in C# with:

_cpinfo AnsiCPInfo = _cpinfo.CreateRecord();
GetCPInfo((uint) CP_ACP, ref AnsiCPInfo);

A special case are character arrays like in the _OSVERSIONINFOW record:

 szCSDVersion: array[0..127] of WideChar; { Maintenance UnicodeString for PSS usage }

This is converted to:

 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=128)] public string szCSDVersion; /* Maintenance AnsiString for PSS usage */

12.5 Adapter functions

Many API functions have parameters with pointer type. C# hasn't pointers at all, but it has the IntPtr
type, which is used in such cases. In such cases Delphi2C# creates adapter-functions in addition to
the original Delphi function declarations. Simulated pointers are passed to these adapter-functions and
inside of the functions they are converted to IntPtr's, which then can be passed again to the real API
function. If the pointer is used to retrieve a value from the unmanaged code, the IntPtr is converted
back to the simulated pointer after the API call. This is a kind of "double-marshalling".

If, for example, the values for an Integer shall be retrieved from the unmanaged code, this can be
done by a var parameter of a PInteger type:

procedure APIfoo(var pi : PInteger);
{$EXTERNALSYM APIfoo}

implementation

procedure APIfoo(var pi : PInteger); external bar32 name 'APIfoo';

Delphi2C# creates an adapter function with an "ref Pointer<int>" parameter. The simulated pointer
types have a member function "ToIntPtr", which returns the needed IntPtr-value. However, this
member function isn't called directly, but inside of a global function "ToIntPtr", which asserts that the
simulated pointer isn't null.

[DllImport(bar32, SetLastError=true)]
public static extern void APIfoo(
 /*ref*/ IntPtr pi);

public static void APIfoo(ref Pointer<int> pi)
{
 APIfoo(ToIntPtr(pi));

Delphi2C#134

© 2020 Dr. Detlef Meyer-Eltz

 FromIntPtr(pi);
}

"ToIntPrt" allocates some memory. This is freed in the subsequent call of "FromIntPtr(lpFileTime)",
which also writes the retrieved integer value back to the simulated pointer variable.

Adapter functions are created too, if a buffer of characters or a string has to be retrieved from the
unmanaged code.

,

12.6 Retrieve a string

There are many API functions to retrieve strings. In these cases a buffer is passed which then is filled
with characters. A C# string cannot be used as such a buffer, because it's internal buffer cannot be
"pre-allocated". But StringBuilder can be used instead.

function GetTempPath(nBufferLength: DWORD; lpBuffer: LPWSTR): DWORD; stdcall;
{$EXTERNALSYM GetTempPath}

implementation

function GetTempPath; external kernelbase name 'GetTempPathW';

becomes to:

[DllImport(kernelbase, SetLastError=true)]
public static extern uint /*stdcall*/ GetTempPath(
 uint nBufferLength,
 StringBuilder lpBuffer);

public static uint /*stdcall*/ GetTempPath(uint nBufferLength, ref char[]
lpBuffer)
{
 StringBuilder tmp3 = new StringBuilder(lpBuffer.ToString(),
lpBuffer.Length);
 uint tmp2 = GetTempPath(nBufferLength, tmp3);
 lpBuffer = tmp3.ToString().ToCharArray();
 return tmp2;
}

Delphi2C# creates an adapter function with a "ref char[]" parameter. This buffer must already have
enough space for the retrieved characters. Correctly the first parameter nBufferLength should be used
to set the size for the buffer, but Delphi2C# cannot know this from the pure syntax of the function. But
if the original Delphi code works, then the generated C# code will work too.

If an API function has LPWSTR parameters Delphi2C# also creates a second adapter function with a
string reference parameter instead of the character array reference:

public static uint /*stdcall*/ GetTempPath(uint nBufferLength, ref string lpBuffer)

PInvoke 135

© 2020 Dr. Detlef Meyer-Eltz

{
// StringBuilder tmp1 = new StringBuilder(lpBuffer, lpBuffer.Length);
 StringBuilder tmp1 = new StringBuilder((int)nBufferLength);
 uint tmp0 = GetTempPath(nBufferLength, tmp1);
 lpBuffer = tmp1.ToString();
 return tmp0;
}

Here the same problem with the buffer size exist.The string has to have the required size before
GettempPath is called and it will have this size, if the converted Delphi code had been correct.

 char[] Path = new char[256];
 uint ui = GetTempPath(256, ref Path);

 string sPath = string.Empty;
 SetLength(ref sPath, 256);
 ui = GetTempPath(256, ref sPath);

12.7 API callback

API function may use callback parameters. In this case not only the parameters of the API function
have to be adapted, the parameters of the callback function have to be adapted too. The
"EnumSystemLocales" function is such an example:

type
TFNLocaleEnumProc = Pointer;

{$EXTERNALSYM EnumSystemLocales}
function EnumSystemLocales(lpLocaleEnumProc: TFNLocaleEnumProc; dwFlags: DWORD): bool; stdcall;

implementation

function EnumSystemLocales; external kernel32 name 'EnumSystemLocales';

function EnumLocalesCallback(LocaleID: PChar): Integer; stdcall;
begin
 // ...
end;

procedure CallEnum;
begin
 EnumSystemLocales(@EnumLocalesCallback, LCID_SUPPORTED);
end;

The callback function "EnumLocalesCallback" has a PChar parameter, which becomes the simulated
PChar-class in C#. Of course the unmanaged code couldn't do anything with it. Delphi2C# therefore
creates a sibling function to "EnumLocalesCallback" with the same name, but with parameters, which
are conform with unmanaged code and which can be used to call the original "EnumLocalesCallback"
function. By means of the function "Marshall.GetFunctionPointerForDelegate<TDelegate>", the
"EnumLocalesCallback" sibling can be converted than to a function pointer, that can be called in the
unmanaged code.

