
© 2024 Dr. Detlef Meyer-Eltz

Aurora2Cpp

Aurora2Cpp2

© 2024 Dr. Detlef Meyer-Eltz

1 Introduction

Aurora2Cpp is an uncoupling of Delphi2Cpp 2.x *). While the latter program can convert all features of
the current Delphi to C++, the cheaper Aurora2Cpp is limited to the features of Delphi 7 (codename
Aurora). Version 1 of Delphi2Cpp was also limited to Delphi 7 code, but also was limited to C++98 as
the target language. In contrast to this older version, Aurora2Cpp also uses the new features of C++11
and later to improve the translation results. In addition, slightly modified Delphi 7 RTL source code **)
is used when translating the Delphi code. This way you get C++ code with the same namespace
conventions as at the current state of Delphi and the C++Builder.

Attention: A manual post-processing of the produced code still will be required, though it is aim of the
program to keep the amount of the post-processing as small as possible. Some principle flaws are
listed here.

*) Please apologize that due to this origin, the name Delphi2Cpp appears in some places in this help
and in the program interface, where Aurora2Cpp should be better. BTW: In this help, names that
should appear in quotation marks are written in italics instead.
**) Due to copyright, this code, as well as the translated code of the Delphi 7 RTL, will only be
delivered to customers who provide proof that they have a legitimate license for Delphi 7.

Availability

The actual version of Aurora2Cpp and the additional code can be obtained by use of the contact
information at the TextTransformer websites:

https://www.TextTransformer.com

https://www.TextTransformer.de

2 Installation

The installation is done by the installer Aurora2CppInstall.exe. All files for projects, examples, source
code etc.are copied into the chosen installation directory.

The default path is a sub-folder Aurora2Cpp in the user documents folder, like:

C:\Users\User\Documents\Aurora2Cpp

where "User" is your special Windows user name.

Regardless of the path, that you chose for the installation, the license file Aurora2CppLic.dat will be
written at that default path.

The Aurora2Cpp folder has following structure:

+ - - - d 2 c _ c b
+ - - - d 2 c _ v c
+- - -Examples
¦ +---Console

Installation 3

© 2024 Dr. Detlef Meyer-Eltz

¦ ¦ +---Console
¦ ¦ +---ConsoleDemo
¦ ¦ +---ConsoleWorking
¦ +---Tetris
+- - -Pro jec ts
+ - - - S o u r c e
¦ +---Rtl
¦ +---Common
¦ +---Sys
¦ +---Win
+---SourceWorking
 +---Common
 +---Sys
 +---Win

In d2c_cb and d2c_vc is helping code for use with C++Builder and Visual C++ respectively.
The Projects folder contains some project files. They are based on the existing folder structure
The Examples folder contains a few example applications translated with Aurora2Cpp.

The part shaded gray contains files that are not installed automatically by default. Due to the copyright
of the Delphi RTL code, the prepared Delphi code and the translated code can only be delivered to
customers who provide proof that they have a legitimate license for Delphi. To get the code, please
contact me.Aurora2CppInstall.exe.

3 Examples

There are two examples installed for translating Delphi code for C++Builder

- Tetris
- SyneditDemo

and another for translating for other compilers.

- Console

A free version of the helper code for C++Builder is located in the directory

- d2c_cb

3.1 Tetris

The code of the Tetris example was taken from a link, which doesn't exist anymore (http://delphi.about.
com/od/gameprogramming/ss/tetris.htm).

Tetris is a simple VCL application that is translated error-free by Delphi2Cpp. This example also
demonstrates the MainFormExchange tool, which can be used to create the C++ application in the
same directory where the Delphi code is located.

Aurora2Cpp4

© 2024 Dr. Detlef Meyer-Eltz

3.2 SyneditDemo

not available for Aurora2Cpp

3.3 ConsoleDemo

ConsoleDemo example is a small program by Rudy Velthuis:

http://rvelthuis.de/programs/console.html

It is translated here for Visual C++. The installed folders have following content:

Folder Content
Console Delphi source files
ConsoleDemo Visual Studio C++ project
ConsoleWorkin
g

post-processed C++ target files

ConsoleGenerat
ed

C++ target files as generated by Aurora2Cpp

The ConsoleGenerated folder marked in gray does not initially exist after installing Aurora2Cpp. It is
created automatically when the batch file Console.bat is started in the Projects folder.

Console.bat consists in two lines:

"C:\Program Files (x86)\Aurora2Cpp\Aurora2Cpp.exe" -p Console.prj -s ..\Console*.pas;*.dpr -t ..
\ConsoleGenerated
Pause

It starts Aurora2Cpp.exe: The Console.prj parameter refers to a project file that is also located in the
Projects directory.
"..\Console*.pas;*.dpr" specifies the Delphi source files and "..\ConsoleGenerated" specifies the folder
into which the generated C++ target files are written. The complete list of possible command line
parameters can be found here.

The Console program makes extensive use of Windows API functions. Aurora2Cpp cannot completely
translate this back to C++. Therefore, the automatically generated code must be manually post-
processed in order to be able to run it in Visual Studio. The post-processed code is located in the
ConsoleWorking directory. Due to their parallel location, the two directories can be easily compared.
There are some type refactorings defined in Console.prj. Without them, the manual post-processing
effort would be even greater.

The code for the ConsoleDemo assumes that the translated RTL code is in the SourceWorking
directory. If it is somewhere else, ConsoleDemo.vcxproj must be adjusted accordingly.

4 Registration

If you have bought a license of Aurora2Cpp, you will get a link to a version of the program, which
you can register.

Registration 5

© 2024 Dr. Detlef Meyer-Eltz

The registration of Aurora2Cpp, i.e. the permanent activation of the features, has to be done by the
menu: Help->Registration. Following dialog:

Before you can get a key for the registration, you will have to open this dialog in the unregistered
program. There you will see the hardwar ID,which is shown in the dialog instead of
"xxxx-xxxx-xxxx-xxxx-xxxx-xxxx-xxxx-xxxx". The hardware ID is specific for your hardware
configuration. It's also called the machines fingerprint. This ID together with the user name (at least
eight characters) and a company name is needed to create the key for the registration. The program
ID is copied into the clipboard if you click the button at the right. You either will have to enter these
three values into an online form or send them to the manufacturer.

When you have payed for the program, you will get the key via mail. User name, Company and the
key then have to be copied unchanged from the e-mail into the corresponding fields of the dialog.After
a click on the Register button , the program will be closed and restarted automatically.. A license file
Aurora2CppLic.dat is created now in the user documents Aurora2Cpp folder.

If the program is registered already the Register button will not be shown any more.

Aurora2Cpp6

© 2024 Dr. Detlef Meyer-Eltz

5 How to start

You will get good C++ translations of your Delphi code only, if you make the correct settings in dialog

for the translation options, which can be shown by the button . There are two main decisions to
make.

1. C++ Builder or other compiler

The translation result depends on the C++ compiler you use. The main difference is between the C+
+Builder and all other compilers. C++-Builder has it's own C++ version of the Delphi RTL/VCL and
Aurora2Cpp tries to optimize the translated code to work together with these libraries. So, depending
on the used compiler the desired string type also has to be be chosen. C++ Builder has classes for
AnsiStrings and WideStrings, which are very similar to the original Delphi types. For other compilers it
is recommended to use std::string and std::wstring instead, if you don't want to write your own Delphi
like string classes.

2. Choosing the correct source for the RTL/VCL:

Aurora2Cpp has to know the types and signatures of procedures and functions in your Delphi source
code to make a correct translation. That's no problem as far as these information stems from your own
source code. You simply have to set the paths to your source code at the in the options dialog.
But all Delphi code implicitly also includes the System unit and most Delphi code uses at least the
Sysutils unit too. Already translated C++ code for these both units is part of the Aurora2Cpp
installation. In the same folder there are pas-files with the Delphi interface parts of these units. If no
other units from the Delphi RTL/VCL are used in your code, you will get the best translation results, if
you select the path to these pas-files as search path for the files not to convert.
Mostly your code will depend on more units of the Delphi RTL/VCL. If you are using Aurora2Cpp for
the first time and you are curious to get some first results, you may select the paths to the original
Delphi RTL/VCL as search path for the files not to convert. But unfortunately the original Delphi source
code.has bugs and in longer term it is recommended, that you prepare a copy of Embarcadero's code.

If you make use of the original Delphi RTL/VCL, you should use also an "extended System.pas". This
file corrects and completes the original "System.pas".

3. Setting the correct definitions

If you have selected the search paths to the Delphi RTL/VCL, your code still might not be translated
correctly, if you haven't set the necessary definitions.
As default MSWINDOWS is.defined. If that would not be the case, even the original Sysutils.pas
cannot be parsed, because e.g. the following code, would not be valid:

function AdjustLineBreaks(const S: string; Style: TTextLineBreakStyle =
 {$IFDEF LINUX} tlbsLF {$ENDIF}
 {$IFDEF MSWINDOWS} tlbsCRLF {$ENDIF}): string;

4. Preparation of the RTL/VCL code

It might be necessary to define some substitutions of ampersand-expressions and unfortunately the

How to start 7

© 2024 Dr. Detlef Meyer-Eltz

RTL/VCL code has flaws, which have to be corrected, if it has to be used.

5. Creating a dummy application or make a complete translation

Normally a complete translation will be made. But if your code is incomplete, you might chose to create
a dummy application at first.

6. Starting the translation

After you have set your translation options you can save them by the button and open the first file to

to translate with the button .. The source file is shown in the left window of the user interface. You
can start the translation with the button . As soon as it is finished the C++ header and the C++
source code are shown in the windows on the right side of the application. Also the content on the left
side might have changed: now the preprocessed Delphi code is shown there. You can save the

translated code by the button .

6 User interface

There are three windows in the user interface:

1. the left window shows the Delphi source code or the pre-processed code, after a translation has
been executed.

2. the upper window on the right side shows the generated C++ header code
3. the lower window on the right side shows the generated C++ source code

Aurora2Cpp8

© 2024 Dr. Detlef Meyer-Eltz

The most important actions can be started from the toolbar
The log panel shows which files were converted with or without errors.

6.1 Toolbar

The main window of the Aurora2Cpp application consists in a menu, a tool bar and in three windows
for the input and for the output.

--

By this button the texts in all windows is cleared and then you are asked, whether the type information
that was learned from the previous translations shall be cleared too.

--

This button does the same as the previous and than inserts the frame for a new unit. So you can
quickly write some code snippets into the frame, to translate them.

--

Switch between unit and form.

--

You can load a Delphi source file into the first window by CTRL+O or by the button:

--

Before you start the translation, you can set some options in the according dialog, which is shown by
the button

--

Options can be saved and reloaded by the buttons

--

User interface 9

© 2024 Dr. Detlef Meyer-Eltz

There are two buttons which can have two states each If the PP-button is down, the preprocessor is
enabled, if the PP-button is up, the preprocessor is disabled. If the T-button is down, the translator is
enabled, if the T-button is up, the translator is disabled.

You can disable the translator either to check the preprocessing of a source file. But the feature to
disable the translator mainly has been implemented, to give you the possibility to create a
preprocessed copy of the VCL or your Delphi source files, by means of the transaltion manager. By
use of preprocessed files the repeated translation can be accelerated. If you chose the search paths
to the directories with the preprocessed VCL and you also select your preprocessed Delphi sources,
only enabling of the translator suffices for translation and the time for the pre-processing is saved. If
parts of your files aren't preprocessed, you have to enable both, the preprocessor and the translator.
This will still be faster than don't to use preprocessed files, because the preprocessor hardly needs
time to preprocess files again, which already were preprocessed.
The initial state of these buttons is saved with the options.
The overwritten System.pas gets always preprocessed, even if the button is disabled.

--

The translation is started with F9 or

--

The dialog for the translation of groups of files is shown by the button:

--

The next button is used to start a recursive translation:

--

All information that once has been obtained from the interface parts of the processed files is
remembered for the translation of further files. Types and variables can be cleared by the button:

--

Shows the position, where the parser found an error in the Delphi code.

--

The "new identifiers" button is only shown, if the deprecated option to unify all identifier cases is
activated. Then, when the pre-processor found new identifiers, their notations can be saved via the
tool button:

Aurora2Cpp10

© 2024 Dr. Detlef Meyer-Eltz

The identifiers are written into a text file, which can be included then into the project options.

--

Finally you can save the generated C++ code by CTRL+S or by

At first a file dialog for the header appears and as soon as you have saved the header file the dialog
appears again for the C++ source file. If the translated file is a library, the file dialog appears for a third
time, to save a module definition file.

--

Shows a dialog to find expressions in the text of the actual window.

--

This help is shown with F1 or by the button

6.2 Additional menu items

All toolbar items can also be accessed via the menu. But there are some additional features that are
only accessible via the menu.

these menu items are only activated after code has already been translated

Save log file

The contents of the log tree generated during translation can be saved to a file using this menu entry.

Save list of missing units

The files included in the translated code that Delphi2Cpp could not find can be saved to a file using
this menu entry.

Save new macros

When preprocessing the Delphi code, additional macros can be defined using the DEFINE directive
{$DEFINE name}. The list of these new macros can be saved in a file here.

User interface 11

© 2024 Dr. Detlef Meyer-Eltz

6.3 Log panel

The Log panel displays logging messages and errors.

The kind of a message is marked by the colored boxes, which are displayed to the left of the node’s
labels:

neutral message

starting the translation without errors

results of the preprocessor

including another file

success

warning

error

missing file

subsequent error (due to previous error or missing file)

The picture above is a typical example:
The first line occurs, because no definitions are set in the options.
The red box in front of the filename in the second line means, that there were errors when the file was
processed. The cause of the error is marked by the innermost error SysUtils: unexpected token. This
error is propagated to it's parent nodes.

When SysUtils.pas is opened and the translation is started, it stops at

function AdjustLineBreaks(const S: string; Style: TTextLineBreakStyle =
): string;

This is a wrong result of the preprocessor. You can reload the original SysUtils.pas and find the
position of TTextLineBreakStyle:

function AdjustLineBreaks(const S: string; Style: TTextLineBreakStyle =
 {$IFDEF LINUX} tlbsLF {$ENDIF}

Aurora2Cpp12

© 2024 Dr. Detlef Meyer-Eltz

 {$IFDEF MSWINDOWS} tlbsCRLF {$ENDIF}): string;

Because neither LINUX nor MSWINDOWS had been defined, after preprocessing there is no value
assigned to TTextLineBreakStyle.

--

In the next image you can see an example of the Log panel after use of the transaltion manager, The
results of all files are listed in the tree:

6.4 User options

User options can be accessed in the Options menu at the item "Show user options". These options are
saved in the Windows registry and thus persist between different sessions with Aurora2Cpp.

Window positions
Customization

6.4.1 Window positions

User interface 13

© 2024 Dr. Detlef Meyer-Eltz

Size positions and state of the main window and the transaltion manager can be stored into the
registry and restored from the registry. You can decide to store the values once and than to deactivate
a new storage. So the windows will at a new start of Aurora2Cpp always have the properties that were
stored, even if they were change in the previous session.

6.4.2 Customization

6.5 Translation options

The options dialog can be opened by the blue buttons in the toolbar or via the options menu. there are
eight groups of options and three buttons to open additional special option dialogs:

Aurora2Cpp14

© 2024 Dr. Detlef Meyer-Eltz

Input options
Processor options
Substitution options
Type options
Namespace options
Tuning options
Target options
Output options

DFM Conversion
Refactoring
Start parameter

You can save and reload the translation options as a project file (*.prj).

6.5.1 Input options

The input options are part of the translation options. They specify all contents which either shall be
translated or which are required for a translation.

User interface 15

© 2024 Dr. Detlef Meyer-Eltz

Search paths
Definitions
Unit Scope Names
Own or extended system.pas
RTL/VCL cover file

6.5.1.1 Search paths

For a correct translation of a Delphi source file the type information of used constants, variables,
functions etc.is necessary. If this information is not contained in the actual file, the other used files
have to be scanned. As far as these files are in the folder of the source file, they will be found
automatically. The folders for other used files have to be specified explicitly - this also applies to files in
subdirectories. You can select these folders at the input options of the options dialog.

Aurora2Cpp16

© 2024 Dr. Detlef Meyer-Eltz

These directories are separated into

1. the folders of files, which really shall be translated.
2. the folders of files for which only the interfaces are needed
3. an optional folder with file copies from 1., which shall not be translated
4. there also are some special case like the system unit

The folders for 1. and 2. are to be set in a dialog like the one below:

As soon as you have clicked at the "-Button and select a folder, you have the option either to add
this folder only or this directory recursively together with all of it's sub-directories. Once a folder is in
the list the "Add"- and the "Add recursive"-button will be disabled for this item. If you want to add sub-
directories of an existing item recursively, you first have to delete the item from the list. This behavior
prevents duplicates items in the list.

User interface 17

© 2024 Dr. Detlef Meyer-Eltz

6.5.1.1.1 Paths to the source files

The paths to the folders of the files, which shall be translated or might be translated in the case of a
recursive translation, can be set by a second dialog, analogously the paths to the RTL/VCL.

6.5.1.1.2 Paths to the VCL\RTL

If you use C++ Builder, there is already a converted version of the RTL/VCL. So you don't have to
translate the according files. Nevertheless the translator has to know the interface parts of the original
Delphi RTL/VCL to make a correct translation of the files, which depend on these libraries. So you
have to set the folders of the original or - better - of the preprocessed RTL/VCL.These path are set as
part of the input options.

There might be other files, which don't have to be converted, perhaps because you already have
translated them. The paths to those files should be set here too.

The paths of the RTL/VCL may look like:

C:\Program Files (x86)\CodeGear\RAD Studio\6.0\source\Win32\vcl
C:\Program Files (x86)\CodeGear\RAD Studio\6.0\source\Win32\rtl\common
C:\Program Files (x86)\CodeGear\RAD Studio\6.0\source\Win32\rtl\sys
C:\Program Files (x86)\CodeGear\RAD Studio\6.0\source\Win32\rtl\win

If C++Builder is the target compiler, the files from these folders are included as hpp-Files. E.g.

#include <System.Classes.hpp>
#include "SynEdit.hpp"

In this case the installed SynEdit components are used. If SynEdit.pas would be translated itself, it's
path would have to be set in the paths of the source files and the header would be included as:

#include "SynEdit.h"

For other compilers as C++Builder only the .h-extension is used.

6.5.1.1.3 Files, not to translate

In rare cases it may be desirable to exclude individual files from the translation that are located in the
folders with files to be translated. These files may be copied into a common folder, whose location can
be set here. Non-translatable form files would be a possible examples of such files to be excluded.
Another example would be files for which there is already a manual translation.

Aurora2Cpp18

© 2024 Dr. Detlef Meyer-Eltz

6.5.1.1.4 Special headers

Aurora2Cpp tries to parse System.pas always in addition to the other included files. System.pas
contains the declaration of TObject and many other frequently used functions, procedures, records
and classes.
If System.pas cannot be found in the specified serarch paths, a part of the content of this file is
simulated.
You also can include your own extended System.pas.

The following concerns translation of old Delphi code only,

In old versions of Turbo Pascal / Delphi the units WinProcs and WinTypes were used. In Delphi,
these two units were merged into the single unit Windows. If these files are not found Aurora2Cpp
substitutes WinProcs and WinTypes by Windows, so that "# include <Windows.hpp>" will appear in the
translated code. In addition, this file is interpreted a little differently in a C-like manner than the other
pas files: structures are passed here as parameter to a function by the address of the structure and
not as reference as in the other files.

foo(&StructureType) instead of foo(StructureType)

The unit BDE is used in database units, but there is no BDE.pas. The Delphi compiler doesn't need
this file because there is a BDE.dcu . The interface is declared in the file BDE.int instead.Aurora2Cpp
also will look for BDE.int in the paths to the VCL/RTL The folder for this file has to be set there, e.g. C+
+Builder6/Doc.

The file dsgnintf.pas is called designintf.pas in the C++Builder VCL.

The namespace Windows is omitted at the translation since the corresponding functions mostly don't
exist there in the C++Builder counterpart. (Also "System." in front of the Move function is left out.)

The file ShellApi.pas is treated in the same C-like manner as Window.pas.

Files like Windows.pas and ShellApi.pas are translations of the Windows files Windows.h and
ShellApi.h to Delphi. They should not be translated back to C++; the original files should be used
instead.

If you have difficulties with your VCL, please contact the author.

6.5.1.2 Definitions

Delphi code often contains directives for conditional compilation of parts of the source text.
Aurora2Cpp evaluates such directives too. You can set the definitions in the option dialog

User interface 19

© 2024 Dr. Detlef Meyer-Eltz

There are limitations for the evaluation of such expressions.

If code of the Delphi RTL shall be translated, it is recommended to set PUREPASCAL defined, to
avoid problems with inline assembler code.

Incomplete definition can lead to hard to find bugs, as for example in System.Windows.pas

6.5.1.2.1 Windows.pas

If there is no Definition set either of CPUX86 or of Win64 the Windows.pas cannot be parsed. That's
because of the following code:

function InterlockedBitTestAndComplement(Base: PInteger; Offset: Integer): ByteBool;
{$IFDEF CPUX86}
...
{$ENDIF CPUX86}
{$IFDEF Win64}
...
{$ENDIF CPUX64}

There will remain a function declaration only and the parser will regard all following functions as sub-
functions to this declaration. So nearly the whole file gets parsed, before the missing function body is

Aurora2Cpp20

© 2024 Dr. Detlef Meyer-Eltz

discovered. This bug is very hard to find.

6.5.1.3 Unit scope names

A list of unit scope names, which help to find used file, can be entered in the following dialog, which
can be opened at the Input-Options.

These identifiers are prefixes in dotted unit names. E.g. System is the prefix of the unit System.
Classes whose file is System.Classes.pas. If a unit uses a file it suffices to indicate the name without
the prefix, if the prefix is in the list of Unit scope names. At the example above:

uses Classes;

instead of

uses System.Classes;

So, if System is in the list of unit scope names, Aurora2Cpp nevertheless will lookup the file System.
Classes.pas.

User interface 21

© 2024 Dr. Detlef Meyer-Eltz

6.5.1.4 Extended "System.pas"

"System.pas" is a source file of special importance in Delphi projects.Fundamental type definitions,
procedures and functions are defined in the System unit, which is implicitly included in every unit. For
example TObject is defined there. There are other intrinsic definitions like the Read, Write or Str
function, which are accessible in each unit too. These intrinsic function are built into the Delphi
compiler. Aurora2Cpp must know the signatures of such intrinsic functions and tries to find them in
the System.pas. So the original incomplete System.pas either has to be replaced by an extended copy
or a the original System.pas has to be supplemented by an additional source file.

In the options dialog you can set the name of such an additional System.pas extension file.

Such an individual System.pas called d2c_system.pas is in the Source folder of the Aurora2Cpp
installation. No matter which name the file has, it internally is renamed to "d2c_system". With this
name it is shown in the log-tree.

If an individual System.pas is used, the specially treated RTL/VCL functions and some compile time
functions (Abs, High, Low, Odd, Pred, Succ) might have to be defined in this file for types, that cannot
be handled by the built-in translation alternatives. Such a case is the incrementation of values of
enumerated types. Of course, these definitions are only needed, if such cases really appear in the
source code.

Some examples are explained in the following topics:

procedure SetString
Memory management
procedures Inc and Dec

The overwritten System.pas gets always preprocessed, even if the option to pre-process files is
disabled for all other files.
Because this file is very basic, it may not use other files.

Lookup algorithm

Aurora2Cpp looks up system types and functions etc. in following order::

1. Aurora2Cpp will look for declarations at first in your own System.pas, if it exists.
2. If the declaration is not found there, Aurora2Cpp will look in the System.pas of your Delphi

installation, if the path to this file is set in the options.
3. If neither an own System.pas exists nor the path to the original System.pas is set, Aurora2Cpp

simulates the most important parts of this file.

Mostly Aurora2Cpp cannot distinguish different elements with the same name. Aurora2Cpp takes just
the first declaration it finds. If there are several functions with the same name the translator tries to
match the declaration found first.

Aurora2Cpp22

© 2024 Dr. Detlef Meyer-Eltz

6.5.1.4.1 SetString

SetString doesn't exist in the C++Builder VCL. If this function is used in the translated code, an
implementation of one's own is required. According to the Delphi help the declaration is:

procedure SetString(var s: string; buffer: PChar; len: Integer);

Also according to the Delphi help this declaration should be found in the System.pas. But only the
following exists there:

procedure _SetString(s: PShortString; buffer: PChar; len: Byte);

Aurora2Cpp uses such declarations - by removing the underscore - if nothing else is found. Indeed,
just for the SetString function. Aurora2Cpp corrects this declaration internally. But with the definition in
d2c_system.pas, you don't need to write your own C++ implementation.

In d2c_system.pas there are three declarations of SetString.

procedure SetString(var S: AnsiString; Buffer: PChar; Len: Integer); overload;
procedure SetString(var S: WideString; Buffer: PWideChar; Len: Integer); overload;
procedure SetString(var S: ShortString; Buffer: PChar; Len: Integer); overload;

When the Aurora2Cpp translator finds a call of SetString, it cannot distinguish between these
declarations and will take just the first one it finds. That doesn't matter, because all three declarations
have at first a variable string parameter, then a character pointer and then an integer parameter. This
vague signature is all, that Aurora2Cpp needs. But later the C++ compiler can chose the right
alternative for the according string type.

The implementations of the procedures for AnsiStrings and WideStrings are quite trivial More
interesting is the implementation for ShortStrings:

procedure SetString(var S: AnsiString; Buffer: PChar; Len: Integer);
begin
 (*_
 S[0] = Len;
 if (Buffer != NULL)

 memmove(&S[1], Buffer, Len); _*)
end;

The translation with Aurora2Cpp results in:

void __fastcall SetString(AnsiString& S, char* Buffer, int Len)
{
 S[0] = Len;
 if (Buffer != NULL)

 memmove(&S[1], Buffer, Len);
}

User interface 23

© 2024 Dr. Detlef Meyer-Eltz

6.5.1.4.2 Memory management

The function for the memory management GetMem, ReallocMem and FreeMem are defined in
d2c_system.pas.

procedure GetMem(var P: Pointer; Size: Integer);
procedure FreeMem(var P: Pointer; Size: Integer = -1);
procedure ReallocMem(var P: Pointer; Size: Integer);

These functions are defined there by use of the C functions malloc, realloc and free.
It is often warned against mixing malloc and new. (Aurora2Cpp translates the construction of VCL
classes with new.) But there is no danger, if both are used coherently, i.e. that memory that was
allocated with new is freed with delete and memory that was allocated with malloc. is freed with free.
Memory that was allocated with malloc can be reallocated, but a reallocation of memory that was
allocated with new is not possible. That's why it sometimes may be difficult to abstain from using
malloc.

As already explained for the procedure SetString, the translator needs the Delphi declarations to adapt
parameters accordingly. For the memory managing procedures there are additional implementations
inserted in the C++ code, which are made as templates. E.g.:

template <class T>
void GetMem(T*& P, int Size)
{
 P = (T*) malloc(Size);
}

The advantage is, that there will be no problems with type casts.

BTW: the original System.pas contains only the functions:

function _FreeMem(P: Pointer): Integer;
function _GetMem(Size: Integer): Pointer;
function _ReallocMem(var P: Pointer; NewSize: Integer): Pointer;

6.5.1.4.3 Inc and Dec

As for the procedures for memory management there are template functions for Inc and Dec, e.g.:

template <class T>
T Inc(T& xT)
{
 int t = (int) xT;
 t++;
 xT = (T) t;
 return xT;
}

For integer types Inc and Dec are converted automatically to the C++ incrementing and decrementing
operators. E.g.

Inc(i) -> i++

However in cases, where i is an enumerated type the operators cannot be used in C++. So the
translator lets a call like Inc(i) unchanged and the template function are called in C++. By the
temporary conversions of the enumerates types to integers the Inc and Dec functions will work for
enumerated types too.

Aurora2Cpp24

© 2024 Dr. Detlef Meyer-Eltz

6.5.1.5 RTL/VCL cover file

The Visual Component Library (VCL) is a Delphi library for an easy development of Windows user
interfaces (GUI). Thsi library exists in Delphi only. A translation to C++ might be possible, but would be
a very big task even with Delphi2C++, because the code of the VCL is a link to the Windows API and
Aurora2Cpp would have to know the exact specifications of this API to make a correct translations.
Much parts of the Many parts of the RTL are also hardly translatable.

The use of an RTL/VCL cover file allows to simulate code parts that are difficult to translate and then
to substitute them in C++. A very simple would be the following:

unit VclCover;

interface

//uses ...;

type

TCustomControl = class
public
 Width: Integer;
 Height: Integer;
 Left: Integer;
 Top: Integer;
end;

end.

If then the following code would have to be translated:

var
 Control : TCustomControl;
begin

 Control.With := ...

Delphi2C# would know by use of the cover file that on the right side of the assignment an integer is
expected. All symbols, that Delphi2C# tries to look up in files that are used for the translation, but are
not to be translated themselves, are tried to be looked up in the cover file first. If the symbol is found
there a further lookup isn't made.

6.5.2 Processor options

The processor options are part of the translation options and specify the kinds of processing during the
translation from Delphi to C++.

User interface 25

© 2024 Dr. Detlef Meyer-Eltz

When Delphi code is translated, normally the source at first is preprocessed to remove parts of the
code, which aren't defined. But it is possible too, to disable either the preprocessor or the Delphi-
translator. That can be done by the according buttons in the tool bar. The initial state of these buttons
after the options are loaded can be set here. When the Delphi-translator is enabled, also the DFM-
translator can be enabled or disabled. (If the Delphi-translator is disabled the check-box for the dfm-
translator vanishes, because the dfm files cannot be processed then.)

The overwritten System.pas gets always preprocessed, even if the option to do so is disabled.

Normally the learning option is enabled. So the variables and types of every interface are
remembered, once the interface was parsed and the interface has not to be processed again.
However, there are cases, that the definitions are not constant for all common interfaces. A definition
of a current file might enable or disable definitions of a common file. So the result of the conditional
compilation will change too and finally different types and variables might be declared of the same unit,
which is used in different other units. When the learning option is disabled, included units are
preprocessed for every new file again and the result will be correct for each file, but the total
processing time increases very much.

The option Unify notations in "CPP" sections determines the case sensitivity in "CPP"-sections.

The option Stop on message directive determine what happens, if a message directive would remain
in the pre-processed code.

Aurora2Cpp26

© 2024 Dr. Detlef Meyer-Eltz

6.5.2.1 Unification of CPP-sections

This option is part of the processor options. It determines how identifiers in "CPP"-sections are treated.
If the box is checked, the identifiers are unified as all other unifiers in the rest of the code to. If the box
is unchecked the identifiers will be written unchanged into the output.

6.5.2.2 Stop om message directive

This option is part of the processor options. If the is enabled the pre-processor will stop as soon as
such a message will remain in the code, that means, that the conditions for this code section are true.
It will not stop, if the conditions for the code section with the message aren't true.

Delphi message directive are used in most cases to indicate, that something is wrong in the code. A
typical example of such a directive is:

{$MESSAGE ERROR 'Unknown platform'}

If correct definitions are set, such messages normally will be part of code sections for which the
conditions are false.The option to stop on message directives therefore will not apply. But e.g. the
recommended PUREPASCAL definition is problematic. If it is defined.the definition of ASSEMBLER
should be avoided. But for example in the following code snippet there is no PUREPASCAL
alternative. Therefore the function definition would be reduced to a function declaration.

function Get8087CW: Word;
{$IF defined(CPUX86) and defined(ASSEMBLER)}
asm
 PUSH 0
 FNSTCW [ESP].Word
 POP EAX
end;
{$ELSEIF defined(CPUX64) and defined(ASSEMBLER)}
asm
 PUSH 0
 FNSTCW [RSP].Word
 POP RAX
end;
{$ELSE }
{$MESSAGE ERROR 'Unknown platform'}
{$ENDIF}

->

function Get8087CW: Word;
{$MESSAGE ERROR 'Unknown platform'}

If another function follows, Aurora2Cpp will regard it as a sub function of the remained function
declaration and the parser will not stop. The parsing error occurs at a much later position then and the
real cause of the error is difficult to find. If the option to stop on messages is enabled, the true error
position is set. Aurora2Cpp stops and the message is shown on the log-panel:

User interface 27

© 2024 Dr. Detlef Meyer-Eltz

On the other side, there are messages which you might want to ignore. In the following case
Aurora2Cpp isn't able to calculate the correct result of the condition:

 {$IF SizeOf(Extended) <> SizeOf(TExtended80Rec)}
 {$MESSAGE ERROR 'TExtended80Rec has incorrect size'}
 {$ENDIF }

The consequences of the option to stop on message directives depend on the level of the current file.
If this option is enabled and if this message appears in the actual file, the whole translation for this file
will be stopped. If the message appears in a dependant file, only the processing of that file will be
stopped and the message will be shown without stopping the translation of the actual file.

If the definitions cannot be changed such that the message directives disappear, it's the best to
prepare your Delphi source code accordingly.

6.5.3 Substitution options

The substitution options are part of the translation options and allow to edit lists of identifiers which are
used for different kinds of substitutions during the translation process.

Aurora2Cpp28

© 2024 Dr. Detlef Meyer-Eltz

There are two possibilities how the pre-processor can substitute identifiers.

· The identifiers are unified according to upper and lower case
· Identifiers can be substituted to different ones,

The pre-processor does its work, before the Delphi parser starts. Therefore, you have to take care,
that the pre-processor substitutions leave the Delphi code intact. On the contrary

· the substitutions by the translator are executed after the code already has been parsed.
· also some kinds of refactoring can be done now.

Substitutions of helper names are useful for C++Builder users to synchronize numbered helper names
for enumeration types in the C++ code of C++Builder on one side and of Aurora2Cpp on the other
side. For example System::Sysutils.hpp contains the following definition:

enum DECLSPEC_DENUM System_Sysutils__85 : unsigned char { rfReplaceAll, rfIgnoreCase };

but when Aurora2Cpp parses System.SysUtils.pas, it generates

enum SysutilsEnum__0 {rfReplaceAll, rfIgnoreCase };

With the option to substitute helper names, SysutilsEnum__0 automatically can be substituted by

User interface 29

© 2024 Dr. Detlef Meyer-Eltz

System_Sysutils__85.
.

If you create C++ code for other compiler than C++Builder all properties are replaced by pairs of
functions. You can change the prefixes for the function names here.

6.5.3.1 Unification of upper and lower case

In Delphi, identifier case sensitivity is not important, but in C++, it is. In Aurora2Cpp, prior to version
2.5.0, this issue was addressed by unifying the case of all identifiers, regardless of their possible
different declarations. However, as of version 2.5.0, this method is considered outdated. Now, all
identifiers are written to match their respective declarations. To preserve backward compatibility, the
old option is still available. It can be enabled via the checkbox 'Unify All Identifiers'.

The effect of this option is demonstrated using an example in the Case sensitivity section.

Some directives may have an impact on the requires notation.

There also are some fixed identifiers, which cannot be modified by the list of identifiers.

6.5.3.1.1 Preprocessor identifiers

The "Preprocessor identifiers" field on the substitution options displays the path to a simple text file
containing a list of identifiers. The "..." button on the right edge of the edit field opens a file selection
box, where you can select the file on the disk. The preprocessor takes the upper and lower case
defined in the list of identifiers as template for the capitalization of the according identifiers in the code.
If the path to the list is saved as part of the options, the list is loaded at the same time as the options
are loaded.

If the outdated option to unify all cases is enabled, then this list will be very large. It should then also
contain, for example, all identifiers from the interface sections of the RTL.
If, however, the preferred option is enabled, that the spelling of identifiers shall match the declaration
case, then replacements according to the list are rarely needed and the list will be very short.

Your can edit such a list in an external editor or even create such a list by hand Every line has to
consist in just one identifier. E.g.

...
SetLength
Setscrollinfo
SetSelection
...

If you change "Setscrollinfo" to "SetScrollInfo", all appearances of this identifier will be unified to the

Aurora2Cpp30

© 2024 Dr. Detlef Meyer-Eltz

second form.
If the same identifiers occurs more than one time in the list, the latest occurrence will be taken.

If you edit the list in an external editor, you have to reload the list by the button Reload identifiers,
otherwise the changes will not have an effect in the current session.

Tip:

If you have a second list whose spellings should replace those in the first, you can append the second
list to the first. If the first list is now used in the project options, the first spelling will be overwritten by
the second when the list is read in. The list can now be saved with the changed spellings sorted.

6.5.3.1.2 Match declaration case

Match declaration case is the default setting that is used, when the checkbox "Unify all cases" on the
substitution options page is disabled. This option determines how the problem is handled that in C++,
unlike Delphi, identifiers are case sensitive. The effect of this option is demonstrated using an example
in the Case sensitivity section.

The field Preprocessor identifers the path to a list of identifiers can be set and with the button "Reload
identifiers" the list can be reloaded, if the list has been edited manually in an external text editor,

6.5.3.1.3 Unify all cases

This option determines how the problem is handled that in C++, unlike Delphi, identifiers are case
sensitive. The effect of this option is demonstrated using an example in the Case sensitivity section. If
the option to unify all cases is enabled, an additional button "Save identifiers" appears on the
substitution options page, because the list might be changed during the translation process.

Whenever additional files are translated and new identifiers were found, you are asked to save them. If

User interface 31

© 2024 Dr. Detlef Meyer-Eltz

you accept, at first a dialog appears by which you can select a file for the list. If the path to the file is
different to the path which is set in the field Preprocessor identifers or if no path is set there at all, you
are asked whether you want to insert the new path into the options.

With the button "Reload identifiers" the list can be reloaded, if the list has been edited manually in an
external text editor,

The spelling of a small number of fixed identifiers cannot be changed by the identifier list.

6.5.3.1.3.1 Fixed identifiers

if the deprecated option to unify all cases is set, the notations of most identifiers can be determined by
the list of preprocessor identifiers. However the notations of following identifiers is fixed:

Char
String
break
continue

implicit
explicit
negative
positive
inc
dec
logicalnot
trunc
round
in
equal
notequal
greaterthan
greaterthanorequal
lessthan
lessthanorequal
add
subtract
multiply
divide
intdivide
modulus
logicalor
bitwiseor
logicalxor
bitwisexor
logicaland
bitwiseand
leftshift
rightshift

MinComp
MaxComp
NaN
Infinity
NegInfinity

Aurora2Cpp32

© 2024 Dr. Detlef Meyer-Eltz

Sum
SLICE
Winapi // minwindef.h: #define WINAPI __stdcall

6.5.3.2 Substitutions in the preprocessor

A substitution table for the preprocessor can be shown, if you click on the button "List of substitutions"
in the group-box for preprocessor substitutions.

If you click on the button, the following grid is shown.

User interface 33

© 2024 Dr. Detlef Meyer-Eltz

add a new row

remover the actual row

clear the whole table

In the first column the identifiers are listed, which shall be replaced by the preprocessor and in the
second column identifiers are listed, which are inserted in the code instead of the found identifiers of
the first column. The preprocessor recognizes text sections as identifiers, which start with a letter or a
underlined and on which an arbitrarily number of letters, numbers or underlines can follow; i.e. as well
the real Delphi identifiers as the Delphi keywords.

The substitution of identifiers during the pre-processing of the code can fulfill two purposes:

1. a desired notation of the identifiers can be forced.

The same purpose is accomplished by use of the list of identifiers.and this method should be preferred
normally. However the items of this list are overwritten by the items of the substitution table. This may
be a method to quickly check other notations.

2. completely other names can be assigned to certain identifiers.

So e.g., Delphi function names could be replaced by different names of equivalent C++ functions.

For example it is recommended to make such substitutions for ampersand-expressions.

6.5.3.3 Substitutions of the translator

Similar to the substitution table for the preprocessor there is a second substitution table for the
translator.

There are two differences to the substitutions, which are carried out by the preprocessor:

1. While the preprocessor cannot distinguish identifiers, which are keywords from other identifiers, the
translator does. Only the latter are substituted by the translator, i.e. the names for variables,
functions etc. Therefore, the translator can substitute such names, which are keywords in C++.
Without this substitution, there would be errors in the translated code. E.g.

double float; -> double float_value; .

Aurora2Cpp34

© 2024 Dr. Detlef Meyer-Eltz

2. The identifier is already recognized by the translator before the substitution takes place. Therefore it
can be substituted by something completely different, without affecting the translation process. E.g.

StringOfChar -> AnsiString::StringOfChar

Helper names

There is an additional map for the substitution of helper names which are created for the definition of
implicitly defined types, For example in System.SyUutils.hpp the following enum type is defined:

enum DECLSPEC_DENUM System_Sysutils__85 : unsigned char { rfReplaceAll, rfIgnoreCase };

When Aurora2Cpp parses System.SysUtils.pas, initially it cannot know this name and gives another
name to this type: SysutilsEnum__0.
The mapping between these two names can be defined in the helper substitution dialog as shown
below:

6.5.3.4 Prefixes for properties

If you create C++ code for another compiler than C++Builder all properties are replaced by pairs of
functions. You can change the prefixes for the function names at the substitution options.

User interface 35

© 2024 Dr. Detlef Meyer-Eltz

if the default prefixes ReadProperty and WriteProperty are left, then it is very unlikely that there will be
conflicts with existing names in the code.
Here the consequences of changing these prefixes are described

6.5.4 Type options

The type options are part of the translation options and specify how Delphi types are converted.

You have to chose how the string types AnsiString, WideString and String are translated.

 the insertion of macros to access runtime class information

d2c_config.h !!!

const int StringBaseIndex = 0;

Aurora2Cpp36

© 2024 Dr. Detlef Meyer-Eltz

6.5.4.1 String types

At the type options you can chose how the string types AnsiString, WideString and String are
translated.

If Delphi string is selected, the translated code will use classes for AnsiString, WideString and
UnicodeString. In C++Builder these classes are provided. If you chose this option for other compilers,
you have to create these classes yourself. They have to be 1 based and have to obey the
specifications from Embarcadero:

http://docwiki.embarcadero.com/RADStudio/Tokyo/en/String_Types_(Delphi)

If Standard string is selected, the following typedef's are needed:

typedef std::string AnsiString
typedef std::wstring WideString
typedef std::wstring UnicodeString

Delphi functions for strings will be converted to functions for AnsiString/UnicodeString or std::string/
std::wstring. Examples:

var
 s1, s2 : String;
begin
 Length(s1);
 SetLength(s1, 10);
 s1 := '12345678';
 s2 := copy(s1, 3, 4);
 Delete(s1, 3, 2);
 Pos(s1, s2);

->

 Delphi string Standard string

 s1.Length(); s1.size();
 s1.SetLength(10); s1.resize(10);
 s1 = L"12345678"; s1 = L"12345678";
 s2 = s1.SubString(3, 4); s2 = s1.substr(3-1, 4);
 s1.Delete(3, 2); s1.erase(3-1, 2);
 s2.Pos(s1); s2.find(s1);

User interface 37

© 2024 Dr. Detlef Meyer-Eltz

d2c string is an experimental own AnsiString/UnicodeString based on std::string/std::wstring

According to the chosen "String" as option String will be treated either as AnsiString or as
UnicodeString.

var
S: String:
begin
S := 'hallo';

is translated for an Ansi association to:

String S;
S = "hallo";

and for the Unicode association to

String S;
S = L"hallo";

6.5.4.2 Meta capabilities

Create meta classes

If the option Create meta classes is enabled at the type options, Aurora2Cpp creates for each class an
additional meta class (= class reference type).These class reference instances can be used for factory
functions, to create different class types in dependence of the class reference parameters. These
class reference instances also are needed if overridden virtual class methods have to be used.

To enable this option has drawbacks however. More manual post-processing will be necessary. One
reason for that is, that
a creation of class instances from class references is possible only, if the class has a standard
constructor.

Declare classes as dynamic

This feature from the first version of Delphi2Cpp hasn't been re-implemented in
Delphi2Cpp 2 yet. If you need this feature please contact me.

Aurora2Cpp38

© 2024 Dr. Detlef Meyer-Eltz

Alternatively you can use MFC-like macros. In the Microsoft Foundation Classes (MFC) the macros
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC give access to runtime class information, similar
to the runtime information that is provided in the VCL by the accordingly overwritten functions of
TObject.

The macros can be renamed by means of the substitution table of the translator. An obvious
alternative would be to use the macros "DECLARE_DYNCREATE" and "IMPLEMENT_DYNCREATE"
also defined for the MFC in the file "afx.h".

The following table compares the class names and functions of the MFC and Delphi:

class CObject class TObject
struct CRuntimeClass class TMetaClass
CObject::GetRuntimeClass TObject::ClassType
CRuntimeClass::IsDerivedFrom TMetaClass::InheritsFrom
CObject::IsKindOf TObject::InheritsFrom

 CRuntimeClass::CreateObject TMetaClass::Create
 CObject::CreateObject TObject::Create

6.5.4.3 Type-map

At the type options a type map can be shown. If use user type-map is checked, the cells of the shown
grid can be edited.

In the first column of the type map the names of Delphi built-in types and the second column the
according names of the C++ types are listed. In the further columns some properties of the C++ types
are given:

User interface 39

© 2024 Dr. Detlef Meyer-Eltz

Size: size of the type in bytes
Minimum: minimum value of the type
Maximum: maximum value of the type
In System: true, if the type is defined in d2c_system or in System.h, else false.

The last column determines, whether the System namespace is prepended to the according type
name in a header.

For example BOOL is a Windows type and therefore has not to be defined in the System namespace.
E.g.:

longbool BOOL 4 -2147483648 2147483647 false

Under Linux however BOOL is unknown and could be defined in d2c_systypes.h

longbool BOOL 4 -2147483648 2147483647 true

size_t

In addition to the built-in types there is a size_t item, though no corresponding type exists in Delphi.
The reason is, that sometimes Integer types are converted to size_t types in C++ and the properties of
size_t determine whether some casts are written into the resulting code, which avoid warnings from
the C++ compiler.

For C++Builder sometimes simple type identifiers are needed, because no space is allowed inside of a
type identifier.

6.5.5 Namespace options

The namespace options are part of the translation options and specify which namespaces have to be
created in the resulting code.

Aurora2Cpp40

© 2024 Dr. Detlef Meyer-Eltz

Namespaces are created if the option Create namespaces is activated.

The namespaces are normalized if the option Normalize namespaces is activated.

If the button Suppressed namespaces is clicked a dialog is shown, where you can enter file names for
which the creation of namespaces shall be suppressed.

If the button Qualify ... is clicked a dialog is shown, where you can enter type identifiers, which always
shall be qualified.

If the button Ignore NODEFINE for ... is clicked a dialog is shown, where you can enter type
identifiers, for which the NODEFINE directive shall be ignored.

For C++Builder no namespaces are created for files where a form is defined and also no namespaces
are written for types in published sections, because the form parser of the C++Builder cannot process
them.

6.5.5.1 Normalize namespaces

If the option Create namespaces is activated, the option Normalize namespaces determines their
notation. If the option is activated, the namespaces are written like the C++Builder does, that means
the first letter of the identifier is capitalized and the rest of the letters are written in lower case. For
example for the file:

System.SysUtils

the following namespace will be created:

namespace System
{

namespace Sysutils

User interface 41

© 2024 Dr. Detlef Meyer-Eltz

{

If the normalize option is not activated the notation depends on list of identifiers. If the identifiers are
defined there they are output accordingly. Otherwise the notations of the identifiers are determined by
their first occurrence in the code or by the file name.

In contrast to the namespace, the file name will not be changed. E.g.

#include "System.SysUtils.h"

6.5.5.2 Suppressed namespaces

One of the namespace options is, to suppress special namespaces.

If the button No namespaces is clicked a dialog is shown, where you can enter namespaces, that shall
be suppressed.

It is recommended to suppress the namespace for API files. The BOOL type is a striking example of
why this should be done

In the picture the namespaces for files of the OSX-API are suppressed. For Windows it is

Aurora2Cpp42

© 2024 Dr. Detlef Meyer-Eltz

recommended to suppress the namespaces of the files in rtl/Win, i.e. the namespaces, which start
with "Winapi".

6.5.5.3 Forced namespaces

One of the namespace options is, to force the output of namespaces for listed types. This applies also
for the source files, where normally the output of the namespaces because of using-clauses is not
needed.

If the cell for the namespace is empty, Aurora2Cpp will lookup the namespace, if it has a value, this is
set as namespace.

6.5.5.4 Ignore NODEFINE

One of the namespace options is to ignore the NODEFINE directive for listed types.

User interface 43

© 2024 Dr. Detlef Meyer-Eltz

Type identifiers listed in this box are treated as if there werde no NODEFINE directive. If the tuning
option to apply NODEFINE is not disabled all types specified with this directive "disappear" in the file
were they are defined. Nevertheless they my be defined in another file (this is often the case for C+
+Builder). When thes tyes then have to be disambiguited or simple if they are used in headers. they
will not be qualified with the namespace of their original unit any more.
E.g. instead of:

void foo(const System::String& s);

the following line is output:

void foo(const String& s);

If the NODEFINE directive is ignored, the first declaration, will be written again.

There is a special problem with old version of the RTL. In System.pas for RAD Studio 10.2 Tokyo
there are many types defined with wrong NODEFINE specifications. E.g.

{NODEFINE string 'UnicodeString' } {$OBJTYPENAME string 'NUnicodeString'} { defined in ustring.h }

instead of the correct version in RAD Studio 11.1 Alexandia:

{$NODEFINE string 'UnicodeString' } {$OBJTYPENAME string 'NUnicodeString'} { defined in ustring.h }

Aurora2Cpp always ignored the wrong specifications in the Tokyo version. Therefore always the
namespaces were written.

Aurora2Cpp44

© 2024 Dr. Detlef Meyer-Eltz

6.5.6 Tuning options

The tuning options are part of the translation options and specify special details at the translation from
Delphi code to C++.

Special treatment of some VCL functions

Use "stop" variable in for-loop

Treat typed constants as non-typed constants

Initialize Variables

Try to make const correct

Apply EXTERNAL directive

Apply NODEFINE directive

User interface 45

© 2024 Dr. Detlef Meyer-Eltz

Make classes non-abstract

Write message-map as macro
.
Virtual class methods as static methods

.

6.5.6.1 Special treatment of some RTL functions

Some Delphi RTL functions and other elements are made to member functions in the C++Builder
RTL.. Delphi2Cpp converts the generated C++ code accordingly for some of the frequently used
function. You can switch off this special treatment and write your own C++ functions instead.

Addr
Assigned
AllocMem
Chr
Copy
Dec
Delete
Destroy
Dispose
Exclude
Free
FreeAndNil
FreeMem
GetMem
High
Inc
Include
IntDivide
Insert
Length
LogicalXor
Low
Min
Max
Move
New
Odd
Ord
Pred
Pos
Read
ReadLn
ReallocMem
Reset
Rewrite

Aurora2Cpp46

© 2024 Dr. Detlef Meyer-Eltz

Round
SetLength
Succ
RegisterComponents
SizeOf
Supports
Trunc
TypeInfo
Write
WriteLn

The following types and functions aren't RTL functions, but nevertheless subsumed here:

PAnsiChar
PChar
PWideChar
SubString
CreateForm

History

In early versions of Delphi2Cpp these functions were incorrectly named as VCL functions. The project
files contained the keyword VCLSPECIALS instead of RTLSPECIALS.