This is what Delphi2C# makes from the code above:

public delegate int callback__0([MarshalAs(UnmanagedType.LPStr)] string LocaleID); // LPWStr manually corrected here

Delphi2C#136

© 2020 Dr. Detlef Meyer-Eltz

public static int EnumLocalesCallback([MarshalAs(UnmanagedType.LPStr)] string LocaleID) // LPWStr manually corrected here
{
 return EnumLocalesCallback(new PChar(LocaleID));
}

[DllImport(kernel32, SetLastError=true)]
public static extern bool /*stdcall*/ EnumSystemLocales(
 IntPtr lpLocaleEnumProc,
 DWORD dwFlags);

public static int /*stdcall*/ EnumLocalesCallback(PChar LocaleID)
{
 int result = 0;
 // ...
 return result;
}

public static void CallEnum()
{
 EnumSystemLocales(Marshal.GetFunctionPointerForDelegate<callback__0>(EnumLocalesCallback), LCID_SUPPORTED);
}

As template parameter "TDelegate" for "GetFunctionPointerForDelegate<TDelegate>" the delegate
"callback__0" is used. "callback__0" just has the signature of the "EnumLocalesCallback" sibling.

When "EnumSystemLocales" is called in the managed code, the unmanaged code will call the
"EnumLocalesCallback" sibling, which then will call the original
"EnumLocalesCallback".

13 Pretranslated C# code

Delphi2C# ships with some pre-translated parts of the Delphi RTL/VCL.
You also can improve and accelerate your translations, if you prepare parts of your own Delphi code.

13.1 Delphi RTL/VCL

User Delphi code is based on the Delphi RTL and the VCL One could think this isn't a problem, since
this code can be translated by Delphi2C# as well as the own code. Unfortunately, it is not quite so
simple. Particularly the file System.pas makes problems. System.pas is interlocked with the Delphi
compiler narrowly. Some fundamental function are built into the the Delphi compiler and some parts
are encoded in a special manner, which are interpreted correctly from the Delphi compiler only. For
example the symbol "_AnsiStr" is used instead of "AnsiString" and the same applies to quite a number
of other basic types.System pas further depends partly on assembler code. RTL/VCL sources also
convert API functions and types of the operating system such that they are conform to Delphi. In C++
this conversion isn't necessary. Also some parts of System.pas aren't needed in C++.

Therefore some parts of the Delphi RTL are pre-translated and prepared to use with the code
translated by Delphi2C#. Because Embarcadero has the copyright of the Delphi RTL/VCL the
translated parts cannot be shipped with the Delphi2C# installer. However as customer of Delphi2C#
you certainly will have a license of Delphi too and as owner you also have the right to use the

Pretranslated C# code 137

© 2020 Dr. Detlef Meyer-Eltz

translated code. So you can get the C# version of the Delphi code, if you send a prove of the Delphi
ownership to me or simply send the Delphi RTL code to me.

Some helping code is already delivered with the Delphi2C# installer:

DelphiSets.cs.
System.cs

13.1.1 DelphiSets.cs

DelphiSets.cs is part of the C# version of the Delphi RTL and contains the class TSet to simulate
Delphi sets.The public members of this class are listed below:

public class TSet : IEnumerable

 public TSet()
 public TSet(TSet OtherSet)
 public bool this[int index]
 public TSet Clear()
 public void Include(int Index)
 public static TSet operator <<(TSet ImpliedObject, int Index)
 public void Exclude(int Index)
 public static TSet operator >>(TSet ImpliedObject, int Index)
 public bool Empty()
 public bool Contains(int Index)
 public static TSet operator +(TSet ImpliedObject, TSet AddSet)
 public static TSet operator -(TSet ImpliedObject, TSet SubSet)
 public static TSet operator *(TSet ImpliedObject, TSet MulSet)
 public static bool operator ==(TSet ImpliedObject, TSet CmpSet)
 public static bool operator !=(TSet ImpliedObject, TSet CmpSet)
 public static bool operator <=(TSet ImpliedObject, TSet CmpSet)
 public static bool operator >=(TSet ImpliedObject, TSet CmpSet)
 public override int GetHashCode()
 public override bool Equals(object other)
 public IEnumerator GetEnumerator()

13.1.2 System.cs

The System.cs file that is delivered with the Delphi2C# installer is only a part of the complete
System.cs that is contained the C# version of the Delphi RTL that you will get as owner of Delphi2C#
and of Delphi. This part of the System.cs only contains the classes to simulate pointers. The public
members of these classes are listed below:

 public interface IPointer<T> : IDisposable

 int Length
 int Capacity
 int Position
 bool IsNull();
 void SetNull();
 T Deref();