6.5.6.2 Use stop-variable in for-loop

The tuning option Use "stop" variable in for-loop determines the output for for-loops

6.5.6.3 Treat typed constants as non-typed constants

The tuning option Treat typed constants as non-typed constants concerns typed constants like

const
 tc : integer = 7;

In Delphi 7 such typed constants were writable like variables. Aurora2Cpp imitates this behavior when
the option to treat typed constants as non-typed constants is deactivated. The constant then becomes
an extern variable in C++. The definition is written into the header:

extern int tc;

and the implementation is written into the source file:

int tc = 7;

If option to treat typed constants as non-typed constants is activated, the constants of sinmple types
are treated as a non-typed constant. (An example of a non-typed constant is: "const c = 7;".) There is
only one line as output:

const int tc = 7;

In the more current versions of Delphi typed constants are writable only if the {$J+} directive is set.

User interface 47

© 2024 Dr. Detlef Meyer-Eltz

6.5.6.4 Initialize Variables

If the tuning option Initialize variables is chosen, default values are assigned to all variables.

The initialization of variables is in Delphi and C++ is the same. Local automatic variables and normal
variables of a class aren't initialized, while global and static (class) variables are initialized to zero.
Nevertheless Aurora2Cpp offers the option to initialize all variables explicitly, either to achieve
reproducible behave or just to suppress compiler warnings.

6.5.6.5 Try to make const correct

By the tuning option Try to make const correct the generated code can be made more C++-like.

Delphi doesn't know the concept of const-correctness. However it is an important concept in C++. If
this option is enabled, Aurora2Cpp makes the getter methods of properties constant as well as the
methods which are called inside of these getter methods. In most cases this will work correctly, but, if
member variables are changed in such a method, the compiler will produce an error

6.5.6.6 Apply EXTERNALSYM directive

If the tuning option "Apply EXTERNALSYM directive" is enabled, type declarations, which are marked
with this directive aren't written into the generated code.

Symbols that are defined in the C++ API of the operation system often have to be redefined in Delphi.
The other way round, if C++ code is generated from Delphi, such symbols have to be omitted. For this
purpose the $EXTERNALSYM directive is used. This directive tells the C++Builder that the according
symbol already exists in C++. Aurora2Cpp don't writes such symbols into the output. If the option "
Apply EXTERNALSYM directive" is enabled,

See also

6.5.6.7 Apply NODEFINE directive

If the tuning option "Apply NODEFINE directive" is enabled, type declarations, which are marked with
this directive aren't written into the generated code.

You also can ignore the NODEFINE directive for selected types only.

See also

6.5.6.8 Make classes non-abstract

The tuning option Make classes non-abstract is used to create a kind of mock function bodies in
abstract classes.

Of course, this option should be used temporarily only.

Aurora2Cpp48

© 2024 Dr. Detlef Meyer-Eltz

6.5.6.9 Write message-map as macro

The tuning option Write message-map as macro allows to pretty-print message maps by means of
macros. If you want to step through the code with a debugger macros should be avoided.

6.5.6.10 Create additional 'this' parameter for class methods

The tuning option Create additional 'this' parameter for class methods is set to false by default. If it is
true in the generated code the parameters of class methods are preceded by an extra parameter,
which represents the Delphi Self type, as explained here. If Self isn't used by your code and if the code
also doesn't use virtual class methods, this options may be unchecked.

6.5.6.11 Virtual class methods as static methods

Because in C++ methods cannot be static and virtual at the same time, Delphi virtual class methods
either have to be converted to static non-virtual methods or to virtual non-static methods. This is
determined by the tuning option Virtual class methods as static methods, which is set to true by
default. This is the best option for the frequent case, that there aren't overridden versions to the
method at all. In this case a method like:

class procedure ClassVirtual; virtual;

simply become a non-virtual static function:

static virtual void ClassVirtual();

If there are overridden Delphi virtual class methods, the option Virtual class methods as static methods
has to be disabled. The method then becomes

virtual void ClassVirtual(); //#static

Aurora2Cpp then takes care, that the method is called from an ClassRef-instance of the according
class. This works only, if the creation of meta-classes is enabled.

6.5.7 Target options

The target options are part of the translation options and specify the operation system where the
resulting C++ code shall be executed as well as the compiler which shall be used..

User interface 49

© 2024 Dr. Detlef Meyer-Eltz

Compiler

Delphi2CB only supports the C++Builder. Therefore the top of the page looks like:

Precompiled header

Target platform

C++ version

There is a rough distinction between old C++98 compilers and new compilers for C++11 or later (C+
+14, C++ 17 ...). For C++Builder this distinction corresponds to the distinction between the classic
compiler and clang. A finer distinction is made in the auxiliary code.
The selection of the version determines how arrays-of-const are constructed, whether structures are
zero-initialized etc.
The support for C++98 isn't as complete as that for C++11. In cases, where there is no solutionn for C
++98 the solution for C++11 is output. For example this is the case for nested functions.

Aurora2Cpp50

© 2024 Dr. Detlef Meyer-Eltz

6.5.7.1 Compiler

At the target options you can chose the kind of c++-compiler, for which the output shall be produced.

C++Builder

C++Builder is made on top of a Delphi-Compiler and has some C++ extensions to cope with language
features of Delphi, which cannot be reproduced adequately with the standard C++.

Visual C++/gcc/Other

At the moment there is nearly no difference in the options to produce code for Visual C++, gcc or any
other compiler. Only threadvars are treated differently for gcc. In future there might be more compiler
specific conversions.
If the generated C++ code shall be used with other compilers than the C++Builder, properties are
eliminated and the __fastcall directives are left out. You can change the prefixes of the names for the
functions which are created instead of the properties.

6.5.7.2 Precompiled header

Some compilers allow header files to be precompiled into a precompiled header, which then hasn't to
be recompiled in future compilations. The point up to which the code is precompiled is marked by a
specific file or a pragma. At the target options you can chose a marker, which Aurora2Cpp then will
insert into the generated code.

There are three options:

1. <vcl.h>

User interface 51

© 2024 Dr. Detlef Meyer-Eltz

normally used with C++Builder. Aurora2Cpp also appends the line:

#pragma hdrstop

if this option is chosen.

2. "stdafx.h"

normally used with Visual C++.

3. No marker for a precompiled header at all

for other compilers like gcc.

If the options "Use pch.inc" is activated, no include directives are written into the C++ output, with
exception of the header of the actual source file. The user can include the pch.inc file into the file for
the precompiled headers or into the stdafx.h instead.

6.5.7.2.1 pch.inc

If the transaltion manager was used, a list of all header files, which were included in the processed
files is written into the root folder of the last target files. The file with this list is called "pch.inc" and can
be used for inclusion into the "stdafx.h" of Visual C++ or an according file for C++Builder.

There is an option which prevents that include directives are written to into the files, if the "pch.inc"
shall be used instead.

6.5.7.3 Target platform

At the target options you can chose the target platform.

The alternative platforms are: Window, Linux or MacIOS. The selected platform makes no big
difference in the generated C++ code, because Aurora2Cpp aims to generate portable C++ code. But
nevertheless some types are functions might be named differently for different platform. The source
code for other compilers contains different conditions for the three platforms.

Aurora2Cpp52

© 2024 Dr. Detlef Meyer-Eltz

More important is the 64 Bit option. Depending on the chosen option some values in the type-map are
different.

6.5.8 Output options

The output options are part of the translation options and specify the style of the generated output.

Indentation

Indentation can be done either by white space characters or by tabulators. The Count field controls
how much characters are used, when the indentation is increases or decreased.

Verbose option
Create units order file
Create dummy code

6.5.8.1 Verbose

Per default the Verbose option is set in the output options. That means, that comments are inserted
into the output at critical places, where the translation might cause errors. Often such comments
simply are quotations of the original Delphi code, which allow a quick comparison.

To distinguish these comments from converted comments, which stem from the Delphi source code,
they are marked with a hash character (octothorpe) '#'.

E.g.:

User interface 53

© 2024 Dr. Detlef Meyer-Eltz

WORD Words[4/*# range 0..3*/];

6.5.8.2 Create units order file

In the output options can be set how units are initialized and finalized. The corresponding procedures
are either called within each individual file or the calls are controlled by an additionally generated file
that ensures the correct sequence of calls.

6.5.8.3 Create dummy code

A frame of an application only will be created, if the checkbox to create dummy routines is activated in
the output options dialog. To create a frame only might be useful if the application uses code that can
not or shall not be translated, e.g. if only the working code of a GUI application shall be converted.
Such a frame application can be relatively easily made to compile and link. Once there is a running
frame application, it can then be expanded piece by piece into a working application.

In such a frame:

1. function bodies aren't written, default values are returned. Example:

String Translate(String AText)
{
 return L"";
}

2. unknown types are output as TObject-type. Example:

If the application uses third party code, which is not used for the translation, the types defined in that
code, e.g. a type named "TThirdPartyType" cannot be found. It will be replaced by "TObject" then:

virtual void foo(/*#TThirdPartyType*/ System::TObject* AThirdParty);

If the files to the VCL are in the folder for files, which shall be used for the translation, but shall not be
translated themselves, the VCL types will be found and written into the output. e.g.

virtual void SetPicture(Vcl::Graphics::TBitmap* const APicture) = 0;

As there is no C++ counterpart of the VCL the VCL types aren't defined there. In this case the code
can be made compile, by creation of a file, which defines these types. It could look like:

#ifndef MissingTypesH

#define MissingTypesH

#include "System.h"

#include "d2c_system.h"

//namespace System {

// namespace Classes

Aurora2Cpp54

© 2024 Dr. Detlef Meyer-Eltz

// {

// typedef System::TObject TStream;

// }

//}

namespace Vcl {

namespace Stdctrls {

typedef System::TObject TCheckBox;

typedef System::TObject TComboBox;

} // Stdctrls

namespace Graphics {

typedef int TColor;

typedef System::TObject TBitmap;

} // Graphics

} // Vcl

#endif // MissingTypesH

3. using directives of unknown units or of units not to translate are commented out. Example:

//# #include "Vcl.Controls.h"
//# #include "System.Classes.h"
//# #include "Winapi.Windows.h"
//# #include "Vcl.Graphics.h"
//# #include "Winapi.Messages.h"
//# #include "System.Contnrs.h"

In addition to the two cases above there is a third case which consists in the code of the RTL. Most
parts of the RTL are converted to C++. If this code shall not be used for the dummy application, the
missing types can be defined as the types of the VCL. If the code shall be used the according
commenting out must be undone for the lines in question

//# #include "Vcl.Controls.h"
#include "System.Classes.h"
//# #include "Winapi.Windows.h"
//# #include "Vcl.Graphics.h"
//# #include "Winapi.Messages.h"
//# #include "System.Contnrs.h"

6.5.9 Refactoring

The refactoring dialog is reached from the button on the options dialog. The Dialog shows the list of
refactoring items:

User interface 55

© 2024 Dr. Detlef Meyer-Eltz

Another dialog with the details of a refactoring item is shown, if a new item is added or an existing item
is edited:

Aurora2Cpp56

© 2024 Dr. Detlef Meyer-Eltz

Variables, functions and constants which shall be changed are looked up according to the criteria,
which are given by the control elements the on the left side of the dialog. At least the original name has
to be specified, the other criteria are optional. On the right side of the dialogs the resulting properties
can be set. Again at least a new name has to be set and the other properties are optional.

"Original name" and "New name"

The original name of a variable, function or constant in the Delphi source code will be changed to the
new name in the C++ output. The input in the field is treated case insensitive in the same way as the

User interface 57

© 2024 Dr. Detlef Meyer-Eltz

source code by the pre-processor. If the identifier for the original name isn't contained in the list of
notations, it's notation will be used for all notations of the identifier in the generated code.

"Original type is:"

The general kind of type of the variable, function or constant which shall be changed can be specified,
to exclude all other kinds from this refactoring. If, as in the image above, "Min" is specified as a
function, variables or constants with the name "Min" will not be changed. If all occurrences of "Min"
shall be changed regardless of the kind, it can be set to "unspecified":
In contrast to the other fields in the dialog, the general kind of type cannot be changed and will remain
the same in the output as in the source code.

"Original type" and "New type"

If "function" is selected "Original type" and "New type" are specifying the result type of the function.
otherwise "Original type" and "New type" specify the type of an built-in type, if this item is selected.
Normally the type should be identical, but there might be cases where it is desired to avoid or to force
typecasts by means of a change of the result type.

For the new type also a free identifier can be set. For example there is no according type to "ULONG"
or "unsigned long" in Delphi, but it may be needed in C++. Using this identifer you can refactor:

function _AddRef: Integer; stdcall;

to

 ULONG __stdcall AddRef()

"Original pointer" and "New pointer"

If the original type is a pointer the counter for the original pointer should be set accordingly. So the
original pointer type will be recognized. But if the new type is defied as a pointer the value for the new
type should remain Null. It has to be set to 1 only, if the new type is not a pointer, but the result shall be
a pointer to the new type. For example:

PVSFixedFileInfo tagVS_FIXEDFILEINFO
1 1

=>

var
FI: PVSFixedFileInfo;

->

tagVS_FIXEDFILEINFO* FI = nullptr;

Generics

has no effect in Aurora2Cpp.

Aurora2Cpp58

© 2024 Dr. Detlef Meyer-Eltz

Original unit

The input in the field for the original unit is treated case insensitive in the same way as the source code
by the pre-processor. The ".pas" extension hasn't to be appended. If there is a ".pas" extension, it will
be removed.

New unit

Here the name of a header file can be set, where the new type is defined. If for example MyList.h is
set, the following additional include directive is written into the output:

#include "MyList.h"

In contrast to the Original unit field, an extension has to be set here. If needed, the new type is
specified then with the "Mylist" scope.

For C++Builder a ".hpp" extension is regarded as belonging to a C++ header, which automatically has
been produced by the C++Builder compiler from an included Delphi unit. Therefore the name of the file
is not used for scope specification.

Remove original declaration

If this option is set the original declaration of the refactored type is omitted at the translation of the file
where it was declared.

The table items can be loaded and saved via the popup menu.

6.5.9.1 Load/Save refactoring

The refactoring elements are saved in the project files along with the other options. However, they can
also be saved separately in a text file so that exchange between different projects is easier. These files
are loaded and saved via a pop-up menu in the refactoring dialog.

User interface 59

© 2024 Dr. Detlef Meyer-Eltz

The menu item for loading the file is only enabled if the list of functions is empty.

6.5.10 DFM Conversion

When the DFM translation is enabled in the processor options, per default all lines of the DFM code
are converted to C++ assignment statements. However, when the Delphi compiler reads the DFM
code, more can actually happen than simple assignments. To reproduce these additional effects,
Aurora2Cpp can be configured to issue special DFM conversion routines when properties of certain
types are to be assigned values. The dialog in which these types and properties are listed appears
when you click the "DFM Conversion" button at the bottom left of the options dialog.

Aurora2Cpp60

© 2024 Dr. Detlef Meyer-Eltz

In the example, a conversion is created for the OldCreateOrder property of a form. If the code is
retranslated after the new routine has been inserted, the output window:shows the following line:

Remark: Normally the name of a specific type starting with 'T' should be entered in the Type column.
However, the example shows the special case in which a routine is defined for all classes derived from
TForm.

The table items can be loaded and saved via the popup menu.

6.5.10.1 Load/Save DFM routines

The name parts from which the routines for converting DFM files are formed are saved in the project
files along with the other options. However, they can also be saved separately in a text file so that
exchange between different projects is easier. These files are loaded and saved via a pop-up menu in
the dialog for setting up the DFM conversion routines.

User interface 61

© 2024 Dr. Detlef Meyer-Eltz

The menu item for loading the file is only enabled if the list of functions is empty.

The DfmRoutines.txt file in the project folder contains the list of routines used in applications from
which the DFM feature of Aurora2Cpp was developed. The associated C++ code is in the file
d2c_dfm.h/cpp.

6.5.11 Start parameter

The start parameter dialog is reached either from the button on the options dialog or from the menu or

tool bar button . The parameters are entered here that are required, starting from a start file, to
automatically compile not only this unit itself, but also all units on which it depends.

Aurora2Cpp62

© 2024 Dr. Detlef Meyer-Eltz

From options

The parameters to be set in the following two fields are set in the options when this dialog is invoked
from the options dialog. From there they can be picked up again using the "From options" button.

Start file

Into this edit field the complete path of the start file has to be selected.

Target directory

The target directory is the directory where the translated start file will be written. The files on which this
output unit depends are written into directories whose relative position to the target directory
corresponds to the relative position of the source directory. The files on which the start file depends
are searched in the directories specified for the translation.

OK button

When you press the OK button, different things can happen depending on where this dialog was
accessed from.

 - if the dialog had been called from the options dialog, the parameters are set into the options
- if the dialog had been called from the menu or from the tool bar.the recursive translation is started
immediately inside of the IDE

User interface 63

© 2024 Dr. Detlef Meyer-Eltz

6.6 Translation

The translation of the loaded Delphi source file to C++ starts with the button:

Three steps are executed for a translation:

1. the code is preprocessed
2. the included files are scanned for type information and global variables
3. a parse tree for the actual file is created from which the C++ code is written into the output windows.

6.6.1 Preprocessing

A preprocessor fulfils two tasks:

1. the conditional compilation
2. the unification of the notations of identifiers

6.6.1.1 Conditional compilation

Aurora2Cpp uses a preprocessor (pre-translator), which prepares the source text so that directives for
the conditional compilation are evaluated and removed.
However, unlike in Delphi conditional compilation, the Aurora2Cpp pre-processor only can evaluate
conditional symbols, but usually cannot evaluate constants in the Delphi language and such constants
never can be set by conditional compilation.

For example, conditional expressions like

{$IF CompilerVersion >= 17.0}

are evaluated, but integer values are evaluated and only operators, which also exist in C++. Sizeof-
expressions like tho following are evaluated too

{$IF SizeOf(Extended) >= 10}
 {$DEFINE EXTENDEDHAS10BYTES}
{$ENDIF}

as long, as the size can be taken from the type-map. In System pas the is the following code:

 {$IF SizeOf(Extended) <> SizeOf(TExtended80Rec)}
 {$MESSAGE ERROR 'TExtended80Rec has incorrect size'}
 {$ENDIF }

"TExtended80Rec" is not defined in the type-map and therefore Aurora2Cpp cannot evaluate the
expression.

If there is an expression, which cannot be evaluated, a warning is written into the code:

// pre-processor can't evaluate ...

Aurora2Cpp64

© 2024 Dr. Detlef Meyer-Eltz

The source code has to be corrected by hand then.

The Aurora2Cpp pre-processor cannot set new Delphi constants as in the following code from the Jedi
components in JvConsts.pas

 const
 ...
 {$IFDEF DELPHI26}
 SDelphiKey = 'Software\Embarcadero\BDS\20.0';
 {$ENDIF DELPHI26}

 {$IF not declared(SDelphiKey)}
 {$MESSAGE FATAL 'Declaration for SDelphiKey is missing'}
 {$IFEND}

Even if DELPHI26 is set, SDelphiKey would not be declared

Include directives are executed correctly.

{$I filename}
{$INCLUDE filename}

The file filename is included into the source.

The definitions can be set in the options dialog.

6.6.1.2 Unification of notations

While Delphi code is case insensitive, C++ code is case sensitive. So different notations of identifiers
have to be unified. Aurora2Cpp uses a simple approach to do that. As soon a a new identifier is
recognized it is put into a list and all further notations of this identifier are replaced by the first one
(exception: see below). Identifiers used at the refactoring also have an impact on the notations in the
output.

After one or several files have been processed the list can be saved.

This unification is done by the preprocessor, which also is responsible for the conditional compilation.
For "Cpp"-sections, there is a special option.

Some notations have a special meaning in C++ and are fixed. i.e. they are not controlled by the list of
identifiers. These identifiers are:

Char
String
break
continue
explicit
implicit

The following identifiers are fixed, because they denote C++ UnicodeString methods:

BytesOf

User interface 65

© 2024 Dr. Detlef Meyer-Eltz

ByteType
c_str
cat_printf
cat_sprintf
cat_vprintf
CodePage
Compare
CompareIC
CurrToStr
CurrToStrF
data
Delete
ElementSize
EnsureUnicode
FloatToStrF
FmtLoadStr
Format
FormatFloat
Insert
IntToHex
IsDelimiter
IsEmpty
IsLeadSurrogate
IsPathDelimiter
IsTrailSurrogate
LastChar
LastDelimiter
Length
LoadStr
LoadString
LowerCase
Pos
printf
RefCount
SetLength
sprintf
StringOfChar
SubString
swap
t_str
ToDouble
ToInt
ToIntDef
Trim
TrimLeft
TrimRight
Unique
UpperCase
vprintf
w_str

Aurora2Cpp66

© 2024 Dr. Detlef Meyer-Eltz

6.6.2 Scanning dependencies

Most Delphi units depend on other units, which are included in the uses clause. Aurora2Cpp scans the
included files in so far, as they are placed either in the same directory as the actual file or in a
directory, which is set in the search paths.
The translation will produce the best results if the Delphi VCL is included. In this case, however, the
translations of the first files will slow down significantly. All information that once has been
obtained from the interface parts of the processed files is remembered for the translation of further
files.

The information can be cleared by the according command in the start menu or the tool bar button .

.

6.6.3 Writing the C++ code

The original Delphi file is split into a C++ header and a C++ source file. These parts are output into the
two windows on the right side of the main window. The header is written into the upper window and the
source code is written into the lower window.

6.7 Translation manager

The transaltion manager is a dialog, by which you can translate whole directories or other groups of
files.
You can reach the transaltion manager either by the menu item Translation manager of the Start menu
or by the according button in the tool bar:

The button in the tool bar of the manager for executing the translations is deactivated until translation
options are set and source files are selected. Before starting the translations, you can check the list of
the files which will be produced. There is a page of his own for each of these steps in the transaltion
manager:

1. Translation options
2. Source files
3. Preview of the list of target files
4. Results

The settings, inclusive of the select folders and files, can be stored as a management and loaded
when required newly.

6.7.1 Translation options

If you like to use the transaltion manager for the translation of your source files, you have to decide
where the resulting files shall be written. The edit box for the target path which is shown in the picture
below, is shown in your application only, if you have selected an option to write the resulting files into a
different place as the source files.

User interface 67

© 2024 Dr. Detlef Meyer-Eltz

1. The most simple case is to write the C++ files just to the same place, where the source files are.
2. All files can be written into a common target directory, regardless of the place of the source file
3. The relative paths of files in a common root directory can be reproduced in the target folder.

If case two or three are selected the field for the target folder/root is shown and a dialog for the

selection of a the target directory can be opened by the button:.

If target files shall be written outside of the common target path/root, the checkbox to allow individual
file names or folders can be enabled. In that case an additional column for individual targets are shown
on the source page.

Warning

At the top of this options page either a default path or the path to the currently loaded project is shown.
If you save or load the source paths, they are calculated relatively to this project path. This allows the
exchange the "management"-files between different drives or computers. But you have to pay attention
that source folders and project path fit to each other.

Aurora2Cpp68

© 2024 Dr. Detlef Meyer-Eltz

6.7.2 Selecting source files

The files which shall be transformed are selected on the second page of the transaltion manager and
are shown in a table.

The page has a tool bar of its own with the buttons:

Insert an empty row

Select a single source file

Select a whole source directory

Deleting a row

Clear the whole table

The choice of a file or a folder is carried out respectively with a corresponding selection box. Several
files also can be selected at once in the selection box.

After the confirmation of the choice a new row is inserted in the table below the tool bar for every file or
every folder.

User interface 69

© 2024 Dr. Detlef Meyer-Eltz

There are five columns in the table:

No

a simple counter

Path

The absolute path of the file or folder.

Filename or filter

For files the file name can be seen here (with extension).
For folders a filter can be specified here. The default filter is "*.pas".

Recursive

The check box in this field can be activated only for folders. If it is activated, then all files in the
sub-folders of the shown directory are transformed too.

Exclude

Normally the check box of this field remains deactivated. However, it can be that you want to except
some files or folders from the translation of a folder. This is possible by producing rows of their own for
these exceptions in the table and activating the excluding check box by mouse.

Target file or folder

This column is shown only, if on the options page the box "allow individual file names or folders" is
checked.Here for each file an arbitrary path or file name as target can be set. If the source is specified
by wildcards, an arbitrary target path can be set.

6.7.3 Preview of the target files

The list of the files which will be produced are shown on the third tab-page of the transaltion manager.

Aurora2Cpp70

© 2024 Dr. Detlef Meyer-Eltz

Actualize

You can refresh the list of files by the button .

6.7.4 Starting the translation

The translation of the selected files in the transaltion manager is started by the menu item Start
translation or by the button in the main tool bar

When the translations are started, the page is changed to the Results-page automatically.

6.7.5 Results

The rows of the table on the result page of the transaltion manager contain messages which arise
during the translation of files.
Every message is immediately written into a new row of the table after the message was created. So,
the growing row number of the table at the same time shows the progress of the translations.

User interface 71

© 2024 Dr. Detlef Meyer-Eltz

In the first row the status of the message is shown as a color.

Color Status

new source file

neutral information

success message

warning

error message

6.7.6 Management

The sum of the settings of the transaltion manager is called a management here.

By the menu item: Save management as. you can save a management

By the menu item: Open management, you then can reload a management.

Managements are save with the extension "ttm". They are written in the same format as
TextTransformer managements.

The syntax for a management was designed as scarce and simple as possible, so that it also can be
written by hand. A management consists in the extreme case in only one file path.

7 Use in command line mode

Aurora2Cpp.exe can be called from the command line too. You then have to pass some parameters.

7.1 Parameter

Aurora2Cpp.exe can be controlled either by a management, which was produced with the transaltion
manager or by parameters for the source and target files.
In the first case a call has the form:

Aurora2Cpp -p PROJECT -m MANAGEMENT

and in the second case:

Aurora2Cpp -p PROJECT -s SOURCE [-t TARGET] [-r]

Expressions in brackets are optional.
If a path contains spaces, it has to be quoted.

The parameters -p, -m, -s and -t can each be absolute paths or relative paths, where the -p parameter
is to be set relative to the working directory and the other paths are to be set relative to the project
path.

Aurora2Cpp72

© 2024 Dr. Detlef Meyer-Eltz

Parameter Meaning Examples

-p PROJECT Aurora2Cpp project C++Builder_vcl_ge.prj

-m MANAGEMENT a project file made with the
file-manager

my_management.ttm

-s SOURCE Source file(s) C:\dir*.pas

-t TARGET Target file or directory C:\dir2\target

-r RECURSIVE recursively including the files of
the sub-folders

-pause after processing waiting for a key

-p PROJECT

The parameter -p must be followed by the path of the Aurora2Cpp project, with the options by which
the files of the source directory shall be translated.

-m MANAGEMENT

The parameter -m is followed by the path to a Aurora2Cpp management, which specifies the source
and target files.
If an -m paramerter is provided, -s, -t and -r are ignored.

-s SOURCE

The parameter -s must be followed by a specification of the files, which shall be translated.
In the simplest case this a specification is the path of a single file, like "C:\dir\source.pas". To
transform all "pas" files of a directory, you can use a mask like: "C:\dir*.pas;*.dpr".
If there is no directory specified in the mask, all according files of the actually directory will be
translated. If there is no special extension specified in the mask, all files of the directory will be
translated. E.g.: "ab?.*" will chose all files of the directory beginning with "ab" followed by a single
character, e.g. "ab1.pas", "ab2.pas" and "ab_.pas". Attention: in this case Aurora2Cpp will try to
translate also files with other extensions than "*.pas". This will lead to errors for "*.txt" files or
"*.inc"-files etc.

-t TARGET

The specification of a target is optional. If there is no, all translated files will be written into the directory
of the source files. A target directory has to be be specified, if the files shall be preprocessed only.

-r RECURSIVE

By the optional parameter "-r" you can force a recursive search for source files in all subdirectories.

-pause

With the optional parameter "-pause" you can keep the console window opened until a key is pressed.
So you can read the messages, which were produced. Without this parameter the console window is
closed as soon as the translations are finished.

What is translated 73

© 2024 Dr. Detlef Meyer-Eltz

8 What is translated

Delphi2C# handles nearly all kinds of the Delphi syntax.

Tokens
File layout
Indexes
Types
Variables
Operators
Assignments
Routines
Special RTL/VCL functions
Properties
Statements
Manipulations with class-reference types
Reading and Writing
Message handlers
Absolute address
Method pointers
Libraries

New features since Delphi 7

8.1 Tokens

At the token level following points have to be regarded:

Case sensitivity
Ampersands
Simple substitutions
String constants vs. single characters
Simple type identifiers (C++Builder)

8.1.1 Case sensitivity

Delphi is not case-sensitive. This means that identifiers such as Name, name, and NAME are treated
as the same identifier in Delphi. C++, on the other hand, is case-sensitive. In C++, Name, name, and
NAME are considered distinct identifiers.
This means that if Delphi code uses the same identifier in different case variations, it could lead to
issues when translating to C++ because variations will refer to non-existing variables or methods. Care
must be taken to ensure that all references to an identifier use consistent capitalization when
converting from Delphi to C++.

In Delphi, identifier case sensitivity is not important, but in C++, it is. In Aurora2Cpp, prior to version
2.5.0, this issue was addressed by unifying the case of all identifiers, regardless of their possible
different declarations. However, as of version 2.5.0, this method is considered outdated. Now, all
identifiers are written to match their respective declarations. To preserve backward compatibility, the
old option is still available. It can be enabled via the checkbox 'Unify All Identifiers'.

For example in the following unit there are defined a constant, a property and a parameter with the
names "name", "Name" and "NAME".

Aurora2Cpp74

© 2024 Dr. Detlef Meyer-Eltz

unit casesensitivity;

interface

const
 name: string = 'DefaultName';

type
 TPerson = class
 private
 FName: string;
 public
 property Name: string read FName write FName;
 procedure DisplayInfo(NAME: string);
 end;

implementation

procedure TPerson.DisplayInfo(Name: string);
begin
 WriteLn('Parameter Name: ' + Name);
 WriteLn('Property Name: ' + Self.Name);
 WriteLn('Constant Name: ' + casesensitivity.Name);
end;

end.

The three symbol all are used in the procedure DisplayInfo, This is possible, because they are
declared in different scopes. Delphi2Cpp converts the procedure for C++Builder to:

void __fastcall TPerson::DisplayInfo(String NAME)
{
 WriteLn(String(L"Parameter Name: ") + NAME);
 WriteLn(String(L"Property Name: ") + this->Name);
 WriteLn(String(L"Constant Name: ") + casesensitivity::name);
}

For other compilers it gets converted to:

void TPerson::DisplayInfo(String NAME)
{
 WriteLn(String(L"Parameter Name: ") + NAME);
 WriteLn(String(L"Property Name: ") + this->ReadPropertyName());
 WriteLn(String(L"Constant Name: ") + casesensitivity::name);
}

By use of the deprecated "unify all cases" option all symbols are given identical names and the
procedure becomes to:

void __fastcall TPerson::DisplayInfo(String name)
{
 WriteLn(String(L"Parameter Name: ") + name);
 WriteLn(String(L"Property Name: ") + this->name);
 WriteLn(String(L"Constant Name: ") + casesensitivity::name);
}

The option to match the declaration names avoids problems that arise when different parts of the code
are translated with different identifier lists

What is translated 75

© 2024 Dr. Detlef Meyer-Eltz

8.1.2 Ampersand

By means of an ampersand Delphi keywords can be used as identifiers, e.g. \Embarcadero\Studio
\19.0\source\rtl\win\winrt\WinAPI.ShlObj.pas line 11032:

type
 tagDROPDESCRIPTION = record
 &type: TDropImageType;

or \Embarcadero\Studio\19.0\source\rtl\win\winrt\WinAPI.CommCtrl.pas line 1429:

&type: UINT;

The Aurora2Cpp pre-processor and parser can reckognize such tokens as identifiers, but the
translation will result in type names that are forbidden in C++:

UINT &type;

There are four possibilities to handle such cases:

· let the pre-processor substitute such expressions
· let the translator substitute such expressions
· modify the source code
· make manual corrections afterwards

There is a case where the same identifiers are used with and without the ampersand.

 TState = (Start, &Property, ObjectStart, &Object, ArrayStart, &Array, ConstructorStart, &Constructor, Closed, Error);

and e.g.

 if FCurrentState = TState.Property then

then the identifier notations should be defined in the file for the identifiers in a unique way, e.g.:

&Array
&Constructor
&Object
&Property
Array
Constructor
Object
Property

Another example is in \Embarcadero\Studio\19.0\source\rtl\win\winrt\WinAPI.DataRT.pas line 598:

property &Implementation: Xml_Dom_IXmlDomImplementation read get_Implementation;

\rtl\win\winrt\WinAPI.Devices.pas line 6078:

property &Function: Word read get_Function;

Aurora2Cpp76

© 2024 Dr. Detlef Meyer-Eltz

\rtl\win\winrt\WinAPI.CommonTypes.pas line 138/439/544/6163...

&End

Inside of the class TParallel in System.Threading there are a lot of overloaded "&For" functions.

8.1.3 Simple substitutions

Many key words and operators can be replaced one to one. There is a long list of such substitutions. A
few examples are:

begin {

end }
record struct
:= =
= ==
<> !=
and &&
boolean bool

8.1.4 String constants and single characters

The apostrophes of the string constants are replaced by quotation marks. The treatment of the
characters is more difficult. Depending on context the apostrophes are left or replaced by quotation
marks.

'1' : -> case '1' :
string_id + '1' -> string_id + "1"

8.1.5 Simple type identifiers

How built-in type identifiers are substituted at the translation can be seen and set at the type options.
However, for C++Builder there are additional restrictions.
While e.g. the type Cardinal usually is translated as unsigned int, the space inside of the name isn't
permitted in the following context:

property testprop: cardinal read GetProp;

Aurora2Cpp therefore produces a type definition for a simple identifier:

typedef unsigned int unsignedint;
__property unsignedint testprop = { read = GetProp };

What is translated 77

© 2024 Dr. Detlef Meyer-Eltz

8.2 File layout

The interface part and the implementation part of a unit are in Object-Pascal put in one file. In C++
they become a header file and a source file.
A file with the minimal frame of a Delphi file which might be called test.pas looks like::

unit test;

interface

implementation

end.

It becomes to test.h :

C++Builder Other Compilers

#ifndef testH #ifndef testH
#define testH #define testH

#include <System.hpp> #include "System.h"

#include "d2c_system.h"

namespace test namespace test
{ {

} // namespace test } // namespace test

#endif // testH #endif // testH

The header file is enclosed into a sentinel. Then for C++Builder System.hpp and d2c_system.h are
included or for other compilers System.h..That way the classes, constants and routines which
correspond to the according entities of the Delphi system can be used.
test.cpp starts with the selected marker for precompiled headers

C++Builder Other Compilers

#include <vcl.h> #include "stdafx.h" // for Visual C++
#pragma hdrstop

#include "test.h" #include "test.h"

using namespace std; using namespace std;
using namespace d2c_system; using namespace System;
using namespace System;

namespace test namespace test
{ {

} // namespace test } // namespace test

Thre creation of the test namespace is optional.

If there are uses clauses in the delphi source files the according include directives follow in the C++
files.

Aurora2Cpp78

© 2024 Dr. Detlef Meyer-Eltz

Comments can appear at many places in a file,

Variables declared in interface parts are declared extern variables in C++ headers with the
implementation in the source file.

8.2.1 System Namespace

Type definitions, routines and constants of the Delphi system are reproduced for C++ in some files
with the prefix "d2c_" and the code in these files is put into the namespace "d2c_system" for C+
+Builder and into the namespace "System" for other compilers.
These files are part of the files, which are installed with Aurora2Cpp. There also is an extended
System.pas, which has to be set in the translation options, to let Aurora2Cpp know the signatures of
the system routines.

For C++Builder the d2c-files are included directly, for other compilers there is an extra file "System.h"
in which the d2c-files are included:

#include "d2c_system.h"
#include "d2c_systypes.h"
#include "d2c_sysconst.h"
#include "d2c_syscurr.h"
#include "d2c_sysdate.h"
#include "d2c_sysobj.h"
#include "d2c_openarray.h"
#include "d2c_sysexcept.h"
#include "d2c_sysmath.h"
#include "d2c_sysstring.h"
#include "d2c_sysfile.h"
#include "d2c_sysmem.h"

For C++ Builder in every produced C++ file there is a the statement

using namespace d2c_system;

For other compilers the "System.h" ends with

using namespace System;

8.2.2 Uses clauses

References to other units become to include directives in C++ in which the files of the VCL get the
extension "hpp" and the extension is "h" for the other header files.

uses -> #include "classes.hpp"
 Classes, TetraTypes; #include "TetraTypes.h"

8.2.3 Comments

All comments are output essentially unchanged at the corresponding positions. Line comments remain
totally unchanged, while bracketing is translated from

{...}

or
(*...*)

What is translated 79

© 2024 Dr. Detlef Meyer-Eltz

to

/*...*/

8.2.4 Namespaces

There is an option, to create a namespace for each unit. In C++ header files the scope expressions
are put in front of types and constants from other units and in the C++ implementation files according
uses clauses are inserted.

Example:

unit Namespace1;
interface
type

PInteger = ^integer;
...

unit Namespace2;
interface
uses Namespace1;
type

PInt = PInteger;

implementation
const

_pint1 : PInteger = Nil;
_pint2 : PInt = Nil;

end.

Namespace2 is translated to the header:

#ifndef Namespace2H
#define Namespace2H

#include "Namespace1.h"

namespace Namespace2
{

typedef Namespace1::PInteger PInt;

} // namespace Namespace2

#endif // Namespace2H

and the implementation:

#include <vcl.h>
#pragma hdrstop

#include "Namespace2.h"

using namespace Namespace1;

namespace Namespace2
{

Aurora2Cpp80

© 2024 Dr. Detlef Meyer-Eltz

PInteger _pint1 = NULL;
PInt _pint2 = NULL;

} // namespace Namespace2

Remarks:

The hpp-headers from C++Builder have a using clause at their end. That's why Aurora2Cpp doesn't
insert namespace qualifiers and using clauses for that files. The other way round: If a file has the
name of a VCL unit, an according uses clause is inserted.

8.2.5 extern variables

Variables declared in interface parts are qualified as extern in the C++ headers and their instances are
included into the implementation cpp-files.

TokenList : TList = NIL;
->
extern TList TokenList; // in the header file
TList* TokenList = NULL; // in the cpp -file

8.3 Indexes

While in C++ all arrays are zero based, that means, that they start at the index null, in Delphi arrays
with other lower bounds can be defined. For example:

TRangeArray = array [3..7] of Integer;

The C++ code which is generated from the Delphi source has to correct the indexes accordingly.
Because Delphi strings are one based, corrections also have to be done, if the target string type is
zero based. Additional corrections have to be done, if the directive ZEROBASEDSTRINGS is set on.

The strategy at the translation wit Aurora2Cpp is, that all functions that often are used to calculate
indexes, will have the same results in C++ that they had in Delphi, but as soon as these values are
used to access arrays or strings, the values are corrected.
Functions, which deliver string positions therefore have to be defined differently, depending on the
chosen target string. If th target string is one based as in Delphi the function High e.g. would become
to:

UnicodeString::size_type High(const UnicodeString& X)
{
 return X.Length - 1; // 1 based
}

If the target string is zero based the following definition has to be used:

UnicodeString::size_type High(const UnicodeString& X)
{
 return X.size(); // 0 based
}

What is translated 81

© 2024 Dr. Detlef Meyer-Eltz

The zero based High function doesn't deliver the highest index any more, but the same value as in
Delphi. The corrections is done at the access of the stings, as can be seen in the example below:

var
 arr : TRangeArray;
 s : String;
begin

for index := Low(arr) to High(arr) do
 writeln(arr[index]);

for index := Low(s) to High(s) do
 writeln(s[index]);

->

TRangeArray arr;
String s;
for(index = 3 /*# Low(arr) */; index <= 7 /*# High(arr) */; index++)
{
 WriteLn(arr[index - 3]);
}
for(index = 1 /*# Low(s)*/; index <= High(s); index++)
{
 WriteLn(s[index - 1]);
}

However, if the Delphi code uses hard-coded values as in the following example, the translation will
fail:

MyString := 'This is a string.';
if Pos('a', myString) = 9 do
 ...

->

myString = L"This is a string.";
if(myString.find(L"a") == 9) // bug: myString.find(L"a") == 8
 ...

8.3.1 ZEROBASEDSTRINGS

Sometimes a ZEROBASEDSTRINGS directive is used in Delphi code. by which the local string
indexing is changed. For example in front of the implementation code of TStringHelper the directie is
set on:

{$ZEROBASEDSTRINGS ON}

The following is a code example from Embarcadero, which demonstrates, how to use the
Char-property of TStringHelper:

var
 I: Integer;
 MyString: String;

begin
 MyString := 'This is a string.';

 for I:= 0 to MyString.Length - 1 do

Aurora2Cpp82

© 2024 Dr. Detlef Meyer-Eltz

 Write(MyString.Chars[I]);
end.

The individual characters of the string are accessed here via a zero based index.

The automatic translation of the TStringHelper code doesn't regard the ZEROBASEDSTRINGS
directive. Therefore - if zero based target strings are chosen - the translator inserts a wrong correction
for the String m_Helped member. E.g.

 result = m_Helped[Index - 1];

This correction has to be removed manually:

 result = m_Helped[Index];

If return values of functions, which are used inside of sections of code where ZEROBASEDSTRINGS
is ON, depend on the assumption of one based strings, these values have to be corrected too. the
function Low and High are such typical candidates. E.g.

8.4 Types

There are built-in types in Delphi and also new types can be defined in sections of a source file which
begin with the type keyword.
The most simple form of a type definition is just to define another name for an existing type. E.g.:

WCHAR = WideChar;

In C++ the typedef keyword has to be used and the definition then goes the other way round:

typedef System::WideChar WCHAR;

Other types that can be defined in Delphi are:

Records, Classes and Interfaces
Arrays
Enumerated types
Ranges
Sets

Sometimes the order of type definitions has to be rearranged in C++. Also the order of lookup is
different.

8.4.1 Records, Classes, Interfaces

Delphi and C++ have is the same concept of classes. Delphi records become to structures in C++.
Their concepts are very similar too. The conversion of Delphi interfaces depends on the C++ compiler
that shall be used.

What is translated 83

© 2024 Dr. Detlef Meyer-Eltz

8.4.1.1 Record

A record mainly consists in public data elements, but also may have methods and sub-records. In
Delphi a record also may have a variant part.

8.4.1.1.1 Variant parts in records

There is only a makeshift to treat variant parts in records: For every case there is created an
according union in C++.

 TRect = packed record
 case Integer of
 0: (Left, Top, Right, Bottom: Longint);
 1: (TopLeft, BottomRight: TPoint);
 end;

 ->

#pragma pack(push, 1)
struct TRect {
 /*# case Integer */
 union {
 /*# 0 */
 struct {
 int Left, Top, Right, Bottom;
 };
 /*# 1 */
 struct {
 TPoint TopLeft, BottomRight;
 };
 }; //union
};
#pragma pack(pop)

8.4.1.2 Class

A typical class consists may have following additional elements:

Ancestor
Constructor
Destructor
Class methods
Abstract methods
Visibility of class members
Creation of instances of classes

8.4.1.2.1 Ancestors

If no ancestor type is specified when declaring a new object class, Delphi automatically uses TObject
as the ancestor. TObject has to be quoted explicitly.

TNewClass = class ...

Aurora2Cpp84

© 2024 Dr. Detlef Meyer-Eltz

->

class TNewClass : public System::TObject ...

8.4.1.2.2 Constructors

In Delphi a declaration of constructors start with the keyword constructor followed by an arbitrary
name. In C++ is the name of the of the class also the name of the constructor.

constructor classname.foo; -> __fastcall classname::classname ()

Constructor of the base class
Initialization lists
Addition of missing constructors
Problems with constructors

8.4.1.2.2.1 Constructor of the base class

In Delphi and C++ the order of construction of the derived and the base classes is differently. In Delphi
the derived class is constructed first, while in C++ the constructors of the base classes are executed
automatically, before the constructor of the derived class is executed. If the base class has no
standard constructor (= constructor without parameters) the base class constructor has to be called in
the initialization list with the according parameters.The constructors of the ancestor classes are
executed in Delphi only, if they are called explicitly from in the written code. In such cases Aurora2Cpp
tries to find this call and puts it into the initialization list:

constructor foo.Create(Owner: TComponent);
begin
 inherited Create(Owner);
end;

->

__fastcall foo::foo (TComponent * Owner)
: inherited (Owner)
{ }

There is a second reason, why this shift is necessary: in C++ the explicit call of an ancestor
constructor in the derived constructor has no effect. (A temporary instance of the base class will be
created only.)

Base class constructors without parameters are called automatically in C++. Aurora2Cpp preserves
the original calls of such constructors as line comments.

constructor foo.Create();
begin
 inherited Create;
end;

->

__fastcall foo::foo ()
{

// inherited::Create;

What is translated 85

© 2024 Dr. Detlef Meyer-Eltz

}

8.4.1.2.2.2 Constructor delegation

A constructor can call another constructor in it's body:

type
 TFoo = class(TBase)

 constructor Create(s : string); overload;
 constructor Create(b : PChar; l : integer); overload;
...

implementation

constructor TFoo.Create(s : string);
begin
 inherited Create;
 Create(PChar(s), length(s))
end;

A direct translation of the constructor definition would look like:

TFoo::TFoo(String s)
{
 TFoo(ustr2pwchar(s), s.size()),
}

However, this does not the same as in Delphi. In C++ the call of the second constructor in the body of
the first only creates a temporary local second TFoo object, which has no effect to the current
instance. But in C++11 there is the new feature to call the second constructor instead of an
initialization list

TFoo::TFoo(String s)
 : TFoo(ustr2pwchar(s), s.size()) //# delegation
{

}

Though this construction doesn't work for C++98 compiler, Aurora2Cpp nevertheless translates the
code in this way too, because there is no gneral alternative solution. For C++98 the code has to be
post-processed manually.

8.4.1.2.2.3 Initialization lists

In Delphi member variables like other variables too are initialized automatically with default values.
Because this is not the case in C++ Delphi2C++ has to do these initializations explicitly, like in the
following example:

. Delphi source C++ translation

Aurora2Cpp86

© 2024 Dr. Detlef Meyer-Eltz

 Base = class class Base: public System::TObject {
 public friend class Derived;
 constructor Create(arg : Integer); public:
 destructor Destroy; __fastcall Base(int arg);
 private __fastcall ~Base();
 FList : TList; private:
 FI : Integer; TList* FList;
 FTimeOut: Longint; int FI;
 end; int FTimeOut;
 public: inline __fastcall Base () {} <- dangerous
 };

 constructor Base.Create(arg : Integer); __fastcall Base::Base(int arg)
 begin : FI(0),
 end; FList(NULL),
 FTimeOut(0)
 {
 }

If the members are initialized explicitly in Delphi, Aurora2Cpp tries to find the according statements
and puts them into the initialization list of the class constructor:

constructor Base.Create(arg : Integer); __fastcall Base::Base(int arg)
begin : FI(arg),
 FList := TList.Create; FList(new TList),
 FI := arg; FTimeOut(0)
 if arg <> $00 then {
 FTimeOut := arg if (arg != 0x00)
 else FTimeOut = arg;
 FTimeOut := DefaultTimeout; else
end; FTimeOut = DefaultTimeout;
 }

The use of initialization lists is more efficient in C++ than to initialize the variables in the body of the
constructor. But sometimes there is a problem with this method. For example, the initialization of the
member FTimeOut depends of the value of the arg parameter. As shown in the next example
Aurora2Cpp tries to take care about such cases. But Aurora2Cpp cannot find all such hidden
dependencies, as in the following example:

constructor Derived.Create; __fastcall Derived::Derived()
var : inherited(i),
 i : Integer; FB(false)
begin {
 i := SomeFunction; int i = 0;
 inherited Create(i); i = SomeFunction;
end; }

In such cases constructors have to be corrected manually like:

__fastcall Derived::Derived()
 : inheritd(SomeFunction())
{
}

Unfortunately, there is another problem with the order of the initializations. in C++ the order in the
initializer list is ignored. Member variables are always initialized in the order they appear in the class
declaration. In the following example:

TInit = class(TObject)
 FName1, FName2, FName4, FName3 : String;
 constructor Create(Name1, Name2, Name3 : String);
end;

What is translated 87

© 2024 Dr. Detlef Meyer-Eltz

implementation

constructor TInit.Create(Name1, Name2, Name3 : String);
begin
 FName1 := Name1;
 FName2 := Name2;
 FName3 := Name3;
 FName4 := FName3;
end;

a strict initialization of the member variables in the order in which they are declared would lead to:

__fastcall TInit::TInit(String Name1, String Name2, String Name3)
 : FName1(Name1),
 FName2(Name2),
 FName4(FName3),
 FName3(Name3)
{
}

Obviously, this is not correct. Therefore Aurora2Cpp uses the following strategy: as long as the
initialization statements in the constructor are in the order of the declarations, they are shifted into the
initializer list. For all other member variables follows initialization code in the body of the constructor.

__fastcall TInit::TInit(String Name1, String Name2, String Name3)
 : FName1(Name1),
 FName2(Name2),
 FName3(Name3)
{
 FName4 = FName3;
}

8.4.1.2.2.4 Addition of missing constructors

Unlike in Delphi, constructors of base classes cannot be called directly in C++. If there are public
constructors in the base classes with different signatures as any constructor of the derived class, these
constructors are generated for the derived class too. Especially in Delphi all classes are derived from
TObject and inherit its default constructor. Therefore Aurora2Cpp generates a default constructor for
each derived class, even if such a constructor doesn't exist in the original Delphi code. So, resuming
the previous example, the additional standard constructor would look like:

__fastcall Base::Base()
 : FI(0),
 FList(NULL),
 FTimeOut(0)
{
}

Here the member variables are initialized with default values.

Sometimes a lot of additional code has to be produced for C++ classes. For example a class, which is
derived from Exception has more than ten constructors. Inside of each constructor the constructor of
the base class has to be called in the initialization list

class MyException: public Sysutils::Exception {
 typedef Sysutils::Exception inherited;

Aurora2Cpp88

© 2024 Dr. Detlef Meyer-Eltz

 public: inline __fastcall MyException(const String MSG) : inherited(MSG) {}
 public: inline __fastcall MyException(const String MSG, const TVarRec* Args, int Args_maxidx) : inherited(MSG, Args, Args_maxidx) {}
 public: inline __fastcall MyException(int Ident) : inherited(Ident) {}
 public: inline __fastcall MyException(PResStringRec ResStringRec) : inherited(ResStringRec) {}
 public: inline __fastcall MyException(int Ident, const TVarRec* Args, int Args_maxidx) : inherited(Ident, Args, Args_maxidx) {}
 public: inline __fastcall MyException(PResStringRec ResStringRec, const TVarRec* Args, int Args_maxidx) : inherited(ResStringRec, Args, Args_maxidx) {}
 public: inline __fastcall MyException(const String MSG, int AHelpContext) : inherited(MSG, AHelpContext) {}
 public: inline __fastcall MyException(const String MSG, const TVarRec* Args, int Args_maxidx, int AHelpContext) : inherited(MSG, Args, Args_maxidx, AHelpContext) {}
 public: inline __fastcall MyException(int Ident, int AHelpContext) : inherited(Ident, AHelpContext) {}
 public: inline __fastcall MyException(PResStringRec ResStringRec, int AHelpContext) : inherited(ResStringRec, AHelpContext) {}
 public: inline __fastcall MyException(PResStringRec ResStringRec, const TVarRec* Args, int Args_maxidx, int AHelpContext) : inherited(ResStringRec, Args, Args_maxidx, AHelpContext) {}
 public: inline __fastcall MyException(int Ident, const TVarRec* Args, int Args_maxidx, int AHelpContext) : inherited(Ident, Args, Args_maxidx, AHelpContext) {}
};

8.4.1.2.2.5 Problems with constructors

Summarizing, there remain two problems for which the translated constructors have to be checked:

1. the order of construction of the derived and the base classes is differently in Delphi and C++
2. member variables should be initialized in at the beginning of the constructor code in the initialization

list. But sometimes the value can depend on other calculations and Aurora2Cpp cannot recognize
this.