Delphi2C#138

© 2020 Dr. Detlef Meyer-Eltz

 void Assign(T c, int Index = 0);
 void Inc(int i);
 void Dec(int i);

 public class PChar : IPointer<char>

 public PChar()
 public PChar(int Size, bool Alloc)
 public PChar(bool Value)
 public PChar(char c)
 public PChar(double Value)
 public PChar(short Value)
 public PChar(int Value)
 public PChar(long Value)
 public PChar(float Value)
 public PChar(ushort Value)
 public PChar(uint Value)
 public PChar(ulong Value)
 public PChar(byte[] bytes)
 public PChar(string S, int Index = 0)
 public PChar(char[] arr, int Index = 0)
 public PChar(PChar Other, int Delta = 0)
 public PChar(Pointer ptr)
 public char this[int index]
 public int Length
 public int Capacity
 public int Position
 public bool IsNull()
 public void SetNull()
 public char Deref()
 public IntPtr ToIntPtr()
 public void FromIntPtr()
 public void Assign(char c, int Index = 0)
 public void Assign(string s)
 public void Inc(int i)
 public void Dec(int i)
 public void DerefAdd(int Value)
 public void DerefSubstract(int Value)
 public static PChar operator ++(PChar a)
 public static PChar operator --(PChar a)
 public override string ToString()
 public char[] ToCharArray()
 public void Synchronize(ref string s)
 public void Synchronize(ref char[] ca)
 public string Substring(int from, int count)
 public void Insert(string s)
 public void Insert(string s, int startIndex)
 public static bool operator ==(PChar p1, PChar p2)
 public static bool operator !=(PChar p1, PChar p2)
 public static PChar operator +(PChar p, int Value)
 public static PChar operator -(PChar p, int Value)
 public override bool Equals(object obj)
 public override int GetHashCode()
 public static implicit operator Pointer (PChar ptr)
 public static implicit operator PChar (Pointer ptr)
 public void Dispose()

Pretranslated C# code 139

© 2020 Dr. Detlef Meyer-Eltz

 public class Pointer : IPointer<object>

 public Pointer()
 public Pointer(int size, bool Alloc)
 public Pointer(bool Value)
 public Pointer(char Value)
 public Pointer(double Value)
 public Pointer(short Value)
 public Pointer(int Value)
 public Pointer(long Value)
 public Pointer(float Value)
 public Pointer(ushort Value)
 public Pointer(uint Value)
 public Pointer(ulong Value)
 public Pointer(byte[] bytes)
 public Pointer(IntPtr ptr, int size = 0, bool disposed = true)
 public Pointer(Pointer Other) //, int Delta = 0)
 public bool IsNull()
 public void SetNull()
 public int Length
 public int Capacity
 public int Position
 public void Assign(object t, int Index = 0)
 public void Assign(IntPtr t, int size = 0)
 public object Deref()
 public IntPtr GetIntPtr()
 public byte[] ToBytes()
 public void FromBytes(byte[] bytes)
 public void Inc(int i)
 public void Dec(int i)
 public override bool Equals(object obj)
 public override int GetHashCode()
 public static Pointer operator ++(Pointer a)
 public static Pointer operator --(Pointer a)
 public static bool operator ==(Pointer p1, Pointer p2)
 public static bool operator !=(Pointer p1, Pointer p2)
 public static Pointer operator +(Pointer p, int Value)
 public static Pointer operator -(Pointer p, int Value)
 public static implicit operator IntPtr (Pointer ptr)
 public static implicit operator Pointer (IntPtr ptr)
 public static implicit operator uint (Pointer ptr)
 public static implicit operator Pointer (uint ptr)
 public void Dispose()

 public class Pointer<T>: IPointer<T> where T : new()
 public Pointer()
 public Pointer(int Size, bool Alloc)
 public Pointer(byte[] bytes)
 public Pointer(T t)
 public Pointer(IntPtr iptr)
 public Pointer(List<T> l, int Index = 0)
 public Pointer(T[] l, int Index = 0)
 public Pointer(Pointer<T> Other, int Delta = 0)
 public bool IsNull()
 public void SetNull()
 public T this[int index]

Delphi2C#140

© 2020 Dr. Detlef Meyer-Eltz

 public int Length
 public int Capacity
 public int Position
 public object Object
 public void Assign(T t, int Index = 0)
 public T Deref()
 public IntPtr ToIntPtr()
 public byte[] ToBytes()
 public void FromBytes(byte[] bytes)
 public T FromIntPtr()
 public void Inc(int i)
 public void Dec(int i)
 public override bool Equals(object obj)
 public override int GetHashCode()
 public static Pointer<T> operator ++(Pointer<T> a)
 public static Pointer<T> operator --(Pointer<T> a)
 public static bool operator ==(Pointer<T> p1, Pointer<T> p2)
 public static bool operator !=(Pointer<T> p1, Pointer<T> p2)
 public static Pointer<T> operator +(Pointer<T> p, int Value)
 public static Pointer<T> operator -(Pointer<T> p, int Value)
 public void Dispose()

13.2 Preparing Delphi code

Normally a preparation of the Delphi code should not be necessary. But there are three reasons to do
so:

- sometimes the RTL/VCL code isn't clean
- some substitutions for ampersand-expressions have to be defined
- parallel updates of Delphi and C# code can be simplified

13.2.1 Bugs in the Delphi RTL/VCL

In some cases Delphi2C# cannot process a unit though the Delphi compiler can. That's because the
automatically generated parser of Delphi2C# is more strict than the Delphi parser. The Delphi parser
might be handwritten and tolerates bugs like the following in the System.pas of RAD Studio 10.2 Tokyo
inside of the function "FSetExceptFlag":

{$ELSEIF defined(CPUX64) and defined(Linux)) }

It is obvious, that there is a closing parenthesis too much and the code should be corrected to:

{$ELSEIF defined(CPUX64) and defined(Linux) }

The next bug in the same file is:

{$IF not (defined(PC_MAPPED_EXCEPTIONS) or defined(SJLJ_BASED_EXCEPTIONS)) or defined(ZCX_BASED_EXCEPTIONS)) }

Pretranslated C# code 141

© 2020 Dr. Detlef Meyer-Eltz

Such bugs unfortunately exist in all versions of the RTL/VCL at different positions. They can be found
inside of the Delphi2C# IDE quite easily, because the position where the preprocessor or the parser
stops is shown in the input editor. If you have moved the cursor, the position is shown again by use of

the button.