3. in Delphi there can be several constructors with the same signature but with different names
4. the call of virtual functions inside of constructors
5. Delphi has the concept of virtual constructors

[****]

A big problem with constructors is, that in Delphi there can be several constructors with the same
signature but with different names.. E.g.:

TCoordinate = class(TObject)
public
 constructor CreateRectangular(AX, AY: Double);
 constructor CreatePolar(Radius, Angle: Double);
private
 x,y : Double;
end;

constructor TCoordinate.CreateRectangular(AX, AY: Double);
begin
 x := AX;
 y := AY;
end

constructor TCoordinate.CreatePolar(Radius, Angle: Double);
begin
 x := Radius * cos(Angle);
 y := Radius * sIn(Angle);
end

After strict translation the two constructors would become ambiguous:

__fastcall TCoordinate::TCoordinate(double AX, double AY)

What is translated 89

© 2024 Dr. Detlef Meyer-Eltz

 : x(AX),
 y(AY)
{
}

__fastcall TCoordinate::TCoordinate(double Radius, double Angle)
 : x(Radius * cos(Angle)),
 y(Radius * sin(Angle))
{
}

Therefore Aurora2Cpp inserts a second parameter into the alphabetically second declaration to
distinguish the constructors in C++.

class TCoordinate : public System::TObject
{
public:
 __fastcall TCoordinate(double AX, double AY, void* OverloadSelector0);
 __fastcall TCoordinate(double Radius, double Angle);
private:
 double x;
 double y;
};

__fastcall TCoordinate::TCoordinate(double AX, double AY, void* OverloadSelector0)
 : x(AX),
 y(AY)
{
}

__fastcall TCoordinate::TCoordinate(double Radius, double Angle)
 : x(Radius * cos(Angle)),
 y(Radius * sIn(Angle))
{
}

The following code snippet demonstrates how the constructors are called:

procedure TestConstructors;
var
 c1, c2 : TCoordinate;
begin
 c1 := TCoordinate.CreateRectangular(1.0, 2.0);
 c1 := TCoordinate.CreatePolar(1.0, 90.0);

becomes to:

void __fastcall TestConstructors()
{
 TCoordinate* c1 = nullptr;
 TCoordinate* c2 = nullptr;
 c1 = new TCoordinate(1.0, 2.0, nullptr);
 c1 = new TCoordinate(1.0, 90.0);

Another problem with constructors is that calls of virtual functions inside of constructors are allowed in
Delphi, but in C++ such calls should be avoided

As example the TPolygon class and the derived classes TTriangle and TSquare as defined here

http://www.delphibasics.co.uk/RTL.asp?Name=Abstract

Aurora2Cpp90

© 2024 Dr. Detlef Meyer-Eltz

can be taken:

 TPolygon = class
 ...
 protected
 procedure setArea; Virtual; Abstract; // Cannot code until sides known
 ...

 TTriangle = class(TPolygon)
 protected
 procedure setArea; override; // Override the abstract method

 TSquare = class(TPolygon)
 protected
 procedure setArea; override; // Override the abstract method

constructor TPolygon.Create(sides, length : Integer);
begin
 ...
 setArea;
end;

In Delphi the setAres-procedure of the derived classes will be called in their constructors. With C+
+Builder this works well too, but other C++ compilers always try to call the setArea-procedure of
TPolygon. Manual post-processing is necessary then. E.g. setArea could be made accessible and
called after construction:

 triangle = new TTriangle(3, 10);
 triangle->setArea();

A third problem with constructors in Delphi is that constructors can be used there like virtual functions
in C++. This can be demonstrated at the example, which is also used in the section about class
method. A class method might be called for a base class and another class derived from it:

pBase := TBase.Create;
pDerived1 := TDerived1.Create;

pDerived1->ClassMethod(pDerived1, 1);

Inside of the class method a new object of the class is created:

class function TBase.ClassMethod(xi: Integer): Integer;
begin
 with Create do <-- new object from virtual constructor
 begin
 Init; <-- virtual method
 Done;
 Free;
 end;
 result := xi;
end;

The Init method might be virtual. In this case the Init method of TDerived1 will be called. That means,
an instance of TDerived1 has been created, because ClassMethod was called for a TDerived1 object.
If ClassMethod were called for a TBase object, a TBase object would have been created and TBase.
Init would have been called.

This behavior can be reproduced, if the option to create meta classes is enabled.

What is translated 91

© 2024 Dr. Detlef Meyer-Eltz

8.4.1.2.3 Destructors

In Delphi a declaration of a destructor start with the keyword destructor followed by an arbitrary name.
In C++ the name of the of the class is also the name of the destructor preceded by the the character
'~'.

destructor classname.foo; -> __fastcall classname::~classname ()

Aurora2Cpp tempts to find calls of destructors of the base class and to comment them out in C++.
Thereby is assumed that the destructor of the base class is virtual. That's the case for all classes,
which are derived from TObject.

destructor foo.Destroy(); -> __fastcall foo::~foo ()
begin {
 FreeAndNil(m_Messages); FreeAndNil (m_Messages);
 inherited Destroy; // todo check: inherited::Destroy;
end;

In Delphi parameters can be passed to destructors, but this isn't possible in C++.
For destructors analogous problems can occur as for constructors, but they are very rare.

8.4.1.2.4 class methods

Delphi class methods are similar to C++ static methods, but there are two differences:

1. Delphi class methods can be virtual, C++ static methods cannot.
2. In the defining declaration of a class method, the identifier Self represents the class where the

method is called. In C++ however inside of a static function there is no counterpart to Delphi's Self (
this isn't defined her).

From C++Builder 2009 on there is the additional keyword __classmethod to - partially - reproduce
Delphi class method, For other compilers class methods are converted to static methods.

8.4.1.2.4.1 C++Builder __classmethod

For C++Builder Delphi class methods are converted to functions using the keyword __classmethod, as
described in the Embarcadero documentation:

https://docwiki.embarcadero.com/RADStudio/Sydney/en/Class_Methods

Aurora2Cpp92

© 2024 Dr. Detlef Meyer-Eltz

8.4.1.2.4.2 Other compilers cllass methods

For other compilers than C++Builder class methods are converted as static methods;

non virtual class methods
virtual class methods
Self instance

Delphi non virtual class methods are converted to C++ static methods. They can be called through a
class reference or an object reference:

type
 TBase = class(TObject)
 public
 class function ClassMethod(xi: Integer): Integer;
 end;

...

var
 pBase: TBase;
 i : Integer;
begin
 i := TBase.ClassMethod(0); // calling through a class reference
 // ...
 i := pBase.ClassMethod(0); // calling through an object reference

This is translated in the following way:

class TBase: public TObject {
 static int __fastcall ClassMethod(int xi);
};

...

TBase* pBase = NULL;
int i = 0;
TBase::ClassMethod(0); // calling through a class reference
// ...
pBase->ClassMethod(0); // calling through an object reference

Because there are no virtual static methods in C++ DelpiXE2Cpp11 has an option, which allows to
convert virtual class methods either to static non-virtual methods or to virtual non-static methods.

The first case results into the same code as for non-virtual class methods. If the virtual class methods
aren't overridden, this is obviously the best option. But if the methods are overwritten, the virtual class
methods have to be converted to virtual C++ methods. Then these methods cannot be called through
an class type expression in C++ any more, If they are called that way in the Delphi code, an adequate
instance of the class has to be provided in C++. If the option to create meta classes is enabled
Aurora2Cpp provides these instances automatically:

TBase = class(TObject)
public
 class function ClassVirtual(xi: Integer): Integer; virtual;

What is translated 93

© 2024 Dr. Detlef Meyer-Eltz

var
 base : TBase;
begin
 base.ClassMethod(0);
 TBase.ClassVirtual(0);
 TDerived.ClassVirtual(0);

->

base->ClassMethod(0);

TBase::ClassRefType::getClassInstance()->ClassVirtual(0);
TDerived::ClassRefType::getClassInstance()->ClassVirtual(0);

By calling ClassVirtual through the TBase pointer base, the correct version of ClassVirtual will be
called as for for non-static methods too. The correct version of ClassVirtual will be called through class
references too, because the static function ClassRefType delivers the class reference of TBase or
TDerived and the call of getClassInstance delivers a singleton instance of a pointer to TBase or
TDerived respectively.

Like the "this" pointer in C++ is an implicit parameter to all member functions, in Delphi the "Self"
instance is an implicit parameter to class functions. Other class methods can be called there through
this instance and they can be called by hidden use of "Self". "Self" must not appear in the code. For
example:

class function TBase.ClassMethod(xi: Integer): Integer;
begin

 with Create do <-- new object from a virtual constructor of Self
 begin
 Init;
 Done;
 Free;
 end;
 result := xi;
end;

Aurora2Cpp can convert this code adequately only, if the option to create meta classes is enabled.
The code then becomes to:

/*#static*/ int TBase::ClassMethod(int xi)
{
 int result = 0;
 /*# with Create do */
 {
 auto with0 = SCreate();
 with0->Init();
 with0->Done();
 delete with0;
 }
 result = xi;
 return result;
}

"SCreate" is a static method, which returns a pointer to a new instance of TBase.

Aurora2Cpp94

© 2024 Dr. Detlef Meyer-Eltz

8.4.1.2.5 abstract methods

Like Delphi also C++ knows abstract methods. The most natural way of translation is for example:

function Get(Index: Integer): Integer; virtual; abstract;
->
virtual int __fastcall Get(int Index) = 0;

But opposed to Delphi. in C++ no objects can be created from classes with abstract methods. A C++
compiler even complains about the code at compile time. At development time sometimes it's
practical, that such code compiles and runs in C++ too. Therefore Aurora2Cpp has the option to create
minimal function bodies for abstract functions. The example becomes to:

virtual int __fastcall Get(int Index){return 0;} // = 0;

Of course, this option should be used temporarily only.

8.4.1.2.6 Visibility of class members

In Delphi Members at the beginning of a VCL class declaration that don’t have a specified visibility are
by default published and in other classes they are public. In C++ this is written explicitly. (Aurora2Cpp
ignores the {$M+} directive, which would make them public.)

A problem at the translation of Delphi code is, that in Delphi a private or protected member is visible
everywhere in the module where its class is declared. In C++ a private or protected member is visible
only inside of the class. Aurora2Cpp solves this problem by making all classes in the same module to
friends of each other. Free routines also are declared as friend.

The following Delphi code is an example, where the direct translation to C++ code would not compile,
if TFriend isn't declared as a friend of TLonely:

TFriend = class
private
 FCount: Integer;
end;

TLonely = class(TFriend)
public
 procedure NeedsFriend;
end;

implementation

procedure TLonely.NeedsFriend;
begin
 FCount := 0; // in C++ access to TLonely::FCount is not possible
end;

The converted C++ code doesn't compile, because FCount cannot be accessed in TLonely::
NeedsFriend.

unit friends;

type

What is translated 95

© 2024 Dr. Detlef Meyer-Eltz

class TFriend : public TObject
{
private:

int FCount;
public:

__fastcall TFriend();
};

class TLonely : public TFriend
{
public:

void __fastcall NeedsFriend();
__fastcall TLonely();

};

void __fastcall TLonely::NeedsFriend()
{
 bool result = false;
 FCount = 0; // in C++ access to TLonely::FCount is not possible
 return result;
}

Aurora2Cpp therefore lists all possible class- and routine- friend declarations of a unit into a file and
includes it into all class declarations. The name of this file is created by appending "_friends" to the file
name. The file gets the extension ".inc". The class declarations of the example therefore becomes to:

class TFriend : public TObject
{
 #include "friends_friends.inc"
private:

int FCount;
public:

__fastcall TFriend();
};

class TLonely : public TFriend
{
 #include "friends_friends.inc"
public:

bool __fastcall NeedsFriend();
__fastcall TLonely();

};

The content of "friends_friends.inc" is:

friend class TFriend;
friend class TLonely;

Now TLonely::NeedsFriend compiles without problem. If this function were no member function, but a
free function like:

procedure NeedsFriend;
var
 f : TFriend;
begin
 f := TFriend.Create;
 f.FCount := 0; // in C++ access to TLonely::FCount is not possible
...

Aurora2Cpp96

© 2024 Dr. Detlef Meyer-Eltz

Aurora2Cpp adds another line to "friends_friends.inc"

friend class TFriend;
friend class TLonely;
friend void __fastcall NeedsFriend();

Now

void __fastcall NeedsFriend()
{
 TFriend* F = NULL;
 F = new TFriend();
 F->FCount = 0;

also compiles without problem.

8.4.1.2.7 Creation of instances of classes

VCL classes have to be created with new in C++. For example:

TList.Create(NIL) -> new TList(NULL)

8.4.1.3 Interfaces

In Delphi interface types can be defined like in the following lines of code:

IConverter = interface
 ['{GUID}']
 function convert(Source : String): String;
end;

TConverter = class(TInterfacedObject, IConverter)
public
 //...
 function convert(Source : String): String;
end;

For C++Builder the special macro "__interface" macro:

#define __interface struct // in sysmac.h

is used instead of the class keyword to mark interfaces:

__interface INTERFACE_UUID("{ GUID}") IConverter
{
 virtual String __fastcall convert(String Source);
};

class TConverter : public TInterfacedObject, public IConverter
{

What is translated 97

© 2024 Dr. Detlef Meyer-Eltz

 //...
 String __fastcall convert(String Source);
};

However there will be a linker error like "unresolved vtable", if such an interface is used. If you create a
small pas file for the interface, add it to the C++Builder project and remove the C++ definition for the
interface, C++Builder will create a header file for the interface file automatically, which you can include
then. Example pas file:

unit Recyclable;

interface

 type
 IRecyclable = Interface(IInterface)
 function GetIsRecyclable : Boolean;
 property isRecyclable : Boolean read GetIsRecyclable;
 end;

implementation
end.

->

#include "Recyclable.hpp"

Now the project will compile without linker error.

Visual C++ also knows this keyword, but the GUID has to be written differently:

[uuid("GUID")]
__interface IConverter
{
 virtual String convert(String Source);
};

class TConverter : public TInterfacedObject, IConverter
{
 //...
 String convert(String Source);
};

At other compilers, which have not the interface extension, multiple inheritance can be used instead,
As explained here:

http://www.codeproject.com/Articles/10553/Using-Interfaces-in-C

the interface class needs a virtual destructor and the methods should be public and declared abstract:

//[uuid("GUID")]
class IConverter
{
 public:
 virtual ~IConverter() {}
 virtual String convert(String Source) = 0;
};

class TConverter : public TInterfacedObject, IConverter
{
 //...
 String convert(String Source);
};

Aurora2Cpp98

© 2024 Dr. Detlef Meyer-Eltz

GUID's cannot be used here. Under Microsoft Windows GUID's are used for COM purposes.

8.4.1.4 Multiple interfaces

In Delphi a class can be derived from multiple interfaces. Interfaces in last instance have to be derived
from IInterface, which in Delphi is the same as IUnknown, C++ however uses IUnknown from MS
Windows, which has the abstract methods: AddRef, Release and QueryInterface. In Delphi analogous
methods are defined automatically, when a class is derived from Delphi's IInterface (=IUnknown). In C
++ however, the implementations have to be defined explicitly. Therefore a macro is inserted into class
declaration:

#define INTFOBJECT_IMPL_IUNKNOWN(BASE) \
 ULONG __stdcall AddRef() { return BASE::AddRef();} \
 ULONG __stdcall Release(){ return BASE::Release();} \
 HRESULT __stdcall QueryInterface(REFIID iid, void** p){ return
BASE::QueryInterface(iid, p);}

An class declaration then for example looks like:

class TCar : public System::TInterfacedObject, public IRecyclable
{
public:
 INTFOBJECT_IMPL_IUNKNOWN(System::TInterfacedObject)
...

More details to this subject can be found here:

http://docwiki.embarcadero.com/RADStudio/Rio/en/Inheritance_and_Interfaces

8.4.2 Arrays

Delphi distinguishes between Static arrays with a fixed size and Dynamic arrays with a variable size.
Both can be passed to routines as parameters. There is a third kind of array: Open arrays, which can
be passes to routines. Open arrays are arrays of unspecified size with elements, that all have the
same type.

What is translated 99

© 2024 Dr. Detlef Meyer-Eltz

8.4.2.1 Static arrays

Static arrays in C++ are declared similar as in Delphi:

TArray2 = array [1..10] of Char
->
typedef char [10] TArray2

While in Delphi the lower bound and the upper bound have to be defined, in C++ arrays are always
zero based, Array indices are corrected by Aurora2Cpp.

This MAXIDX macro is used, when a static array is passed to a function, which accepts an open array.

8.4.2.2 Dynamic arrays

Dynamic arrays are simulated in the C++Builder C++ by the class DynamicArray:

template <class T> class DELPHIRETURN DynamicArray;

If the output is generated for other compilers std::vector is used instead of a DynamicArray.

MyFlexibleArray: array of Real;
->
DynamicArray < double > MyFlexibleArray; // C++Builder
std::vector < double > MyFlexibleArray; // other compiler

This DynamicArray class has the properties Low, High and Length. By the Length property, the size of
the array can be changed. Dynamic arrays are accepted as parameters only, if the type of the array is
defined explicitly and if the function expects this type.

8.4.2.3 Array indices

While in Delphi the lower bound and the upper bound of a static array have to be defined, in C++
arrays are always zero based, i.e. the undermost index is 0 and the topmost index is the size of the
array minus 1.

If the lower bound of an array isn't null, Aurora2Cpp corrects an index by which the array is accessed
automatically by subtraction of the lower bound.
Example:

var
arr : array [1..3] of integer;
i : integer;
begin
 for i := low(arr) to high(arr) do
 arr[i] := 0;
end;

is translated to:

Aurora2Cpp100

© 2024 Dr. Detlef Meyer-Eltz

int arr [3];
int i;
for (i = 1; i <= 3; i++)
 arr[i - 1] = 0;

8.4.2.4 Initializing arrays

The initialization of arrays in Delphi and C++ looks very similar. For example the initialization of an
array of TStyleRecord's:

TStyleRecord = record
 Name : string;
 Color : TColor;
 Style : TFontStyles;
end;
TStylesArray = array[0 .. 2] of TStyleRecord;

might be:

DefaultStyles : TStylesArray = (
 (Name : 'tnone'; Color : clBlack; Style : []),
 (Name : 'tstring'; Color : clMaroon; Style : []),
 (Name : 'tcomment'; Color : clNavy; Style : [fsItalic])
);

With the C++11 std::initializer_list there is a simple equivalent in C++:

#define arrayinit__0 TSet<int, 0, 255>()
#define arrayinit__1 TSet<int, 0, 255>()
#define arrayinit__2 (TSet<int, 0, 255>() << fsItalic)

const TStylesArray DefaultStyles = {{_T("tnone"), clBlack, arrayinit__0},
{_T("tstring"), clMaroon, arrayinit__1},
{_T("tcomment"), clNavy, arrayinit__2}};

In C++98 this was not possible, because all elements in such lists had to be C built in types.

8.4.2.5 Array parameters

Static and dynamic arrays can be passed in Delphi to the same function, if it expects an open array
parameter. In the C++ translation static and dynamic arrays are incompatible types. Static arrays are
passed to functions as open array. Dynamic array can be passed to a function only, if the type of the
dynamic array is defined explicitly and the function expects this type. Array of const parameters allow
to pass an array on the fly.

8.4.2.5.1 Open array parameters

The concept of open arrays allow arrays of different sizes to be passed to the same procedure or
function.

function Sum(Arr: Array of Integer): Integer;
var

What is translated 101

© 2024 Dr. Detlef Meyer-Eltz

 i: Integer;
begin
 Result := 0;
 for i := Low(Arr) to High(Arr) do
 Result := Result + Arr[i];
end;

In C++ there is no counterpart to the function High, which typically is needed to use the open array.
Therefore in C++ the value of the upper bound of the open array has to be passed together with a
pointer to the first element of the array.

For C++Builder:

int __fastcall Sum(const int* Arr, int Arr_maxidx)
{
 int result;
 int i;
 result = 0;
 for (i = 0 /* Low(Arr)*/; i <= Arr_maxidx /* High(Arr)*/; i++)
 result = result + Arr[i];
 return result;
}

For other compilers a vector is passed:

int Sum(const std::vector<int> Arr)
{
 int result = 0;
 int i = 0;
 int stop = 0;
 result = 0;
 for(stop = (int) Arr.size() - 1 /*# High(Arr) */, i = 0 /*# Low(Arr) */; i <= stop; i++)
 {
 result = result + Arr[i];
 }
 return result;
}

If a temporary set of values is passed as open array parameter to a function, a corresponding array is
produced in the C++ output, which is put in front of the function call.

The function call

Sum([1,2,3]);

is converted for C++ Builder by use of the OPENARRAY macro, which is defined in sysopen.h:

Sum(OPENARRAY(int, (1, 2, 3)));

For other compilers the call is simply converted to

Sum({1, 2, 3});

A special case of open array parameters is the use as var-parameter

8.4.2.5.2 Open array var parameters

A special case of open array parameters is the use as var-parameter as for example at the CopyTo-
method of TStringHelper:

Aurora2Cpp102

© 2024 Dr. Detlef Meyer-Eltz

procedure TStringHelper.CopyTo(SourceIndex: Integer; var Destination: array of Char; DestinationIndex, Count: Integer);
begin
 Move(PChar(PChar(Self)+SourceIndex)^, Destination[DestinationIndex], Count * SizeOf(Char));
end;

For this case d2c_openarray.h defines a special OpenArrayRef-type which can be used to pass
dynamic arrays and strings to such methods.OpenArrayRef has a similar interface as a std::vector.

template <class T>
class OpenArrayRef
{
public:

OpenArrayRef(std::vector<T>& v);
OpenArrayRef(DynamicArray<T>& arr); // C++Builder only
OpenArrayRef(std::basic_string<T>& s);

...

};

By use of this helper class the code above is converted to:

void TStringHelper::CopyTo(int sourceIndex, OpenArrayRef<Char> Destination, int DestinationIndex, int Count)
{
 Move(ustr2pwchar(m_Helped) + sourceIndex, Destination.data() + DestinationIndex, Count * sizeof(Char));
}

There are an additional OpenArrayRef2-type and an OpenArrayRef3-type derived form OpenArrayRef
by which normal fixed arrays respectively ShortString's can be passed to such parameters..

8.4.2.5.3 Static array parameter

A static array is passed to functions as an open array parameter. The additional second parameter for
the upper bound of the array is inserted into the declaration of the function automatically and is passed
to the function automatically too. The upper bound of the array is calculated by means of a macro:

#define MAXIDX(x) (sizeof(x)/sizeof(x[0]))-1

procedure foo(Arr: Array of Char);

procedure bar();
var
 chararray : Array [1..10] of Char;
begin
 foo(chararray);
end;

is translated to:

C++Builder Other

void __fastcall Foo(const Char* Arr, int Arr_maxidx) void Foo(const std::vector<Char> Arr)

What is translated 103

© 2024 Dr. Detlef Meyer-Eltz

{ {
} }

void __fastcall bar() void bar()
{ {
 Char chararray[10/*# range 1..10*/]; Char chararray[10/*# range 1..10*/];
 Foo(OpenArrayEx<Char>(chararray, 10), 9);
} std::vector<Char> test__0(chararray, chararray + 10 - 1 + 1);
 Foo(test__0);
 }

8.4.2.5.4 Dynamic array parameter

A Delphi function accepts a dynamic array as parameter, if it is defined explicitly:

type
strarray = Array of String;
procedure CheckDynamicArray(aSources : strarray);
->

C++Builder
typedef DynamicArray<System::String> strarray;
void __fastcall CheckDynamicArray(strarray& aSources);

Other
typedef std::vector<System::String> strarray;
void CheckDynamicArray(strarray& aSources);

In this case Aurora2Cpp translates such a parameter as a reference to a dynamic array.

Let's compare this case with the case, where the called function has an open array parameter.

Other

For Other compilers than C++Builder there is no surprise, because the expected parameter is the
same for CheckDynamicArray and CheckOpenArray:

procedure CheckOpenArray(const AArray: Array of String);
->
void CheckOpenArray(const std::vector<String>& AArray)

std::vector<String> strarray;
CheckDynamicArray(strarray);
CheckOpenArray(strarray);

C++Builder

For C++Builder however, though the calls of these function look similar in Delphi they lo quite different
in C++:

procedure CheckOpenArray(const AArray: Array of String);
->
void __fascallCheckOpenArray(const String* AArray, int AArray_maxidx)

DynamicArray<String> strarray;
CheckDynamicArray(strarray);

Aurora2Cpp104

© 2024 Dr. Detlef Meyer-Eltz

CheckOpenArray(DynamicArrayPointer(strarray), strarray.High);

Instead of only one parameter here a pointer to the array is passed as a first parameter and the upper
bound (High) of the array is passed as second parameter. The pointer to the array is calculated by the
DynamicArrayPointer function, which returns the NULL pointer, if the array is empty.

template <class T>
const T* DynamicArrayPointer(const DynamicArray<T>& DA, unsigned int Index = 0)
{

if(DA.Length > 0)
return &DA[Index];

 else
return NULL;

}

This function has to be used, because passing "&strarray[0]" throws an exception, when strarray is
empty.

8.4.2.5.5 array of const

"Array of const" parameters look similar to open array parameters.

procedure foo(Args : array of const);

However, while all elements of an open array have the same type, elements of different types can be
passed as an array of const. Indeed the array of const is an open array of TVarRec elements and
TVarRec is a variant type which which can contain the single values of different types.

These array's are reproduced in C++ differently for:

C++Builder
Other compilers

Delphi2C++ can distinguish whether set parameters have to be passed as array of const or normal
set's.