Here is a list of some flaws in the RTL/VCL of RAD Studio 10.2 Tokyo.

System.ObjAuto.pas line 23:

{$IF SizeOf(Extended) >= 10)} // 10,12,16
 {$DEFINE EXTENDEDHAS10BYTES}
{$ENDIF}

{$IF SizeOf(Extended) = 10)}
 {$DEFINE EXTENDEDIS10BYTES}
{$ENDIF}

should be:

{$IF SizeOf(Extended) >= 10} // 10,12,16
 {$DEFINE EXTENDEDHAS10BYTES}
{$ENDIF}

{$IF SizeOf(Extended) = 10}
 {$DEFINE EXTENDEDIS10BYTES}

{$ENDIF}

Internal.Unwinder.pas:

{$IFDEF MACOS}
const
 U = '';
 {$EXTERNALSYM _U}
{$ELSE !MACOS}
 _U = '';
 {$EXTERNALSYM _U}
{$ENDIF}

could be:

{$IFDEF MACOS}
const
 U = '';
 {$EXTERNALSYM _U}
{$ELSE !MACOS}
const
 _U = '';
 {$EXTERNALSYM _U}
{$ENDIF}

System.pas line 6643:

{$ELSEIF defined(CPUX64) and defined(Linux)) }

->
{$ELSEIF defined(CPUX64) and defined(Linux) }

line 24087:

{$IF not (defined(PC_MAPPED_EXCEPTIONS) or defined(SJLJ_BASED_EXCEPTIONS)) or defined(ZCX_BASED_EXCEPTIONS)) }

Delphi2C#142

© 2020 Dr. Detlef Meyer-Eltz

->
{$IF not (defined(PC_MAPPED_EXCEPTIONS) or defined(SJLJ_BASED_EXCEPTIONS)) or defined(ZCX_BASED_EXCEPTIONS) }

Vcl.Imaging.GifImg.pas line 2421:

SetColors(GetPaletteEntries(Palette, 0, 256, nil^));
->

SetColors(GetPaletteEntries(Palette, 0, 256, nil));

WinAPI.DXFile.pas line 37:

(*$HPPEMIT '#include "dxfile.h"'{*)
(*$HPPEMIT '#include "rmxfguid.h"'{*)
(*$HPPEMIT '#include "rmxftmpl.h"'{*)

->

(*$HPPEMIT '#include "dxfile.h"'*)
(*$HPPEMIT '#include "rmxfguid.h"'*)
(*$HPPEMIT '#include "rmxftmpl.h"'*)

ToolsApi/ToolsApi.pas line 123/250/252

(*$HPPEMIT 'DEFINE_GUID(IID_IOTAStreamModifyTime,0x49F2F63F,0x60CB,0x4FD4,0xB1,0x2F,0x81,0x67,0xFC,0x79,0xB2,0x93);*)
...
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAToolsFilterNotifier,0xCEF1F13A,0xE877,0x4F20,0x88,0xF2,0xF7,0xE2,0xBA,0x61,0xAA,0xF4); *)
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAToolsFilter,0x8864B891,0x9B6D,0x4002,0xBB,0x2E,0x1D,0x6E,0x59,0xBF,0xA4,0x9A); *)
.
(*$HPPEMIT 'DEFINE_GUID(IID_IOTATypeLibrary, 0x7A2F5910,0x58D2,0x448E,0xB4,0x57,0x2D,0xC0,0x1E,0x85,0x3D,0x46);*)

->
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAStreamModifyTime,0x49F2F63F,0x60CB,0x4FD4,0xB1,0x2F,0x81,0x67,0xFC,0x79,0xB2,0x93);'*)
...
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAToolsFilterNotifier,0xCEF1F13A,0xE877,0x4F20,0x88,0xF2,0xF7,0xE2,0xBA,0x61,0xAA,0xF4);'*)
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAToolsFilter,0x8864B891,0x9B6D,0x4002,0xBB,0x2E,0x1D,0x6E,0x59,0xBF,0xA4,0x9A);'*)
.
(*$HPPEMIT 'DEFINE_GUID(IID_IOTATypeLibrary, 0x7A2F5910,0x58D2,0x448E,0xB4,0x57,0x2D,0xC0,0x1E,0x85,0x3D,0x46);'*)

13.2.2 Frequent re-translation

Users who like to continue to develop their Delphi code and in parallel also need the C# code updated
certainly don't want to post-process the generated code again and again. Therefore Delphi2C# offers
the possibility to prepare the Delphi source code such, that Delphi2C# will reproduce the corrected

code fragments. These fragments either can be inserted as special comments (*#_ ... _#*) or can
be hidden by conditional compilation with use of the predefined identifier CSHARP. In fact
the second method is based on the first, because the Delphi2C# pre-processor converts the CSHARP

Pretranslated C# code 143

© 2020 Dr. Detlef Meyer-Eltz

part into the special comments and the Delphi2C# translator than simply removes the special

brackets (*#_ ... _#*).

13.2.2.1 Comments (*#_ ... _#*)

Delphi2C# interprets the extended Delphi brackets (*#_ ... _#*) in a special way. A text in such
brackets is taken unchanged into the C# code.

For example an additional header is included into the C# code by the following line:

(*#_using System.SysUtils;_#*)

->

using System.SysUtils;

13.2.2.2 Predefined identifier CSHARP

In addition the the definitions which the user can set in the translation options the identifier CSHARP
always is defined in Delphi2C#. The preprocessor treats this identifier in a special manner. The pre-
processor not simply writes the according code into the pre-processed code, but it puts it into the

special brackets (*#_ ... _#*). In a second step the translator then removes the brackets.

For example:

{$ifdef CSHARP}
 out << s << endl;
{$else}
 WriteLn(s);
{$endif}

The pre-processed code then is:

 (*#_ out << s << endl; _#*)

 and because of the special treatment of the brackets (*#_..._#*), the final C# output is:

 out << s << endl;

Delphi2C# ignores the part of code in the {$else}-section completely, but it is visible to the Delphi
compiler. So, this special manner of the conditional compilation makes it possible that both the original
Delphi code and the generated C# code remain compiling.

The identifiers in these section either can be normalized or can be left untouched. This is controlled by
the CSHARP unification option.

Delphi2C#144

© 2020 Dr. Detlef Meyer-Eltz

13.2.3 Delphi directives to support C++Builder

There are four directives defined in Delphi to support the generation of C++ header files for C+
+Builder. For Delphi2C# these directives are of little interest, because the interaction with the Windows
API is controlled by th PInvoke statements. However Delphi2C# uses the EXTENALSYM directives to
recognize, for which functions PInvoke adapters have to be constructed.

$HPPEMIT
$EXTERNALSYM
$NODEFINE
$NOINCLUDE

13.2.3.1 $HPPEMIT

The HPPEMIT directive adds a specified symbol to the C++ header file.
HPPEMIT directives are output into the "user supplied" section at the top of the header file in the order
in which they appear in the Pascal file.
The HPPEMIT directive accepts an optional END directive that instructs the compiler to emit the string
at the bottom of the header file. Otherwise, the string is emitted at the top of the file.

Syntax:

{$HPPEMIT string}

Example:

{$HPPEMIT 'Symbol goes to top of file' }.
{$HPPEMIT END 'Symbol goes to bottom of file'}

13.2.3.2 $EXTERNALSYM

The EXTERNALSYM directive prevents the specified Pascal symbol from appearing in C++ header
files. This directive is used for types, which already are defined in the API of the operation system. For
Delphi these types have to be redefined, for C++ not.

Delphi2C# doesn't output code parts, which are marked with the EXTERNALSYM directive if the
according option is enabled.

Syntax:

{$EXTERNALSYM identifier}

Example:

type
 size_t : LongWord;
 {$EXTERNALSYM size_t}

Pretranslated C# code 145

© 2020 Dr. Detlef Meyer-Eltz

13.2.3.3 $NODEFINE

The NODEFINE directive prevents the specified symbol from being included in the C++ header file of
C++Builder, while allowing some information to be output to the OBJ file. For example the types TSize,
TPoint and, TRect in System.Types.pas are marked with NODEFINE. In C++Builder these types are
defined in System.Types.h.

Delphi2C# doesn't output code parts, which are marked with the NODEFINE directive if the according
option is enabled. In this case it is your responsibility to define the necessary code yourself, One
possibility is to do it with HPPEMIT:

Syntax:

{$NODEFINE identifier}

Example:

type
 Temperature = type double;
 {$NODEFINE Temperature}
 {$HPPEMIT 'typedef double Temperature'}

13.2.3.4 $NOINCLUDE

The NOINCLUDE directive prevents the specified file from being included in header files generated for

C#.

Syntax:

{$NOINCLUDE filename}

Example:

 {$NOINCLUDE Unit1} // removes #include Unit1.

14 Formatting

The generated C# code should be readable, but little effort was made to make it beautiful. There are
free pretty-printers available, which have a lot of options to format the code just as you like it. I
recommend:

http://universalindent.sourceforge.net/

With UniversalIndentGUI "you change the value of a parameter and directly see how your reformatted
code will look like. Save your beauty looking code or create an anywhere usable batch/shell script to
reformat whole directories or just one file even out of the editor of your choice that supports external
tool calls."

Delphi2C#146

© 2020 Dr. Detlef Meyer-Eltz

15 DelphiC# versus Delphi2Cpp

Delphi2C# is based on the experience with the earlier "Delphi2Cpp" and the current
"DelphiXE2Cpp11". In contrast to the earlier "Delphi2Cpp", which processes Delphi 7 code only,
"DelphiXE2Cpp11" like Delphi2C# processes all Delphi language expansions which were added since
then.

16 TextTransformer

Delphi2C# and the previous Delphi2Cpp were made from a TextTransformer project, which is based
on the Delphi parser and the Delphi pretty-printer, which can be obtained freely from

http://www.texttransformer.org/Delphi_en.html

http://www.texttransformer.org/DelphiPrettyPrint_en.html

17 Service

There is also a service to make translations of Delphi source code for you. So you don't have to buy
the program:

http://www.texttransformer.com/D2C_TranslationService_en.html

or in German at:

http://www.texttransformer.de/D2C_TranslationService_ge.html

I also like make extensions of Delphi2C# or other translators adapted individually for you. The
translation results can be increased drastically by such customizations. Please contact me by the
contact form at:

http://www.texttransformer.com/Contact_en.html

or in German at:

http://www.texttransformer.de/Contact_ge.html

Index 147

© 2020 Dr. Detlef Meyer-Eltz

Index
- - -
- 95

-- 80

- # -
#helped will not be changed 101

- & -
& 43

- (-
(*#_ ... _#*) 143

(*_ ... _*) 143

(*_..._*) 14

- * -
* 95

- / -
/ 95

/*# 29

//# 29

- [-
[&] 106

[=] 106

- _ -
__closure 93

__interface 61

- { -
{$J+} directive 26

- + -
+ 95

++ 80

- < -
< 95

<< 80

<= 95

- > -
>> 80

- A -
Abs 14

abstract methods 60

ActiveX 128

Add 95

Add include path 12

Add recursively 12

AddError 40

AddMessage 40

AddWarning 40

ambiguity 71

Ampersand 43

Ancestor 52

and 73, 95

anonymous methods 104

API callback 135

Array 62

Array of const 66, 68

array parameter 78

Array size 68, 69

Array size attribute 132

arrays 63

Assembler 18, 128

Assigned 80

AssignFile 91

Delphi2C#148

© 2020 Dr. Detlef Meyer-Eltz

Assignments 74

auto 86

- B -
Backup 40

Base class 52, 58

Beautifier 145

binary operator 96

bitwise operator 73

BitwiseAnd 95

BitwiseOr 95

BitwiseXor 95

BlockRead 80

BlockWrite 80

boolean operator 73

boxing 66

break 34

BytesOf 34

ByteType 34

- C -
c_str 34

C++ Builder 4

C++ header 35

C++ source file 35

C++11 63, 86

C++Builder 144

capture 106

Case sensibility 43

Case sensitivity 34

Case-sensivity 22

cat_printf 34

cat_sprintf 34

cat_vprintf 34

Char 34

Character buffer 134

Class 50

Class creation 61

class helper 100

class method 58

class refererence 88

class_id 88

Class-like records 101

ClassRef 28, 88

class-reference 87

Clear types and variables 5, 35

Clear windows 5

CloseFile 91

CodePage 34

COM technologies 128

command line mode 41

Command line parameter 41

Comments 48

Compare 34

CompareIC 34

Compile time functions 14

Compiler 4

Conditional compilation 15, 33

Conflicting names 128

Connect 93

const 26, 76, 119

const correctness 26

const parameter 119

const parameters 76

const_cast 119

constant 26, 119

const-correctness 28, 119

Constructor 52, 56

Constructors of the base class 128

Contact 146

continue 34

conversion operator 97

Copy 80

Cpp 14

Cpp definition 43, 143

CPUX86 16

CreateRecord 50

CreateRecordMembers 50

CSHARP 18

CurrToStr 34

CurrToStrF 34

Customization 146

- D -
d2c_LoadResourceString 72

d2c_sysfile.cpp 80

d2c_sysfile.h 80

d2c_sysobj 56

d2c_system 14

Daniel Flower 70

data 34

Dec 80, 95

Index 149

© 2020 Dr. Detlef Meyer-Eltz

Decimals 81

Default array-property 84

Default.prj 2

Definition 4, 15

delegate 104, 107

Delete 34, 80

Delphi ActiveX framework 128

Delphi I/O routines 14

Delphi RTL/VCL 4, 136

Delphi2C# 2, 146

Delphi2Cpp 2, 146

DelphiSets.cs 136, 137

DelphiSets.h 70

DelphiXE2Cpp11 146

DelphiXE2Cpp11Lic.dat 2

Demjen 93

Dependencies 35

Destructor 58

Directive 15, 144

Directives 33

Dispose 80

div 95

Divide 95

DllImport 130

dotted file names 13

Dynamic array 62

DynamicArray 62

- E -
E2034 119

ElementSize 34

EnsureUnicode 34

Enumerated types 68

Equal 95

equality operators 73

event 93, 107

Event handling 93

exception 91

ExceptionRef 91

Exclude 80

Excluding individual files 38, 39

Explicit 97

Explicit casts 74

Extended "System.pas" 14

extended System.pas 4

EXTERNALSYM 28, 144

- F -
FCL 80

File 91

File layout 45

File manager 36

File of 91

FileMode 91

finalization 87

Finalization part 128

finally 86

Fingerprint 2

Fixed identifiers 21

FloatToStrF 34

FmtLoadStr 34, 72

for loop 85

foreach 86

for-in loop 86

for-loop 28

Format 34

FormatFloat 34

Formatting 145

Formatting parameters 81

FreeMem 14

FreePascal FCL 80

friend 61

function 78

Function name 24, 75

Functions 75

- G -
Generics 108

GetFunctionPointerForDelegate 135

GetLowerBound 64

GetMem 14

GetUpperBound 64

GNU Lesser General Public License 80

GreaterThan 95

GreaterThanOrEqual 95

GUID 61

- H -
hash character 29

Hejlsberg 2

Delphi2C#150

© 2020 Dr. Detlef Meyer-Eltz

High 14, 62, 64, 80

HPPEMIT 144

- I -
I/O routines 80

Identifier notation 34

Implementation-class 45

Implicit 97

In 95

Inc 80, 95

Include 80

Include directive 33

Include paths 12

Included files 35

Indexed property 82

Indexer notation 82, 84

Inheritance 52

inherited 78

initialization 26, 87

Initialization lists 54

Initialization part 128

Initialize Variables 28

initializer_list 63

Initializing arrays 63

inline assembler 119

Inline assembler code 128