8.4.2.5.5.1 array of const for C++Builder

For C++Builder the value of an array of const is represented by two values: a pointer to a TVarRec
and the index of the last element of the array, which begins at the position which the pointer points to.

procedure foo(Args : array of const);

->

void __fastcall foo (TVarRec* Args, const int Args_Size);

What is translated 105

© 2024 Dr. Detlef Meyer-Eltz

When such a functions is called with a set as argument, the macro ARRAYOFCONST is used into the
C++ output.

foo(['hello', 'world']); -> foo (ARRAYOFCONST(("hello", "world")));

This macro is defined for the C++Builder as:

#define ARRAYOFCONST(values)
OpenArray<TVarRec>values,
OpenArrayCount<TVarRec>values.GetHigh()

The class OpenArray<TVarRec> is constructed in a manner, that it's address is equal to the pointer
TVarRec* used in the signature of foo above.

There is a small difference between Delphi and C++Builder concerning character pointers like 'abc'. In
Delphi 'abc' is stored as VUnicodeString, at C++Builder the TVarRec constructor for character pointers
is used and therefore the value is stored as VPWideChar.

 procedure foo(const constArray : Array of const)

 case constArray[i].VType of
 vtPChar: pac := constArray[i].VPChar;
 vtPWideChar: pwc := constArray[i].VPWideChar;
 vtAnsiString: sa := AnsiString(constArray[i].VAnsiString);
 vtWideString: sw := WideString(constArray[i].VWideString);
 vtUnicodeString: su := UnicodeString(constArray[i].VUnicodeString);
 end;
 // Delphi: foo8['abc') => su = 'abc';
 // C++Builder: foo8['abc') => pwc = 'abc';

8.4.2.5.5.2 array of const for other compilers

array of const is reproduced for other compilers by an ArrayOfConst class defined in d2c_sysvariant.
h, ArrayOfConst is derived from std::vector<TVarRec>.

class ArrayOfConst : public std::vector<TVarRec>

A function declaration with such a parameter looks like:

procedure foo(Args : array of const);

->

void foo (const ArrayofConst& Args);

The call of the function therefore converts as:

foo(['hello', 'world']); -> foo (ArrayofConst&("hello", "world"));

Aurora2Cpp106

© 2024 Dr. Detlef Meyer-Eltz

Since the ArrayOfConst class has the size method in contrast to C++Builder an additional parameter
isn't necessary.

TVarRec

For C++ versions before C++17 TVarRec is defined as a union of different C++ types and a VType
field, which indicates which of that types the actual value has.For C++ 17 TVarRec ist defined as a
std::variant. In both versions the number of different types that can be stored in TVarRec is less than
the number in Delphi, because in C++ there is no difference between WideString and UnicodeString.
Therefore there are double cases in case-/switch-statement.

8.4.2.5.5.3 array of const vs. set's

Aurora2Cpp decides by the expected parameter type how the set argument is translated:

type
TCharSet = set of Char;

procedure foo(arr : array of const);
procedure bar(set : TCharSet);

foo(['h', 'w']);
bar(['h', 'w']);

 ->

typedef System::Set<unsigned char, 0, 255> TCharSet;
#define test__0 (TCharSet() << L'h' << L'w')

void __fastcall foo (const TVarRec* ASet, int ASet_maxidx);
void __fastcall bar (TCharSet ASet);

foo (ARRAYOFCONST(("h", "w")));
bar (test__0);

If such an array is passed further to another function, then Aurora2Cpp takes care that the second
parameter is also passed in the C++ code.

procedure foo2(var arr: array of const);
begin
 bar2(arr);
end;

->

void __fastcall foo2 (TVarRec* arr, const int arr_high)
{
 bar2 (arr, arr_high);
}

8.4.2.6 Returning arrays

In Delphi arrays can be returned from functions by value, but this is not allowed for C-style arrays in C
++. In C++ arrays are passed to functions by reference instead. That's what Aurora2Cpp does too. If
TObjectArray is defined as:

What is translated 107

© 2024 Dr. Detlef Meyer-Eltz

type TObjectArray = array[1..3] of TObject;

or in C++:

typedef TObject* TObjectArray[3/*# range 1..3*/];

the following Delphi function:

function CreateArray: TObjectArray;
begin
 Result[1] := TObject.Create;
 Result[2] := TObject.Create;
 Result[3] := TObject.Create;
end;

becomes in C++ to:

TObjectArray& CreateArray(TObjectArray& result, uniquetype u)
{
 result[1 - 1] = new TObject();
 result[2 - 1] = new TObject();
 result[3 - 1] = new TObject();
 return result;
}

This function receives the array as reference parameter, so it can return the reference without danger,
There is a second uniquetype parameter, which distinguishes the function from a possible overload:

procedure CreateArray(var arr: TObjectArray);
void CreateArray(TObjectArray& arr)

The function call:

procedure Test;
var
 arr2: TObjectArray;
begin
 arr2 := CreateArray;
end;

is translated by Aurora2Cpp to

void Test()
{
 TObjectArray arr2;
 CreateArray(arr2, uniquetype());
}

In this example the returned array reference isn't used at all. It is used however, if CreateArray delivers
the value for another function:

procedure ProcessArray(arr: TObjectArray);

procedure Test2;
begin
 ProcessArray(CreateArray);
end;

This becomes in C++:

void Test2()

Aurora2Cpp108

© 2024 Dr. Detlef Meyer-Eltz

{
 TObjectArray arrayreturn__0; ProcessArray(CreateArray(arrayreturn__0, uniquetype()));
}

At first Aurora2Cpp creates a local TObjectArray, which is passed to the CreateArray function and
finally is directly passed as reference parameter to the other function. The treatment of array
properties is similar.

8.4.3 Enumerated types

The explicit definition of enumeration types is easy to translate.

Day = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
->
enum Day {Mon, Tue, Wed, Thu, Fri, Sat, Sun };

However, an implicit definition is also possible in object Pascal within a variable declaration. It is
decomposed for C++ into an explicit type definition and the real declaration of the variable. The name
of the type is derived from the name of the unit by appending two underscores and a counter.

Day : (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
->
enum test__0 {Mon, Tue, Wed, Thu, Fri, Sat, Sun };
test__0 Day;

If the size of an array is specified by an enumerated type, the size is evaluated from the smallest and
greatest value of the type.

type
 TEnum = (cm1, cm2, cm3, cm4, cm5, cm6);

var
 foo : Array[TEnum] Of String;

->

enum TEnum {cm1, cm2, cm3, cm4, cm5, cm6 };
AnsiString foo [6 /*TEnum*/];

8.4.4 Ranges

Numeric ranges for the specification of the size of an array are reduced to a single value at the
translation into C++. The original limits are inserted in the translated code as a comment.

type foo = array [1..10] of Char
->
typedef char foo [10/* 1..10 */]

Numeric ranges for the definition of the range of a type are left out at the translation.

TYearType = 1..12;
->
int TYearType;/* range 1..12*/

What is translated 109

© 2024 Dr. Detlef Meyer-Eltz

In other cases the range specifications are copied in the C++ code as they are in Delphi and must be
adapted by hand.

8.4.5 Sets

A Delphi set is simulated in the C++ VCL by the class Set:

template<class T, unsigned char minEl, unsigned char maxEl>
class __declspec(delphireturn) Set;

This set class is part of the C++Builder VCL. Users of other compilers can use the emulation of Delphi
set's in "DelphiSets.h" in the Source folder of the Aurora2Cpp-installation. This file is a contribution
from Daniel Flower. The set type "System::Set" can be renamed to TSet, be means of the list of
substitutions of the translator.

The use of set's is translated as follows:

MySet: set of 'a'..'z';

->

System::Set < char/* range 'a'..'z'*/, 97, 122 > MySet;

or

type TIntSet = set of 1..250;

->

typedef System::Set < int/* range 1..250*/, 1, 250 > TIntSet;

If there is no explicit type-declaration of a set, as e.g. in:

MySet := ['a','b','c'];

a helping macro and a helping type is created:

 typedef System::Set < char, 97, 122 > test__0;
 #define test__1 (test__0 ()
 << char (97) << char (98) << char (99))

MySet = test__1;

The names of such helping types can be adjusted to according names in the C++ Builder VCL by
means of the list of substitutions of the translator.
If a temporary set of values is passed as open array parameter to a function, a corresponding array is
produced in the C++ output, which is put in front of the function call.

Aurora2Cpp110

© 2024 Dr. Detlef Meyer-Eltz

8.4.6 Order of type definitions

In Delphi types can be defined by other types, which aren't defined yet. In C++ a type only can be
defined by another type, which is already defined. So the order of the Delphi type definitions has to be
rearranged sometimes.

The following example is taken from the ShellApi.pas:

 PSHFileOpStructA = ^TSHFileOpStructA;
 PSHFileOpStructW = ^TSHFileOpStructW;
 PSHFileOpStruct = PSHFileOpStructA;
 {$EXTERNALSYM _SHFILEOPSTRUCTA}
 _SHFILEOPSTRUCTA = packed record
 Wnd: HWND;
 wFunc: UINT;
 pFrom: PAnsiChar;
 pTo: PAnsiChar;
 fFlags: FILEOP_FLAGS;
 fAnyOperationsAborted: BOOL;
 hNameMappings: Pointer;
 lpszProgressTitle: PAnsiChar; { only used if FOF_SIMPLEPROGRESS }
 end;
 {$EXTERNALSYM _SHFILEOPSTRUCTW}
 _SHFILEOPSTRUCTW = packed record
 Wnd: HWND;
 wFunc: UINT;
 pFrom: PWideChar;
 pTo: PWideChar;
 fFlags: FILEOP_FLAGS;
 fAnyOperationsAborted: BOOL;
 hNameMappings: Pointer;
 lpszProgressTitle: PWideChar; { only used if FOF_SIMPLEPROGRESS }
 end;
 {$EXTERNALSYM _SHFILEOPSTRUCT}
 _SHFILEOPSTRUCT = _SHFILEOPSTRUCTA;
 TSHFileOpStructA = _SHFILEOPSTRUCTA;
 TSHFileOpStructW = _SHFILEOPSTRUCTW;
 TSHFileOpStruct = TSHFileOpStructA;
 {$EXTERNALSYM SHFILEOPSTRUCTA}
 SHFILEOPSTRUCTA = _SHFILEOPSTRUCTA;
 {$EXTERNALSYM SHFILEOPSTRUCTW}
 SHFILEOPSTRUCTW = _SHFILEOPSTRUCTW;
 {$EXTERNALSYM SHFILEOPSTRUCT}
 SHFILEOPSTRUCT = SHFILEOPSTRUCTA;

This is translated to

/*# waiting for definiens
typedef TSHFileOpStructA *PSHFileOpStructA;
/ /# waiting for definiens
typedef TSHFileOpStructW *PSHFileOpStructW;
/ /# waiting for definiens
typedef PSHFileOpStructA PSHFileOpStruct;
*/
 /*$EXTERNALSYM _SHFILEOPSTRUCTA*/

#pragma pack(push, 1)
struct _SHFILEOPSTRUCTA {
 HWND Wnd;
 UINT wFunc;
 PAnsiChar pFrom;
 PAnsiChar pTo;
 FILEOP_FLAGS fFlags;
 BOOL fAnyOperationsAborted;
 void* hNameMappings;
 PAnsiChar lpszProgressTitle; /* only used if FOF_SIMPLEPROGRESS */
};
#pragma pack(pop);
 /*$EXTERNALSYM _SHFILEOPSTRUCTW*/

What is translated 111

© 2024 Dr. Detlef Meyer-Eltz

#pragma pack(push, 1)
struct _SHFILEOPSTRUCTW {
 HWND Wnd;
 UINT wFunc;
 PWideChar pFrom;
 PWideChar pTo;
 FILEOP_FLAGS fFlags;
 BOOL fAnyOperationsAborted;
 void* hNameMappings;
 PWideChar lpszProgressTitle; /* only used if FOF_SIMPLEPROGRESS */
};
#pragma pack(pop);
 /*$EXTERNALSYM _SHFILEOPSTRUCT*/

typedef _SHFILEOPSTRUCTA _SHFILEOPSTRUCT;
typedef TSHFileOpStructA *PSHFileOpStructA;
typedef PSHFileOpStructA PSHFileOpStruct;
typedef _SHFILEOPSTRUCTA TSHFileOpStructA;
typedef TSHFileOpStructW *PSHFileOpStructW;
typedef _SHFILEOPSTRUCTW TSHFileOpStructW;
typedef TSHFileOpStructA TSHFileOpStruct;
 /*$EXTERNALSYM SHFILEOPSTRUCTA*/
typedef _SHFILEOPSTRUCTA SHFILEOPSTRUCTA;
 /*$EXTERNALSYM SHFILEOPSTRUCTW*/
typedef _SHFILEOPSTRUCTW SHFILEOPSTRUCTW;
 /*$EXTERNALSYM SHFILEOPSTRUCT*/
typedef SHFILEOPSTRUCTA SHFILEOPSTRUCT;

8.4.7 Order of lookup

The order by which symbols are looked up is different in Delphi and C++. Delphi tries to find a symbol
in the last used unit at first and if it isn't there Delphi will continue with the previous used unit. If both
used units contain the same symbol, but defined differently, this doesn't matter, because Delphi will
take just the definition, that it finds first. In the following example MyType will be a pointer to an integer:

uses aunit, // PType = ^TestRecord;
 bunit; // PType = ^Integer;

Type MyType = PType;

In C++ however both definitions of PType will be looked up and the code will not compile, because of
the ambiguity. Even worse, if for example bunit would include cunit with another definition of PType, C
++ would lookup this definition too. In C++ therefore the ambiguity has to be resolved with the correct
namespace:

#include "aunit.h" // PType = ^TestRecord;
#include "bunit.h" // PType = ^Integer;

typedef bunit::PType MyType;

Aurora2Cpp112

© 2024 Dr. Detlef Meyer-Eltz

Aurora2Cpp inserts the correct scope expression automatically.

8.4.8 API Integration

API (= Application-Programming-Interface) commands and types are often used in Delphi code. API's
are always written in programming languages other than Delphi and different types and routines are
defined in different API's. Type definitions in different languages and API's are standardized by
conditional compilation and by use of the additional directives $HPPEMIT, $EXTERNALSYM,
$NODEFINE and $NOINCLUDE. This often makes it difficult for the human reader to see what actually
defines a type. Some examples shall be presented here.

BOOL
DWORD
PByte
THandle

8.4.8.1 BOOL

BOOL is an example for the API integration. BOOL is defined in Winapi,Windows.pas as:

 {$EXTERNALSYM DWORD}
 BOOL = LongBool;

Because of the EXTERNALSYM directive, the definition is omitted in the C++ output (in the standard
case, that the EXTERNALSYM directive is applied)..When BOOL is used anywhere in the code, the
original definition of the Windows API is used.

It is recommended to suppress the namespace for API files. Otherwise BOOL would be qualified in the
created C++ headers as

Wainapi::Windows::BOOL

8.4.8.2 DWORD

DWORD is an example for the API integration. DWORD is defined in Winapi,Windows.pas as:

 DWORD = System.Types.DWORD;
 {$EXTERNALSYM DWORD}

and in System.Types.pas it is defined as:

 DWORD = FixedUInt;
 {$EXTERNALSYM DWORD}

What is translated 113

© 2024 Dr. Detlef Meyer-Eltz

Because in both cases the EXTERNALSYM directive is applied, these definitions are ignored and
DWORD simply remains DWORD at the translation to C++. Indeed DWORD is defined in the Windows
API in minwindef.h as:

typedef unsigned long DWORD;

It's not necessary to know, that FixedUInt is defined in System.pas for Windows as

 FixedUInt = LongWord;

In the type-map you can see:

8.4.8.3 PByte

PByte is an example for the API integration. PByte is defined in Winapi,Windows.pas as:

 PByte = System.Types.PByte;

and in System.Types.pas it is defined as:

 PByte = System.PByte;
 {$EXTERNALSYM PByte}

In System.pas it is defined as:

 PByte = ^Byte; {NODEFINE PByte} { defined in sysmac.h }

Here the NODEFINE directive applies. For C++Builder PByte is defined in symac.h as

 typedef Byte* PByte;

For other compilers than C++Builder the definitions are incongruent. The definition in Winapi.Windows.
pas becomes in C++ to:

namespace Winapi {
 namespace Windows {

typedef System::Types::PByte PByte;

But the automated translation would ignore the EXTERNALSYM in System.Types.pas. Therefore this
definition is inserted manually into System.Types.h,

Aurora2Cpp114

© 2024 Dr. Detlef Meyer-Eltz

typedef System::PByte PByte;

In System.h, the definition has to exist:

typedef unsigned char* PByte;

Indeed the last definition is inserted two times in System.h: one time inside of the namespace System
and one time in the global namespace. The latter definition is needed, because it is recommended to
suppress namespaces for API headers. When the namespace "Winapi.Windows" is ignored, PByte
has to exist

Remark:

FFor C++Builder Winapi.Windows.hpp defines:

using System::PByte;

But an explicit reference to System::Types::PByte then fails.

8.4.8.4 THandle

THandle is an example for the API integration. THandle is defined in Winapi,Windows.pas as:

THandle = System.THandle;

System.pas defines:

 THandle = NativeUInt;
 {$NODEFINE THandle}

The NODEFINE directive is applied here, because for C++Builder there is a definition in Winapi.
Windows.hpp:

typedef NativeUInt THandle;

For other compilers in Winapi.Windows.h this definition exists.

typedef System::THandle THandle;

But instead of defining it in Windows.h as NativeUInt, it si defined there as:

typedef HANDLE THandle;

Handle is defined in winnt.h as "void*". (If THandle were defined as NativeUInt = uint64_t.
HINSTANCE could not be assigned to it without cast.)

Like PByte also THandle is defined twice: one time inside of the System namespace and a second

What is translated 115

© 2024 Dr. Detlef Meyer-Eltz

time as a global type. Therefore the translation works as well with API namespaces as with
suppressed API namespaces;

8.5 Variables

In Delphi declarations of variables in done in a section of code which begins with the var keyword. A
single declaration then consists in a name followed by a double point and the type:

var
 str : AnsiString;

In C++ the type is followed by the name.

AnsiString str;

But beneath these "normal" variables, special kinds of variables also can be declared in sections
starting with:

threadvar
resourcestring

8.5.1 threadvars

In Delphi the keyword threadvar is used to declare variables using the thread-local storage.

threadvar
 x: Integer;

C++Builder as well as gcc have an according keyword __thread::

int __thread x;

Visual C++ uses:

declspec(thread) int x;

8.5.2 Resource strings

Delphi compiler has built-in support for resource strings whereas in C++ you have to edit resource files
manually and insert them into your project. If a project is prepared in that manner the resource strings
can be loaded either by the functions LoadStr and FmtLoadStr of the unit Sysutils or by the function
LoadResourceString in the System unit. The latter function is used in C++Builder, when it includes
Delphi files with resource strings. The first approach of Aurora2Cpp was, to use this method too. But it
has proved to be too complicated, because it needs instances of ResourceString structures with a
pointers to the module handles of the modules, where the strings are included.
Aurora2Cpp simply declares resource strings as normal strings:

Aurora2Cpp116

© 2024 Dr. Detlef Meyer-Eltz

resourcestring
SIndexError = 'Index out of bounds: %d';

then the translated code will be:

const System::Char SIndexError[] = L"Index out of bounds: %d";

8.6 Operators

Some of the names of Delphi operators are the same in C++ as for example '>' and '>=', others are
named differently as for example the assignment operator ':=' is '=' in C++ and the equality operator '='
is '==' in C++. At the translation from Delphi to C++ for most operators it suffices just to substitute the
name of the operator. But there are two difficulties:

In C++ two manners of use of the Delphi operators "and" and "or" have to be distinguished.
The operator precedence in Delphi and C++ is different.
The is-operator and the in-operator have to be substituted in special ways.

Also operator overloading has a different syntax.

8.6.1 boolean vs. bitwise operators

In C++ two manners of use of the Delphi operators "and" and "or" have to be distinguished.

If these operators are between expressions which result in boolean values, then the complete
expression results in a boolean value in accordance with the boolean logic. The boolean "and"
operator in C++ is "&&" and the boolean "or" operator in C++ is "||".

If the "and" operator or the "or" operator is, however, enclosed by expressions which don't yield
boolean values, then the results are connected bitwise. In this case the corresponding C++ operators
are "|" and " &".

8.6.2 operator precedence

In complex expressions, rules of precedence determine the order in which operations are performed.
Delphi has four levels:

level operators
1. @, not
2. *, /, div, mod, and, shl, shr, as
3. +, -, or, xor
4. =, <>, <, >, <=, >=, in, is

The first level is the highest precedence and the fourth level is the lowest. The equivalent operators
are spread in C++ on 11 levels.

level operators
1. (address) & ! ~ // dereference *, unarary + -
2. * / %
3. + -

What is translated 117

© 2024 Dr. Detlef Meyer-Eltz

4. << >>
5. < > <= >=
6. == !=
7. &
8. ^
9. |
10. &&
11. ||

To reproduce the order in which expressions are performed in Delphi appropriate parenthesis must be
inserted in C++.

For example, while in Delphi the And and Or operators have a higher priority than the equality
operators, in C++ equality operators are evaluated first. So at the translation of the following condition:

if attr And flag = flag then

according parenthesis are set in the C++ output:

if((attr & flag) == flag)

8.6.3 is-operator

In C++ test with dynamic_cast corresponds to the is operator for the dynamic type check in Delphi.

ActiveControl is TEdit
->
std::dynamic_cast<TEdit*>(ActiveControl)

If the overwritten System.pas is used, the is-operator is substituted by the macro, ObjectIs :

ObjectIs(ActiveControl, TEdit*)

ObjectIs is defines as:

#define ObjectIs(xObj, xIs) dynamic_cast< xIs >(xObj)

If a VCL class is tested for a Meta-class, the translated code looks like:

Obj->ClassNameIs(targetClass->ClassName())

8.6.4 in-operator

The in-operator of Delphi is substituted by the "Contains" function of the Set class in C++.
There is a special translation of the in-Operator in a for-in loop.

8.7 Assignments

A simple assignment statement in Delphi looks like:

Aurora2Cpp118

© 2024 Dr. Detlef Meyer-Eltz

A := B;

This becomes in C++ to

A = B;

However, some simple assignments in Delphi are producing warnings or even bugs in C++. Therefore

explicit casts, especially for void pointers or
special assignment routines

are necessary in C++.

8.7.1 Explicit casts

Generally, if a variable of one type is assigned to another variable with another type this is possible
without problems, if no information is lost. For example, if a shortint variable is assigned to an integer
variable, there is no problem, because the size of shortint is one byte and the size of an integer
variable is at least two bytes. If the assignment goes the other way round however in C# an explicit
cast is necessary:

 si : shortint;
 i : integer;
begin
 i := si;
 si := i;

becomes to:

 signed char si = 0;
 int i = 0;
 i = si;
 si = (signed char) i;

Aurora2Cpp always inserts the according casts, also when such casts are necessary to pass
parameters to functions. Especially such casts often are necessary for void pointers.

8.7.2 void pointer casts

In Delphi frequently void pointers are casted to specific pointer types. C++ compilers produce error
messages here, if the cast isn't made explicitly. Aurora2Cpp automatically inserts according cast's to
avoid such error messages. E.g.

var
 a : Pointer;
 b : PInteger;
begin
 b := a;

->

void *a;
PInteger b;
b = (PInteger) a;

An according cast takes place, if a pointer to another type is expected as parameter in a function call.

What is translated 119

© 2024 Dr. Detlef Meyer-Eltz

List.Add(Item, Pointer(1));

->

List->Add(Item, (TObject*) ((void*) 1));

8.7.3 Special assignments

In Delphi the contents of array variables of the same type can be assigned directly. In C++ the
assignment has to be done via pointers to the first array element by means of the functions "strcpy" or
"memcpy":

Assignments to character arrays is done with "strcpy".

var
 chr10 : array[1..10] of char;
begin
 chr10 := 'abcdefghij';

->

char chr10[10/*# range 1..10*/];
strcpy(chr10, "abcdefghij");

Assignments of other static arrays are done with "memcpy".

procedure test(xArr: TObjectArray);
var
 arr: TObjectArray;
begin
 arr := xArr;
end;

->

void __fastcall test(const TObjectArray& xArr)
{
 TObjectArray arr;
 memcpy(arr, xArr, sizeof(TObjectArray));
}

8.8 Routines

There are two kinds of routines in Delphi: procedures and functions.

If a routine has no parameters in contrast to Delphi the calls of the routine in C# have to end with
parenthesis.

foo; -> foo();

There are different kinds of parameters, which have to be translated accordingly. Sometimes
parameters cannot be passed directly as in Delphi, but a temporary variable has to be created at fist,
which then is passed.

Delphi nested routines also are reproduced in C++11.