in-operator 74

Input options 11

Insert 34, 80

Installation 2

installation folder 2

IntDivide 95, 96

Interface 50, 61

Interface-class 45

IntToHex 34

IPointer 116

IPointer<T> class 137

IsContained 99

IsDelimiter 34

IsEmpty 34

IsLeadSurrogate 34

Isomorphic types 130

IsPathDelimiter 34

IsTrailSurrogate 34

- K -
Keyword 24

- L -
lambda expressions 104

Last error position 5

LastChar 34

LastDelimiter 34

Learning types and variables 5

LeftShift 95

Length 34, 62, 80

LessThan 95

LessThanOrEqual 95

Library 5

License 2

lifetime extension 106

LoadResourceString 72

LoadStr 34, 72

LoadString 34

Local function 79

Log panel 7

Log-file 36

LogicalAnd 95

LogicalNot 95

LogicalOr 95

LogicalXor 95, 96

Lookup algorithm 14

lookup order 71

Low 14, 62, 64, 80

LowerCase 34

LPWSTR parameter 134

- M -
-m 41

Management 36, 41

Mangement 41

MAXIDX 65

MAXIDX(x) 62

Memory management 14

Message directive 18

Method pointers 93

method reference 104, 107

Missing constructor 56

Index 151

© 2020 Dr. Detlef Meyer-Eltz

mod 95

module definition file 5

Modulus 95

MSWINDOWS 4

Multiply 95

- N -
N:1 36

N:N 36

Names of helping variables 24

namespace 14, 71

Negative 95

Nested classes 103

Nested functions 128

Nested routines 79

New 80

New features 93

NODEFINE 28, 145

NOINCLUDE 145

not 95

Notation 22

NotEqual 95

- O -
object 66

octothorpe 29

Odd 14

Open array 64, 78

Operator 73

operator overloading 95

operator precedence 73

Operators 73

Options 10

or 73, 95

Order of lookup 71

Other compiler 4, 24, 62, 82

out parameters 76

Output options 29

overloading binary operators 96

overloading conversion operators 97

overloading unary operators 97

Overwriting "System.pas" 14

- P -
-p 41

P/Invoke 129

PAnsiChar 80

Parameter types 76

-pause 41

PChar 118

PChar class 137

PInvoke 129, 144

placeholder 105

plain old data types 80

Platform invocation services 129

Platform invoke 129

POD types 80

Pointer class 137

Pointer<T> 117

Pointer<T> class 137

Pointers 115

Pos 34, 80

Positive 95

PP-button 5

precedence of operators 73

Pred 14

Prefix 24

Preprocessed code 4

Preprocessor 5, 33, 34

pre-processor can't evaluate 33

Pretranslated C# code 136

Pretranslator 33

Pretty-printer 145

Preview of the target files 39

printf 34

procedure 78

Procedures 75

Processor options 17

professional Version 5, 7, 41

program ID 2

Project file 10

property 24, 82

PUREPASCAL 15, 18, 119

- R -
-r 41

Range 69

Delphi2C#152

© 2020 Dr. Detlef Meyer-Eltz

Read 82, 91

Read procedure 81

Reading and Writing 91

ReadLn 91

ReadLn procedure 81

ReadProperty 82, 84

ReallocMem 14, 76

ReallocMemory 76

Record 50, 51

record helper 100

ref 76

Refactoring 29

RefCount 34

reference to a method 104

Refresh 39

RegisterComponents 80

Registration 2

Rename 91

Reset 91

resource string 72

Result 75

Results 40

return-statement 75

Rewrite 91

RightShift 95

Round 95, 99

Routines 75

runtime_error 60

- S -
-s 41

scope 71

Search path to the source files 13

Search path to the VCL/RTL 13

Selecting source files 38

Service 146

Set 68, 70

Set class 70, 74

SetLastError 130

SetLength 34, 80

shl 95

shr 95

Simple substitutions 44

Single characters 44

Size of an array 62

size_t 25

sprintf 34

Start a translation 40

Statements 85

Static array 62

Static array parameter 65

static class method 28

std::bind 105

std::bind1st 93

std::function 93

std::mem_fun 93

std::runtime_error 60

std::vector 62

stdexcept 60

Stop on message directive 18

stop variable 28

Str procedure 81

Strarting the translation 5

String constant 44

string parameter 78

String type 4

String; 34

StringOfChar 34

StructLayout 51

Substitution in the translator 24

Substitution of the preprocessor 22

Substitution options 19

Substitution table 22

SubString 34, 80

Subtract 95

Succ 14

swap 34

symbol lookup 71

Synchronize 118

Synchronizing Delphi and C# code 136

System namespace 47

System unit 4

System.cs 136, 137

System.pas 4, 14, 136

System::Set 24, 70

SystemClass 47

Sysutils unit 4

- T -
-t 41

t_str 34

Tamas Demjen 93

Target file or folder 38

T-button 5

Index 153

© 2020 Dr. Detlef Meyer-Eltz

TClass 87, 88

TD2CObject 56

temporary file 40

Temporary variables 78

Text 91

TextFile 91

TextTransformer 146

TFoo<int>* FFoo1;