Aurora2Cpp120

© 2024 Dr. Detlef Meyer-Eltz

8.8.1 Procedures and functions

Procedures are translated to void-functions

procedure foo; -> void foo();

The translation of functions is more complicated, because there aren't return-statements in Object-
Pascal. Instead, the return value is assigned to a variable Result, which is implicitely declared in each
function. In C++ this variable must be declared explicitly and returned at the end of the function. Also
to the Exit-function has to be replaced by a return-statement in C++.

function foo(i : Integer) : bar; -> bar __fastcall foo (int i)
begin {
 Result := 0; bar result;
 if i < 0 then result = 0;
 EXIT if (i < 0)
 else return result;
 Result := 1; else
end; result = 1;
 return result;

In addition, the function name itself acts as a special variable that holds the function’s return value, as
does the predefined variable Result. So the same translation as above results from:

function foo(i : Integer) : bar;
begin
 foo := 0;
 if i < 0 then
 EXIT
 else
 foo := 1;
end;

8.8.2 Parameter types

Parameters either are passed to routines by value or be reference.Strings are passed as references,
but behave as if they were passed by value (because of its copy-on-write technique). Further there are
constant parameters and untyped parameters: Different cases of single parameters and how they are
converted are listed below. Array parameters are discussed in the array section.

type

MyRecord = record
end;

PInteger = ^Integer;

procedure Foo(param : Integer);
procedure Foo(const param : Integer);
procedure Foo(var param : Integer);
procedure Foo(out param : Integer);

procedure Foo(param : String);
procedure Foo(const param : String);
procedure Foo(var param : String);
procedure Foo(out param : String);

procedure Foo(param : Pointer);
procedure Foo(const param : Pointer);

What is translated 121

© 2024 Dr. Detlef Meyer-Eltz

procedure Foo(var param : Pointer);
procedure Foo(out param : Pointer);

procedure Foo(param : PChar);
procedure Foo(const param : PChar);
procedure Foo(var param : PChar);
procedure Foo(out param : PChar);

procedure Foo(param : PInteger);
procedure Foo(const param : PInteger);
procedure Foo(var param : PInteger);
procedure Foo(out param : PInteger);

procedure Foo(param : MyRecord);
procedure Foo(const param : MyRecord);
procedure Foo(var param : MyRecord);
procedure Foo(out param : MyRecord);

// untyped parameters
procedure Foo(const param);
procedure Foo(var param);
procedure Foo(out param);

->

->

 C++Builder Other compilers

void __fastcall Foo(int param); void Foo(int param);
void __fastcall Foo(int param); void Foo(int param);
void __fastcall Foo(int& param); void Foo(int& param);
void __fastcall Foo(int& param); void Foo(int& param);
void __fastcall Foo(System::String param); void Foo(System::String param);
void __fastcall Foo(const System::String& param); void Foo(const System::String& param);
void __fastcall Foo(System::String& param); void Foo(System::String& param);
void __fastcall Foo(System::String& param); void Foo(System::String& param);
void __fastcall Foo(void* param); void Foo(void* param);
void __fastcall Foo(const void* param); void Foo(const void* param);
void __fastcall Foo(void*& param); void Foo(void*& param);
void __fastcall Foo(void*& param); void Foo(void*& param);
void __fastcall Foo(System::PChar param); void Foo(System::PChar param);
void __fastcall Foo(const System::PChar param); void Foo(const System::PChar param);
void __fastcall Foo(System::PChar& param); void Foo(System::PChar& param);
void __fastcall Foo(System::PChar& param); void Foo(System::PChar& param);
void __fastcall Foo(PInteger param); void Foo(PInteger param);
void __fastcall Foo(const PInteger param); void Foo(const PInteger param);
void __fastcall Foo(PInteger& param); void Foo(PInteger& param);
void __fastcall Foo(PInteger& param); void Foo(PInteger& param);
void __fastcall Foo(const MyRecord& param); void Foo(const MyRecord& param);
void __fastcall Foo(const MyRecord& param); void Foo(const MyRecord& param);
void __fastcall Foo(MyRecord& param); void Foo(MyRecord& param);
void __fastcall Foo(MyRecord& param); void Foo(MyRecord& param);

// untyped parameters // untyped parameters
void __fastcall Foo(const void* param); void Foo(const void* param);
void __fastcall Foo(void** param); void Foo(void** param);
void __fastcall Foo(void** param); void Foo(void** param);

Passing a record by value is a special case. The record may be changed inside of the routine, but the
change may not have an effect outside of the routine. Therefore Aurora2Cpp passes the parameter as
a constant reference, but automatically creates a copy of the parameter inside of the routine. The
original parameter is renames to avoid a conflict. E.g.:

void Foo(const MyRecord& cparam)
{
 MyRecord param = cparam;

Aurora2Cpp122

© 2024 Dr. Detlef Meyer-Eltz

There is a problem with var pointer parameters. If a pointer of a special type is passed the C++
compiler will produce an error. For example:

void* ReallocMem(void*& P, size_t Size);

char* buf;

ReallocMem(buf, 10); // error: conversion from char* into "void *&" isn't possible

That's the reason, why C++Builder doesn't knows ReallocMem, but only ReallocMemory:

void * __cdecl ReallocMemory(void * P, NativeInt Size);

A good solution for Aurora2Cpp would be to define ReallocMem as a template function like:

template <typename T>
void ReallocMem(T*& P, size_t Size)
{
 ...

But this could be a solution for special functions of the RTL/VCL only. Non-template user routines
hardly can be converted into routines with templates, because this would require to move them
together with their implementations into the header. Therefore the solution above has been chosen for
 Aurora2Cpp. In cases where such routines are used, Aurora2Cpp automatically inserts a typecast for
the parameter:

ReallocMem((void*&) Buf, 10);

Untyped var-parameters are converted to void** parameters. An address is passed as argument and
inside of the routine the parameter is dereferenced.

8.8.3 Adaption of parameters

When parameters are passed to functions in the Delphi source code, the translator tries to match the
signature of the function with the type of the variable which is passed. The function call:

Print(a);

might be translated as one of the following alternatives:

Print(a);
Print(&a);
Print(a.c_str());

E.g. the signature of Print might be:

What is translated 123

© 2024 Dr. Detlef Meyer-Eltz

procedure Print(const Buffer);

and the parameters might be of the type Integer or void* or String.

8.8.4 Temporary variables

In Delphi it is possible to pass combinations of string literals with strings as parameters like in the
following example:

function Greet(Msg : PChar): Boolean;
begin
 // doing something with Msg
end;

procedure GreetSomeone(Name : String);
begin
 if Greet(PChar('hello ' + Name + '!')) then
 Exit;
 ...
end;

In C++ a string literal can be added to a string, but not the other way round. In such cases Aurora2Cpp
automatically creates a temporary string from the string literal to which the following strings and string
literals can be added, like:

String("hello ") + Name + "!";

To make a character pointer from this construct, another temporary string would have to be created,
like:

String(String("hello ") + Name + "!").c_str();

But, if such a construct would be passed to a function like:

bool __fastcall Greet(char* Msg)
{
 // doing something with Msg
}

the resulting character pointer is destroyed as soon as the destructors of the temporary strings is
executed. So, inside of the body of the called function, the character pointer isn't valid any more.
Therefore a temporary variable is created and enclosed into a block together with the statement of the
function call:

void __fastcall GreetSomeone(String Name)
{
 {
 AnsiString Str__0 = AnsiString("hello ") + Name + "!";
 if (Greet(Str__0.c_str()))
 return;;
 }
 ...
}

In a similar way temporary variables are constructed for temporary array parameters:

procedure Log(strings : array of String);

Log(['one', 'two', 'three']);

This becomes to:

void __fastcall Log(const String* strings, int strings_maxidx)

Aurora2Cpp124

© 2024 Dr. Detlef Meyer-Eltz

{
 String tmp__0[3];
 tmp__0[0] = "one";
 tmp__0[1] = "two";
 tmp__0[2] = "three";
 Log(tmp__0, 3);
}

A special case is "array of const". This case is handled by a macro.
If a function has a set-Parameter, temporary sets are constructed in the C++ translation by means of
a definition.

8.8.5 Calls of inherited procedures and functions

For each class, which inherits from another one a typedef is inserted into the C++ code, like

class foo: public bar {
 typedef bar inherited;

So, if in the Delphi code an inherited routine is called by the identifier "inherited" followed by the name
of the routine, it can be translated easily to C++ accordingly.

inherited.foo -> inherited::foo()

When "inherited" has no identifier after it, it refers to the inherited method with the same name as the
enclosing method. In this case, inherited can appear with or without parameters; if no parameters are
specified, it passes to the inherited method the same parameters with which the enclosing method was
called. For example,

procedure foo.bar(b : BOOLEAN);
begin
 inherited;
end;

->

void __fastcall foo::bar (bool b)
{
 inherited::bar(b);
}

8.8.6 Nested routines

There aren't nested functions in C++.

with C++11 they can be simulated elegantly by use of lambda-functions.
with C++98 inner functions are replace by new memberfunctions

8.8.6.1 Nested routines with C++11

There aren't nested functions in C++, but they can be simulated by use of C++11 lambda-functions.

type
TNested = class
public
 iClassVar : Integer;

What is translated 125

© 2024 Dr. Detlef Meyer-Eltz

 function Test(iOuterParam, iTwiceParam : Integer; s : String): Integer;
end;

implementation

function TNested.Test(iOuterParam, iTwiceParam : Integer; s : String): Integer;
const
 cSeparate = ':';
var
 iFunctionVar : Integer;

 procedure NestedTest(iInnerParam, iTwiceParam : Integer);
 begin
 result := iClassVar + iOuterParam + iFunctionVar + iInnerParam + iTwiceParam;
 end;

begin
 iClassVar := 1;
 iFunctionVar := 2;
 NestedTest1(3, 4);
 result := result + iTwiceParam;
end;

->

class TNested : public System::TObject
{
 typedef System::TObject inherited;
public:
 int iClassVar;
 int Test(int iOuterParam, int iTwiceParam, System::String s);
 void InitMembers(){iClassVar = 0;}
public:
 TNested() {InitMembers();}
};

//---
int TNested::Test(int iOuterParam, int iTwiceParam, String s)
{
 int result = 0;
 const DWideChar cSeparate = _T(':');
 int iFunctionVar = 0;
//---
 auto NestedTest = [&](int iInnerParam, int iTwiceParam) -> void
 {
 result = iClassVar + iOuterParam + iFunctionVar + iInnerParam + iTwiceParam;
 };
 iClassVar = 1;
 iFunctionVar = 2;
 NestedTest1(3, 4);
 result = result + iTwiceParam;
 return result;
}

Like nested routines in Delphi lambda functions can access variables from the outer scope. The
capture clause [&] ensures that access is via reference.

In the special case, that a sub-routine is called reflexively, the auto variable cannot be used. (VisualC
produces the error C2064: term does not evaluate to a function taking N arguments. "The expression
does not evaluate to a pointer to a function"). DelphiXE2C11 generates an explicit forward declaration
in such cases. For example:

 function nested : boolean;

 function nested_reflexive(depth :Integer) : boolean;
 begin
 if depth = 2 then
 result := true
 else
 result := nested_reflexive(depth + 1);
 end;

Aurora2Cpp126

© 2024 Dr. Detlef Meyer-Eltz

 begin
 result := nested_reflexive(0);
 end;

->

function<bool (int)> nested_reflexive;

bool __fastcall nested()
{
 bool result = false;

 nested_reflexive = [&](int depth) -> bool
 {
 bool result = false;
 if(depth == 2)
 result = true;
 else
 result = nested_reflexive(depth + 1);
 return result;
 };
 result = nested_reflexive(0);
 return result;
}

This compiles and works well.

8.8.6.2 Nested routines with C++98

There aren't nested functions in C++. For C++98 in contrast to C++11 the automatic translation of
nested Delphi functions replaces the inner functions by new free functions or member functions. The
parameters and the declared variables of the outer function are passed to these new functions.

type

TNested = class
public
 iClassVar : Integer;
 function Test(iOuterParam, iTwiceParam : Integer; s : String): Integer;
end;

implementation

function TNested.Test(iOuterParam, iTwiceParam : Integer; s : String): Integer;
const
 cSeparate = ':';
var
 iFunctionVar : Integer;

 procedure NestedTest(iInnerParam, iTwiceParam : Integer);
 begin
 result := iClassVar + iOuterParam + iFunctionVar + iInnerParam + iTwiceParam;
 end;

begin
 iClassVar := 1;
 iFunctionVar := 2;
 NestedTest1(3, 4);
 result := result + iTwiceParam;
end;

->

class TNested : public System::TObject
{

What is translated 127

© 2024 Dr. Detlef Meyer-Eltz

 #include "Test_friends.inc"
public:
 int iClassVar;
 void __fastcall NestedTest(int iInnerParam, int iTwiceParam, int& result, int& iOuterParam, int& iFunctionVar);
 int __fastcall Test(int iOuterParam, int iTwiceParam, System::String s);
};

void __fastcall TNested::NestedTest(int iInnerParam, int iTwiceParam, int& result, int& iOuterParam, int& iFunctionVar)
{
 result = iClassVar + iOuterParam + iFunctionVar + iInnerParam + iTwiceParam;
};

int __fastcall TNested::Test(int iOuterParam, int iTwiceParam, String s)
{
 int result = 0;
 const WideChar cSeparate = L':';
 int iFunctionVar = 0;
 iClassVar = 1;
 iFunctionVar = 2;
 NestedTest(3, 4, result, iOuterParam, iFunctionVar);
 result = result + iTwiceParam;
 return result;
}

It is taken into account that at multiple nesting possible parameters which aren't needed in a function
itself but in a function subordinated to it are passed through.

In contrast to the solution with lambda functions however, there may be difficulties with undeclared
types at the declaration of the inner functions.

Other possibilities to translate nested functions are discussed here:

http://www.gotw.ca/gotw/058.htm

8.9 Special RTL/VCL-functions

Some functions of the Delphi RTL/VCL either don't exist in the C++Builder counterpart or have
become to member functions of the String classes. The conversion of calls of the latter kind of
functions into calls of the according member functions is done automatically by Aurora2Cpp. For
Delphi I/O routines there is a ready translated C++ file. In addition the calls of some compile time
functions and some other special functions is done automatically. See the following examples:

var
 i, j : Integer;
 p1 : Pointer;
 s1, s2 : String;
 iset : set Of int;
 obj : TObject;
 e :TEnum;
 / std::string
begin
 Assigned(obj); -> (obj != NULL);
 Copy(s1, i, j); -> s1.SubString(i, j); / s1.substr(i - 1, j);
 Dec(i); -> i--;
 Dec(i, j); -> i -= j;
 Dec(e1); -> e1--;
 Delete(s1, i, j); -> s1.Delete(i, j); / s1.erase(i - 1, j);
 Dispose(p1); -> delete p1;
 Exclude(iset, i); -> iset >> i;
 FreeAndNil(p1); -> delete p1; p1 = NULL;
 High(TEnum); -> /*# High(TEnum) */ 2;

Aurora2Cpp128

© 2024 Dr. Detlef Meyer-Eltz

 High(strarray); -> strarray.High;
 High(type); -> High<type>(); // defined in d2c_system.pas
 Inc(i); -> i++;
 Inc(i, j); -> i += j;
 Inc(e1); -> e1++;
 Include(iset, i); -> iset << i;
 Insert(s1, s2, i); -> s2.Insert(s1, i); / s2.insert(i - 1, s1);
 Length(s1); -> s1.Length(); / s1.length();
 Length(strarray); -> strarray.Length;
 Low(TEnum); -> /*# Low(TEnum) */ 0;
 Low(strarray); -> strarray.Low;
 Low(type); -> Low<type>(); // defined in d2c_system.pas
 New(obj); -> obj = new obj;
 PAnsiChar(s1); -> s1.c_str();
 Pos(s1, s2); -> s2.Pos(s1); / no longer from 1.4.9 on: s2.find(s1); (at least 1 should be added)
 SetLength(s1, i); -> s1.SetLength(i); / s1.resize(i);
 Str(d:8:2, S); -> Str(d, 8, 2, S);

 RegisterComponents(s1, [a,b,c]); ->

 TComponentClass classes[4] = { __classid(a), __classid(b), __classid(c) };
 RegisterComponents(s1 , classes, 3);

You can switch off the special treatment of this functions..

see also: RegisterComponents

8.9.1 I/O routines

Delphi has text and file I/O library routines, which are quite different from C++ I/O routines. So they
cannot be substituted automatically by according routines of the C++ standard library. A direct
counterpart of the Delphi in C++ was made instead by translation and adaptation of the according
parts of the free pascal FCL. It is contained in the files d2c_sysfile.h and d2c_sysfile.cpp in the source
folder of the Aurora2Cpp installation. The GNU Lesser General Public License which apply to the FCL
also applies to these files. The translation was made for Windows with the 0x86 processor. The best
matching declarations are contained in d2c_system.pas.

With d2c_file.h and d2c_sysfile.cpp the behavior of the Delphi I/O routines is reproduced in C++ quite
exactly. For example:

var
 t : TextFile;

begin
 AssignFile(t, 'Test.txt');
 ReWrite(t);

becomes:

 TTextRec t;
 AssignFile(t, "Test.txt");
 ReWrite(t);

There are differences however in the cases, that Read(Ln)/Write(Ln) routines are called with several
arguments and that formatting parameters are appended in the Write(Ln) routines.

The BlockRead and BlockWrite routines only work with plain old data types (POD types), which
don't contain pointers to data. In C++, types may not be POD types any longer, which in Delphi are
such types. E.g. structures containing Strings will not be POD types in C++ any longer.

What is translated 129

© 2024 Dr. Detlef Meyer-Eltz

8.9.2 Read(Ln)/Write(Ln) routines

The Read(Ln)/Write(Ln) routines can be called in Delphi with an arbitrary number of arguments.
Aurora2Cpp divides them into a series of function calls:

WriteLn('Hello ', name, '!');

becomes:

WriteLn("Hello "); WriteLn(name); WriteLn('!');

8.9.3 Formatting parameters

The Write(Ln) and the Str routines can be called with Width and Decimals formatting parameters in
Delphi, by use of a special syntactical extension:

 Write(t, d:8:2);
 Str(d:8:2, S);

In the translated code, the Width and Decimals become normal comma separated parameters.

 Write(t, d, 8, 2);
 Str(d, 8, 2, S);

This is possible also for the Write(Ln) procedure, which accepts further output parameters too,
because such calls are divided into a series calls by Aurora2Cpp.

8.9.4 RegisterComponents

Since components are an important feature of Delphi, a special translation routine was made for their
registration in C++Builder too.

RegisterComponents('NewPage',[TCustom1, TCustom2]);
->
TComponentClass classes[2] = {__classid(TCustom1), __classid(TCustom2)};
RegisterComponents("NewPage", classes, 1);

For other compilers this function is useless.

8.10 Properties

Delphi allows to access class fields or arrays via properties. Each class may have one default array-
property which can be accessed in a simplified notation.

8.10.1 Field properties

The following example is taken from the Embarcadero documentation:

type
 THeading = 0..359;
 TCompass = class(TControl)

Aurora2Cpp130

© 2024 Dr. Detlef Meyer-Eltz

 private
 FHeading: THeading;
 procedure SetHeading(Value: THeading);
 published
 Property Heading: THeading read FHeading write SetHeading;
 // ...
 end;

C++Builder

For C++Builder the"__property" key word is a counterpart to the Delphi properties. With that the code
snippet above becomes to:

typedef int /*0..359*/ THeading;

class TCompass : public TControl
{
 typedef TControl inherited;

private:
 THeading FHeading;
 void __fastcall SetHeading(THeading Value);
__published:
 __property THeading Heading = { read = FHeading, write = SetHeading };
 // ...
};

Visual C++

Visual C++ also has compiler specific properties:

__declspec(property(get=get_func_name, put=put_func_name)) declarator

While in Delphi and for C++Builder the field can be set simply after the read or write specifier, Visual
C++ needs functions for for the corresponding get and put specifiers. If in the original Delphi code a
field is used, Aurora2Cpp creates an according function for it, as described for other compilers below.
Such functions also are created, if the original access function is private - as in the example - or
protected or if the type of the property is an array and for indexed properties.

class TCompass : public TControl
{
 typedef TControl inherited;

private:
 THeading FHeading;
 void SetHeading(THeading Value);
public:
 /*property Heading : THeading read FHeading write SetHeading;*/
 THeading ReadPropertyHeading() { return FHeading;}
 void WritePropertyHeading(THeading Value){SetHeading(Value);}
 __declspec(property(get = ReadPropertyHeading, put = WritePropertyHeading)) THeading Heading;
 // ...
};

In Visual C++ base class properties can be used in derived classes too, which in Delphi has to be
declared explicitly.

Other compilers

What is translated 131

© 2024 Dr. Detlef Meyer-Eltz

For other compilers.properties are eliminated. The read and write specifications are replaced by two
functions whose names are derived from the name of the original property. As default the expression
ReadProperty or WriteProperty is put in front of this name respectively. You can change these prefixes
in the option dialog.

class TCompass : public TControl
{
 typedef TControl inherited;

private:
 THeading FHeading;
 void SetHeading(THeading Value);
public:
 /*property Heading : THeading read FHeading write SetHeading;*/
 THeading ReadPropertyHeading() { return FHeading;}
 void WritePropertyHeading(THeading Value){SetHeading(Value);}
 // ...
};

The fields or methods, which originally were set in the property are now accessed via these functions.
While the visibility of these fields or methods usually is private or protected, the access functions which
are created by Aurora2Cpp 2.x are public. In the ReadProperty function the originally field is returned
or a call of the original return function is carried out. In the WriteProperty function the assignment to
the original field is carried out and the parameters are passed to the originally method.

At all places in the remaining code where a property is read, the ReadProperty function is used and
the WriteProperty function is called in all places, where originally a value is assigned to a property.

 if Compass.Heading = 180 then GoingSouth;
 Compass.Heading := 135;
->
 if(Compass->ReadPropertyHeading() == 180)
 GoingSouth();
 Compass->WritePropertyHeading(135);

8.10.1.1 Changing the property prefixes

For other compilers than C++Builder Delphi properties are replaced by a pair methods. If the default
prefixes ReadProperty and WriteProperty are left, then it is very unlikely that there will be conflicts with
existing names in the code. The situation is different when these prefixes are changed to preferred
prefixes such as "get" and "set".

Aurora2Cpp132

© 2024 Dr. Detlef Meyer-Eltz

The first thing to note, however, is that the supplied C++ code for the Delphi RTL must also be
adapted. This can be done simply by searching and replacing.

For the generation of the property code several cases have to be distinguished.

Let's assume that in the call the following methods are defined already:

 function getName: String;
 procedure setIdent(AIdent: String);
 function getValue: String;
 procedure setValue(AValue: String);
 function getNote: String;
 procedure setNote(ANote: String);

1. There is no problem for for following property:

 property Caption : String read FCaption write FCaption;
->
 System::String& getCaption() {return FCaption;}
 void setCaption(const System::String& Value){FCaption = Value;}

the newly created methods getCaption and setCaption didn't exist yet.

2. For the next property Name Aurora2Cpp will reuse the existing method getName, which also was
used in the original Delphi code. Only the setName method has to be created newly.

 property Name : String read getName write FName;
->
 void setName(const System::String& Value){FName = Value;}

Accordingly for:

 property Ident : String read FIdent write setIdent;
->
 System::String& getIdent() {return FIdent;}

3: No new method has to be created, if all access methods exist already and they were used in the
original Delphi code too:

 property Value : String read getValue write setValue;
->

4. A problem arises, when the getter and setter methods that Aurora2Cpp generates exist already, but
are not used in the original Delphi code:

 property Note : String read FNote write FNote;
->
 System::String& getNote() {return FNote;}
 void setNote(const System::String& Value){FNote = Value;}

In this case Aurora2Cpp writes a warnings into the output, like:

//# conflict with existing procedure name
or
//# conflict with existing function name

By means of the list of identifiers either the case of the name of the existing method can be changed or
the case of the property might be change, so that there will be no naming conflict any more.

What is translated 133

© 2024 Dr. Detlef Meyer-Eltz

8.10.2 Indexed properties

Values which are specified by an index can be set or get by an indexed property. The index either can
be a constant as in the example below or a variable as in the example following afterwards:

 TRectangle = class
 private
 fCoords: array[0..3] of LongInt;
 function GetCoord(Index: Integer): LongInt;
 procedure SetCoord(Index: Integer; Value: LongInt);
 public
 Property Left : LongInt Index 0 read GetCoord write SetCoord;
 Property Top : LongInt Index 1 read GetCoord write SetCoord;

 Property Right : LongInt Index 2 read GetCoord write SetCoord;
 Property Bottom : LongInt Index 3 read GetCoord write SetCoord;
 end;

->

C++Builder

class TRectangle : public TObject
{
 typedef TObject inherited;

private:
 int fCoords[4/*# range 0..3*/];
 int __fastcall GetCoord(int Index);
 void __fastcall SetCoord(int Index, int Value);
public:
 __property int Left = { index = 0, read = GetCoord, write = SetCoord };
 __property int Top = { index = 1, read = GetCoord, write = SetCoord };
 __property int Right = { index = 2, read = GetCoord, write = SetCoord };
 __property int Bottom = { index = 3, read = GetCoord, write = SetCoord };
public:
 __fastcall TRectangle() {}
};

Other compilers

class TRectangle : public TObject
{
 typedef TObject inherited;

private:
 int fCoords[4/*# range 0..3*/];
 int GetCoord(int Index);
 void SetCoord(int Index, int Value);
public:
 /*property Left : int read GetCoord write SetCoord;*/
 int ReadPropertyLeft() { return GetCoord(0);}
 void WritePropertyLeft(int Value){SetCoord(0, Value);}
 /*property Top : int read GetCoord write SetCoord;*/
 int ReadPropertyTop() { return GetCoord(1);}
 void WritePropertyTop(int Value){SetCoord(1, Value);}
 /*property Right : int read GetCoord write SetCoord;*/

Aurora2Cpp134

© 2024 Dr. Detlef Meyer-Eltz

 int ReadPropertyRight() { return GetCoord(2);}
 void WritePropertyRight(int Value){SetCoord(2, Value);}
 /*property Bottom : int read GetCoord write SetCoord;*/
 int ReadPropertyBottom() { return GetCoord(3);}
 void WritePropertyBottom(int Value){SetCoord(3, Value);}
public:
 TRectangle() {}
};

Again there is a simplified notation for C++Builder, while for other compilers only published Access
methods can be created

TRectangle = class
private
 fCoords: array[0..3] of LongInt;
 function GetCoord(Index: Integer): LongInt;
 procedure SetCoord(Index: Integer; Value: LongInt);
public
 Property Coords[Index: Integer] : LongInt read GetCoord write SetCoord;
end;

->

C++Builder

class TRectangle : public TObject
{
 typedef TObject inherited;

private:
 int fCoords[4/*# range 0..3*/];
 int __fastcall GetCoord(int Index);
 void __fastcall SetCoord(int Index, int Value);
public:
 __property int Coords[int Index] = { read = GetCoord, write = SetCoord };
public:
 __fastcall TRectangle() {}
};

Other compilers

class TRectangle : public TObject
{
 typedef TObject inherited;

private:
 int fCoords[4/*# range 0..3*/];
 int GetCoord(int Index);
 void SetCoord(int Index, int Value);
public:
 /*property Coords [Index: integer]: int read GetCoord write SetCoord;*/
 int ReadPropertyCoords(int Index) { return GetCoord(Index);}
 void WritePropertyCoords(int Index, int Value){SetCoord(Index, Value);}
public:
 TRectangle() {}
};

What is translated 135

© 2024 Dr. Detlef Meyer-Eltz

8.10.3 Default array-property

If a class has a default property, you can access that property in Object-Pascal with the abbreviation
object[index], which is equivalent to object.property[index]. For C++Builder the translated code looks
like:

type
 // Class with Indexed properties
 TRectangle = class
 private
 fCoords: array[0..3] of Longint;
 function GetCoord(Index: Integer): Longint;
 procedure SetCoord(Index: Integer; Value: Longint);
 public
 property Coords[Index: Integer] : Longint
 read GetCoord write SetCoord; Default;
 end;

->

C++Builder

class TRectangle : public TObject
{
 typedef TObject inherited;

private:
 int fCoords[4/*# range 0..3*/];
 int __fastcall GetCoord(int Index);
 void __fastcall SetCoord(int Index, int Value);
public:
 __property int Coords[int Index] = { read = GetCoord, write = SetCoord/*# default */ };
public:
 __fastcall TRectangle() {}
};

Other compilers

class TRectangle : public TObject
{
 typedef TObject inherited;

private:
 int fCoords[4/*# range 0..3*/];
 int GetCoord(int Index);
 void SetCoord(int Index, int Value);
public:
 /*property Coords [Index: integer]: int read GetCoord write SetCoord default ;*/
 int ReadPropertyCoords(int Index) { return GetCoord(Index);}
 void WritePropertyCoords(int Index, int Value){SetCoord(Index, Value);}int operator[](int Index) { return
 GetCoord(Index); }
public:
 TRectangle() {}
};

If there is an instance ot TRectangle the array can be accessed in Delphi simply by rect [i]. For C+
+Builder this becomes to:

rect->Coords[i]

 and for other compilers:

 rect->WritePropertyCoords(i, 0);

 ... = rect->ReadPropertyCoords(i);

Aurora2Cpp136

© 2024 Dr. Detlef Meyer-Eltz

8.10.4 Array property

As arrays cannot be returned by functions in C++ in contrast to Delphi, arrays may not be properties in
C++ in contrast to Delphi. If there is such a property in Delphi it will be converted to according getter or
setter functions in C++. The following code uses the same array TObjectArray and the same function
CreateArray which are defined for the previous example for returned arrays.