TBaz::TQux<int>* FBazQux1; 110

TBaz::TQux<T>* FBazQux2; 110

TFoo<int>::TBar* FFooBar1; 110

TFoo<T>* FFoo2; 110

TFoo<T>::TBar* FFooBar2; 110

this ref 101

ThreadStatic 72

threadvar 72

ThrowAbstractError 88

ThrowNoDefaultConstructorError 88

TMetaClass 87, 88

TObject 14, 52, 56

ToDouble 34

ToInt 34

ToIntDef 34

Tokens 43

Tool bar 5

Translation 33

Translation options 4, 10, 36

Translation service 146

Translator 5

Treat typed constants as non-typed constants 26

Trim 34

TrimLeft 34

TrimRight 34

Trunc 95, 99

TSet 24, 70

ttm 41

Tuning options 26

TVarRec 66

Type options 24

typed constant 26

Type-map 25

Types 49

- U -
unary operator 97

unboxing 66

Unicode source file 94

Unification 18

Unification of notations 34

Unique 34

Unit frame 5

Unit scope name 95

Unit scope names 13

UniversalIndentGUI 145

Unknown architecture 18

Unknown platform 18

untyped parameters 76

UpperCase 34

Use "stop" variable in for-loop 26

User options 9

Uses clauses 46

- V -
var 76

variable binding 106

variable parameters 76

Variables 71

Variant 51

Variant types 128

VCL 35

VCL-functions 80

vector 62

Verbose option 29

virtual class method 28

Virtual class methods as statiic 28

virtual constructor 88

Virtual constructors 56

Visibility 61

vprintf 34

- W -
w_str 34

Width 81

Win64 16

Winapi.Windows 129

Window position 9

Window size 9

Windows 80

Windows API 144

Windows interfaces 144

Windows.pas 16

with-statement 86

Delphi2C#154

© 2020 Dr. Detlef Meyer-Eltz

Write 82, 91

Write procedure 81

WriteLn 91

WriteLn procedure 81

WriteProperty 82, 84

- X -
xor 95

- Z -
ZEROBASEDSTRING 128

	Introduction
	Installation
	Registration
	How to start
	User interface
	Windows
	Log panel
	User options
	Window positions
	Customization

	Translation options
	Input options
	Search paths
	Paths to the VCL/RTL
	Paths to the source files

	Unit scope names
	Extended "System.pas"
	Definitions
	Windows.pas

	Processor options
	Unification of CSHARP-sections
	Stop on message directive

	Substitution options
	List of identifiers
	Fixed identifiers

	Substitutions in the preprocessor
	Substitutions of the translator
	Prefixes for properties

	Type options
	Type-map
	Meta capabilities

	Tuning options
	Special treatment of some VCL functions
	Use stop-variable in for-loop
	Initialize Variables
	Try to make const correct
	Apply EXTERNALSYM directive
	Apply NODEFINE directive
	Virtual class methods as static methods

	Output options
	Verbose

	Refactoring

	Translation
	Preprocessing
	Conditional compilation
	Unification of notations

	Scanning dependencies
	Writing the C++ code

	File manager
	Translation options
	Selecting source files
	Preview of the target files
	Starting the translation
	Results
	Management

	Use in command line mode
	Parameter

	What is translated
	Tokens
	Case sensitivity
	Ampersand
	Simple substitutions
	String constants and single characters

	File layout
	Uses clauses
	System Namespace
	Comments

	Types
	Records, Classes, Interfaces
	Record
	Variant parts in records

	Class
	Ancestors
	Constructors
	Constructor of the base class
	Initialization lists
	Addition of missing constructors
	Virtual constructors
	Problems with constructors

	Destructors
	class methods
	non virtual class methods
	virtual class methods
	Self instance

	abstract methods
	Visibility of class members
	Creation of instances of classes

	Interfaces

	Arrays
	Static arrays
	Dynamic arrays
	Array indices
	Initializing arrays
	Array parameters
	Open array parameters
	Static array parameter
	Dynamic array parameter
	array of const
	Array of const vs. set

	Enumerated types
	Ranges
	Sets
	Order of lookup

	Variables
	threadvars
	Resource strings

	Operators
	boolean vs. bitwise operators
	operator precedence
	in-operator

	Assignments
	Explicit casts

	Routines
	Procedures and functions
	Declaration and definition
	Parameter types
	Temporary variables
	Calls of inherited procedures and functions
	Nested routines

	Special RTL/VCL-functions
	I/O routines
	Read(Ln)/Write(Ln) routines
	Formatting parameters

	Properties
	Field properties
	Indexed properties
	Default array-property

	Statements
	for loop's
	for-in loop

	with-statements
	finally
	Initialization/Finalization

	class-reference type
	ClassRef
	ExceptionRef

	Reading and Writing
	Method pointers

	New features since Delphi 7
	Unicode
	Unit scope names
	Operator Overloading
	binary operators
	unary operators
	conversion operators
	more operators

	Class helpers
	this ref

	Class-like records
	Nested classes
	Anonymous Methods
	Assignment to a method reference
	Assignment to a method
	Using anonymous methods
	Variable binding
	Use as events

	Generics
	Declaration
	Nested types
	Base types
	Procedural types
	Paremeterized methods

	What is partially translated
	Pointers
	IPointer
	Pointer
	Pointer<T>
	PChar

	inline assembler
	const-correctness

	Unit Tests
	Format
	TDictionary
	TStringList

	What is not translated
	PInvoke
	DllImport
	SetLastError
	Common datatypes
	Array size attribute
	Adapter functions
	Retrieve a string
	API callback

	Pretranslated C# code
	Delphi RTL/VCL
	DelphiSets.cs
	System.cs

	Preparing Delphi code
	Bugs in the Delphi RTL/VCL
	Frequent re-translation
	Comments (*#_ ... _#*)
	Predefined identifier CSHARP

	Delphi directives to support C++Builder
	$HPPEMIT
	$EXTERNALSYM
	$NODEFINE
	$NOINCLUDE

	Formatting
	DelphiC# versus Delphi2Cpp
	TextTransformer
	Service