TArrayClass = class
private
 FArray : TObjectArray;
public

 property Arr : TObjectArray read FArray write FArray;

end;

->

class TArrayClass : public TObject
{
 typedef TObject inherited;
private:
 TObjectArray FArray;
public:
 /*property arr : TObjectArray read FArray write FArray;*/
 TObjectArray& ReadPropertyarr(TObjectArray& result) const {ArrAssign<3>(result, FArray); return result;}
 void WritePropertyarr(TObjectArray& Value){ArrAssign<3>(FArray, Value);}
};

ArrAssign is the common name of some template functions, which assign arrays to each other. The
template parameter <3> specifies, that the arrays have three elements in one dimension.

In the following Test3 function the array of the class is initialized by means of the CreateArray function:

procedure Test3;
var
 C : TArrayClass;
begin
 C := TArrayClass.Create;
 C.arr := CreateArray;
end;

In the C++ translation an additional TObjectArray is needed,wich is passed to the CreateArray funtion
at first. There the elements of the array are initialized. Finally the array is is returned from CreateArray
and becomes the array parameter of the writer function of the property.

void Test3()
{
 TArrayClass* C = NULL;
 C = new TArrayClass();
 TObjectArray arrayproperty__0; C->WritePropertyarr(CreateArray(arrayproperty__0, uniquetype()));
}

What is translated 137

© 2024 Dr. Detlef Meyer-Eltz

8.11 Statements

The translation of most statements is straightforward. There are some specials with:

for loop's
finally-statements
with-statements
Initialization/Finalization

8.11.1 for loop's

In Delphi there are for-loops where a variable is incremented or decremented to or down to a special
value and there are for-in loops. For the first kind of loops the for-loop parameters are evaluated only
once, before the loop runs. This complicates a correct translation to C++ a little bit. The number of
loops in the following example is determined by the variable n:

procedure test;
var
 I, n : Integer
begin
 n := 10;
 for I:=1 to n do
 begin
 DoSomething;
 n := 11;
 end;
end;

A straightforward translation of this code would be;

int I = 0, n = 0;
n = 10;
for (I = 1; I <= n; I++)
{
 DoSomething();
 n = 11;
}

However, in C++ an additional loop would be executed, because n is changed in the loop and the
number of loops is recalculated with this new value. Therefore a correct translation has to remember
the original loop count like in the following code:

int I = 0, n = 0;
n = 10;
for (int stop = n, I = 1; I <= stop; I++)
{
 DoSomething();
 n = 11;
}

Aurora2Cpp can produce both code variants, depending on the option to Use "stop" variable in for-loop
or not..
Aurora2Cpp also checks the type of the loop variable to avoid a sublime error.

8.11.1.1 for-in loop

for-in loops are a special kind of Delphi for-loops which have the syntax:

Aurora2Cpp138

© 2024 Dr. Detlef Meyer-Eltz

var
 a : typename;
begin
for a in B do
 DoSomething(a);

where 'a' may be a character in a string 'B' or 'a' may be an element of an array 'B' or 'a' may be a
member of a set 'B'. These cases mostly are translated to a C++11 range-based for loop:

typename a;

for (typename element_0 : B)
{
 a = element_0;
 DoSomething(a);
}

For C++Builder, in the special case, that 'B' is an open array, a cast is necessary. That may for
example look like:

void __fastcall ArrayOfConstLoop(const T* B, int B_maxidx)
{
 T a;

 for(auto element_0 : *(T(*)[B_maxidx])B)
 {
 a = element_0;
 DoSomething(a);
 }
}

The necessary iterators for sets and open arrays are defined in d2c_systypes.h.

For container types that implement a GetEnumerator() method the for loop looks like:

while(B->GetEnumerator()->MoveNext())
{

T a = B->GetEnumerator()->Current
DoSomething(a);

}

8.11.1.2 loop variable

The variable that is incremented in a for loop is declared like any other variable (before Delphi 10.4) at
the beginning of the function body. However, converting this declaration to C++, like the other
variables, can lead to a sublime error. This is demonstrated in the following example:

function ToHigh: boolean;
var
 C: WideChar;
 I: Integer;
begin
 I := 0;
 for C := Low(WideChar) to High(WideChar) do
 I := Integer(C);
 result := I = Integer(High(WideChar)); // 65535
end;

The straight forward translation of this code - without use of a stop variable - results in:

What is translated 139

© 2024 Dr. Detlef Meyer-Eltz

bool __fastcall ToHigh()
{
 bool result = false;
 WideChar C = L'\0'; // <= wrong type
 int I = 0;
 I = 0;
 for(C = 0 /*# Low(WideChar) */; C <= 65535 /*# High(WideChar) */; C++)
 {
 I = ((int) C);
 }
 result = I == 65535 /*# High(WideChar) */; // 65535
 return result;
}

However, executing this code will result in an infinite loop, because in C++ the loop is only broken after
the loop variable has a value higher than the maximum value of a wide character variable "High
(WideChar)". Therefore the type of the loop variable must be changed so that it can get this value.

bool __fastcall ToHigh()
{
 bool result = false;
 int C = 0; // <= corrected type
 int I = 0;
 int stop = 0;
 I = 0;
 for(stop = 65535 /*# High(WideChar) */, C = 0 /*# Low(WideChar) */; C <= stop; C++)
 {
 I = C;
 }
 result = I == 65535 /*# High(WideChar) */; // 65535
 return result;
}

Aurora2Cpp checks this case and automatically changes the variable type during code translation;
also accordingly for the "downto" case.

8.11.2 case statements

The translation of Delphi case statements to C++ switch statements mostly is straightforward like:

 Case colour of
 Red : result := 1;
 Green : result := 2;
 Blue : result := 3;
 Yellow : result := 4;
 else result := 0;
 end;

->

 switch(colour)
 {
 case Red:
 result = 1;
 break;
 case Green:
 result = 2;
 break;
 case Blue:

Aurora2Cpp140

© 2024 Dr. Detlef Meyer-Eltz

 result = 3;
 break;
 case Yellow:
 result = 4;
 break;
 default:
 result = 0;
 break;
 }

In Delphi, not only single constant expressions can be used to define a case, but also lists and
subranges of such constants.
Their elements must then be output as separate cases for C++.

 Case Key of
 #13, #27:

->

 switch(Key)
 {
 case L'\x0d':
 case L'\x1b':

However, if such subranges are very large (more than 256 elements) Aurora2Cpp moves them into the
default section of the C++ switch-statement:

 Case Key of
 #32..High(WideChar):
 begin
 ...
 end;
 #8:
 ...
 else
 ...

->

 switch(Key)
 {
 case L'\x08':
 ...
 break;
 default:
 if(Key >= L'\x20' && Key <= 65535 /*# High(WideChar) */)
 {
 ...
 }
 else
 {
 ...
 }

What is translated 141

© 2024 Dr. Detlef Meyer-Eltz

8.11.3 finally

The finally keyword after a try block opens a block of code, which is executed regardless of what
happened in the try block. Here some cleanup can be done and acquired resources can be freed. C+
+Builder has an according key word __finally , which does the same in C++, but this is not a standard
keyword. For other compilers finally statements have to be simulated. Aurora2Cpp takes a solution
which is presented by Craig Scott::

https://crascit.com/2015/06/03/on-leaving-scope-part-2/

By use of the presented OnLeavingScope class the translation of a try-finally statement looks as
follows:

var
 obj : TObject;
begin

try
 obj := TObject.Create(NIL);
 ...
finally
 obj.free;
end;

->

#include "OnLeavingScope.h"

TObject* Obj = NULL;
{
 auto olsLambda = onLeavingScope([&]
 {
 delete Obj;
 });
 Obj = new TObject(NULL);
}

olsLambda is a class, which gets a lambda function as parameter to its constructor. This function is
stored internally and gets executed in the destructor of the class. The include "OnLeavingScope.h" is
inserted automatically.

Aurora2Cpp142

© 2024 Dr. Detlef Meyer-Eltz

8.11.4 with-statements

In C++ there are no with-statements. Therefore Aurora2Cpp inserts a temporary helping variable of the
with-type. This type is easily obtained by use of the C++11 auto keyword:

type TDate = record -> struct TDate {
 Day: Integer; int Day;
 Month: Integer; int Month;
 Year: Integer; int Year;
end; };

procedure test(OrderDate: TDate); void Test(TDate OrderDate)
begin {
 with OrderDate do /*# with OrderDate do */
 if Month = 12 then {
 begin auto& with0 = OrderDate;
 Month := 1; if(with0.Month == 12)
 Year := Year + 1; {
 end with0.Month = 1;
 else with0.Year = with0.Year + 1;
 Month := Month + 1; }
end; else
 with0.Month = with0.Month + 1;
 }
 }

8.11.5 Initialization/Finalization

There isn't any direct counterpart for the sections initialization and finalization of a unit in C++. These
sections are therefore translated as two functions which contain the respective instructions. For a unit
called Test, this would be:

void Tests_initialization();
void Tests_finalization();

Delphi2Cpp offers two methods to generate automatic calls to these functions. Sometimes the
initialization of a unit requires that the initialization of another unit has already been done. In this case,
the option to create a special file that will reproduce the Delphi initialization order must be selected. If
there are no such dependencies, you can choose the option that initialization and finalization takes
place automatically in each file.

1. Calling the initialzation/finalization procedures automatically per File

1. a) using an internal initialization-finalization class

If this option is chosen, a global variable of a class is written. The initialization routine is called in the
constructor of this class and the finalization routine is called in the destructor. When the program
starts, the global variables are first created and the units are also initialized. The following example is
taken from SynEditHighlighter.pas:

initialization
 G_PlaceableHighlighters := TSynHighlighterList.Create;
finalization
 G_PlaceableHighlighters.Free;
 G_PlaceableHighlighters := nil;

->

What is translated 143

© 2024 Dr. Detlef Meyer-Eltz

void SynEditHighlighter_initialization()
{

G_PlaceableHighlighters = new TSynHighlighterList();
}

void SynEditHighlighter_finalization()
{

delete G_PlaceableHighlighters;
G_PlaceableHighlighters = nullptr;

}

class SynEditHighlighter_unit
{
public:

SynEditHighlighter_unit()
{

SynEditHighlighter_initialization();
}
~SynEditHighlighter_unit()
{

SynEditHighlighter_finalization();
}

};

SynEditHighlighter_unit _SynEditHighlighter_unit;

This however is only the short version.

1 b). Manual correction of nitialization-finalization calls:

If there are cases in which the initialization of a unit requires that of another unit, the code generated
for option 1 can be improved manually. Therefore Delphi2Cpp already generates code that allows
these corrections to be made easily. The declarations:There will be an additional static boolean
variable, that prevents that the initialization or finalization is executed twice. E.g.:

static bool SynEditHighlighter_Initialized = false;

void SynEditHighlighter_initialization()
{

if(SynEditHighlighter_Initialized)
return;

SynEditHighlighter_Initialized = true;

G_PlaceableHighlighters = new TSynHighlighterList();
}
...

This allows the developer to easily call the corresponding functions from another file to enforce a
specific order of initialization or finalization. A subsequent call by the constructor/destructor does no
harm.

2. Using an external initialization-finalization class

Alternatively, there is the option to have the order of the initialization-finalization calls controlled by an
external initialization-finalization class. In this case, an additional file is generated that defines a class
whose constructor calls all initialization procedures of the various units in the correct order and whose
destructor ensures that the units are finalized accordingly.

The name of the control file is formed by appending the "_initexit" to the name of the Delphi2Cpp

Aurora2Cpp144

© 2024 Dr. Detlef Meyer-Eltz

project option used for translation. The class name additionally is preceded by a 'C'. For example, the
SynEdit.prj project options are used to translate the SynEdit components. The name of the control file
then is:

Synedit_initexit.cpp / Synedit_initexit.h

and the generated class is:

class CSynedit_initexit {
public:
 CSynedit_initexit() {Synedit_init();}
 ~CSynedit_initexit() {Synedit_exit();}
};

Synedit_init and Synedit_exit are two procedures in which all initialization and finalization procedures
of the units used in the project are called.

An instance of the CSynedit_initexit class has to be created inside of the main file.

CSynedit_initexit _Synedit_initexit;

Then all initializations and finalization are executed, before the main function starts.

For the classic C++Builder the class has not to be used. Two pragmas take care for the calls to the
initialization and finalization routines instead:

#pragma startup Synedit_init
#pragma exi Synedit_exit

The disadvantage of using initialization finalization files is that if a file is used in different projects, a
separate initialization finalization file must be created for each one. For example, there are various
demo applications for the Synedit components, each of which only requires some of the units.
However, the Synedit components form a special stroke of luck. The SynEditHighlighter unit must be
initialized before all special highlighters, but only if the components are to be registered. This is not
necessary for the demo applications. The use of the initialization-finalization class without instantiation
prevents conflicting initialization from occurring at all.

8.12 class-reference type

In Delphi methods of a class can be called without creating an instance of the class at first. That's
similar to C++ static methods. But in C++ it is not possible to assign classes as values to variables and
then to create instances of the class by calling a virtual constructor function from such a class
reference. This is possible in Delphi however, as shown in the following example code:

type
 TBase = class
 end;

 TBaseClass = class of TBase;

 TDerived = class(TBase)
 end;

 TDerivedClass = class of TDerived;

function make(Base: TBaseClass): TBase;
begin
 result := Base.Create; // will create TBase or TDerived in dependence of the passed parameter
end;

What is translated 145

© 2024 Dr. Detlef Meyer-Eltz

The variables TBaseClass and TDerivedClass are called "class references" of TBase or TDerived
respectively.C++Builder has a special extension, which allows the creation of class references, but the
creation of class instances from them isn't possible, only some other class functions can be called
from them.

With Aurora2Cpp the code above can be translated. The way of translation is different for C++Builder
and other compilers.
A creation of class instances from class references is possible only, if the class has a standard
constructor.

Alternatively also the macros DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC might help.

8.12.1 C++Builder __classid

 C++Builder has as counterpart to Delphi's TClass:

typedef TMetaClass* TClass

A Delphi class reference type is defined as TClass in C++Builder:

type TBaseClass = class of TBase;

->

typedef System::TMetaClass TBaseClass;

Variables of this type can be defined and classes can be assigned to them. For C++Builder the
__classid function is a special extension, to get class references.

var
 p : TBase;
 bc :TBaseClass;
begin
 bc := p;

->

TBase* p = nullptr;
TBaseClass bc = nullptr;
bc = __classid(p);

With such class references code such as:

 ClassRef := Sender.ClassType;

 while ClassRef <> NIL do
 begin
 s := ClassRef.ClassName);
 ClassRef := ClassRef.ClassParent;
 end;

can be translated pretty well as:

TClass ClassRef = Sender->ClassType();

while(ClassRef != nullptr)
{
 s = ClassRef->ClassName();

Aurora2Cpp146

© 2024 Dr. Detlef Meyer-Eltz

 ClassRef = ClassRef->ClassParent();
}

It is not possible however, to create an instance of a class from such a TClass. To do that, a small
Delphi unit has to be added to the C++Builder project. The unit CreateClass.pas, which is delivered
with Aurora2Cpp contains the simple function:

function CreateObject(C: TClass) : TObject;
begin
 Result := C.Create();
end;

When this unit is added to a C++Builder project, automatically a C++ header file "CreateClass.hpp" is
created with the declaration:

extern DELPHI_PACKAGE System::TObject* __fastcall CreateObject(System::TClass C);

That function can be used now in the C++ code to create class instances from class references:

function make(Base: TBaseClass): TBase;
begin
 result := Base.Create;
end;

->

TBase* make(TBaseClass* Base)
{
 TBase* result = nullptr;
 result = (TFBase*) CreateObject(Base);
 return result;

}

If the class referenc of a class which is derived from TBase is passed to the make-function an instance
of that class will be created.

p := make(TDerived); :

->

P = make(__classid(TDerived));

.

8.12.2 Other compiler ClassRef

As for C++Builder where a classTMetaClass is defined, for other compilers such a class is defined too
in the code delivered with Aurora2Cpp. In addition the type TClass is defined as a pointer to
TMetaClass:

typedef TMetaClass* TClass

TMetaClass is the class reference type for TObject and it is the base class of all class reference types
of all other classes. These class references are defined as instances of a class ClassRef, which is a
generic class:

template <typename Class>
class ClassRef

where the template parameter denotes the original class. That way for a hierarchy of classes, which

What is translated 147

© 2024 Dr. Detlef Meyer-Eltz

are derived one from another, there is a parallel hierarchy of class references. The class references
are implemented as singletons and only created, if needed. To avoid unwanted side effects at the
creation of these classes the variable _CreatingClassInstance can be used. The exact definition of the
ClassRef class is tricky and works only, because Aurora2Cpp also inserts some additional helper code
into every class declaration. The following code demonstrates how a small class factory using class
references is converted from Delphi to C++:

type
 TBase = class
 public
 function GetName: String; virtual;
 end;

 TBaseClass = class of TBase;

 TDerived = class(TBase)
 public
 function GetName: String; override;
 end;

 TDerivedClass = class of TDerived;

implementation

function make(Base: TBaseClass): TBase;
begin
 result := Base.Create;
end;

function testTactory: boolean;
var
 s : String;
 p : TBase;
begin
 p := make(TDerived);
 result := p.GetName = 'TDerived';
end;

->

class TBase : public System::TObject
{
public:
 typedef System::ClassRef<TBase> ClassRefType;
 ClassRefType* ClassType() const {return System::class_id<TBase>();}
 TBase* Create() {return new TBase();}
 static TBase* SCreate() {return new TBase();}
 System::String ClassName() {return L"TBase";}
 static System::String SClassName() {return L"TBase";}

 TBase();
};

typedef TBase::ClassRefType TBaseClass;

class TDerived : public TBase
{
public:
 typedef System::ClassRef<TDerived> ClassRefType;
 ClassRefType* ClassType() const {return System::class_id<TDerived>();}
 TDerived* Create() {return new TDerived();}
 static TDerived* SCreate() {return new TDerived1();}
 System::String ClassName() {return L"TDerived";}
 static System::String SClassName() {return L"TDerived";}
 TDerived();
};

Aurora2Cpp148

© 2024 Dr. Detlef Meyer-Eltz

typedef TDerived::ClassRefType TDerivedClass;

TBase* make(TBaseClass* Base)
{
 TBase* result = nullptr;
 result = Base->Create();
 return result;
}

bool testfactory()
{
 bool result = false;
 String s;
 TBase* P = nullptr;
 P = make(class_id<TDerived>());
 result = P->GetName() == L"TDerived";
 return result;

}

The central point in this code is the call of the class_id-function:

P = make(class_id<TDerived>());

The class_id-function fulfills the same purpose as the __classid-function in C++Builder code: it delivers
class references. In the example the class_id-function delivers the class reference to the class
TDerived.

If TDerived wouldn't have a standard constructor, instead of the line

 static TDerived* Create() {return new TDerived();}

the line

 static TDerived* Create() {ThrowNoDefaultConstructorError(ClassName()); return nullptr}

would have been written. If TDerived were an abstract class, the line would have been:

 static TDerived* Create() {ThrowAbstractError(ClassName()); return nullptr}

Other uses of Delphi class references are reproduced in C++ too. For example:

 ClassRef := Sender.ClassType;

 while ClassRef <> NIL do
 begin
 s := ClassRef.ClassName);
 ClassRef := ClassRef.ClassParent;
 end;

is converted to:

TClass ClassRef = Sender->ClassType();

while(ClassRef != nullptr)
{
 s = ClassRef->ClassName();
 ClassRef = ClassRef->ClassParent();
}

However only a minimal frame for class reference manipulations is created and there have to be

What is translated 149

© 2024 Dr. Detlef Meyer-Eltz

standard constructors for all classes with used class references.

8.12.2.1 _CreatingClassInstance

To simulate class references in C++, a hierarchy of default constructed class instances can be used.
However, the construction of these instances may have unwanted side effects or the construction can
fail, if certain conditions are not yet met, such as the existence of certain global variables. In such
cases the global boolean variable

bool _CreatingClassInstance;

which is defined in d2c_sysmeta can be used. Before the class reference simulating class instance is
constructed, this variable will be set to true automatically and afterwards it will be set to false again.
You may modifiy the code for the constructor like

XXX::XXX
{
 if (_CreatingClassInstance)
 return;

 ...
}

8.13 Reading and Writing

Delphi has Stream classes to read and write files similar to those in C#. But there are also an classic,
non-object oriented Pascal routines for this purpose. For this classic approach there are three file
types, which have no counterpart in C#

1. File; declares an untyped file to read or write binary data
2. Text; declares a text file to read or write ASCII data
3. File of [type]; declares a typed file to read and write sequences of that type (records).

Aurora2Cpp provides the files d2c_sysfile.h/d2c_sysfile.cpp where these three file types are converted
to C++ structures. d2c_sysfile also contains all the Delphi routines converted to C++ that are used to
read and write to the console and to files by use of these file types.

d2c_sysfile is derived from the FreePascal library:

 http://www.freepascal.org/

FreePascal is published under the terms of GNU Lesser General Public License and therefore the
same terms apply to d2c_sysfile..

8.14 Message handlers

Message handlers are methods that implement responses to dynamically dispatched messages.
Delphi’s VCL uses message handlers to respond to Windows messages.

In Delphi a message handler is created by including the message directive in a method declaration,
followed by an integer constant between 1 and 49151 which specifies the message ID.

Aurora2Cpp150

© 2024 Dr. Detlef Meyer-Eltz

The routine for handling the message can be declared as a macro:

#define VCL_MESSAGE_HANDLER(msg,type,meth) \

 case msg: \
 meth(*((type *)Message)); \
 break;

This macros has to be embedded into two other macros:

#define BEGIN_MESSAGE_MAP virtual void __fastcall Dispatch(void *Message) \

 { \
 switch (((PMessage)Message)->Msg) \
 {

#define END_MESSAGE_MAP(base) default: \

 base::Dispatch(Message);\
 break; \
 } \
 }

For example the two message handlers:

 procedure WMVScroll(var Message: TWMVScroll);
 Message WM_VSCROLL;
 procedure WMHScroll(var Message: TWMHScroll);
 Message WM_HSCROLL;

are translated to C++Builder C++:

 MESSAGE void __fastcall WMVScroll(TWMVScroll& Message)
 /*# WM_VSCROLL */;
 MESSAGE void __fastcall WMHScroll(TWMHScroll& Message)
 /*# WM_HSCROLL */;

 BEGIN_MESSAGE_MAP
 VCL_MESSAGE_HANDLER(WM_VSCROLL, TWMVScroll, WMVScroll)
 VCL_MESSAGE_HANDLER(WM_HSCROLL, TWMHScroll, WMHScroll)
 END_MESSAGE_MAP(TPanel)

8.15 Absolute address

By the word absolute a variable can be declared in Delphi that resides at the same address as an
existing variable. This behavior is reproduced in C++ by declaring the new variable as a reference to
the existing variable. If necessary according typecast's are inserted.

var
 Size: Int64;
 SizeRec: TInt64Rec absolute Size;

->

What is translated 151

© 2024 Dr. Detlef Meyer-Eltz

 __int64 Size = 0;
 TInt64Rec& SizeRec = *(TInt64Rec*) &Size;

8.16 Method pointers

Delphi's event handling is implemented by means of method pointers. Such method pointers are
declared by addition of the words "of object" to a procedural type name. E.g.

TNotifyEvent = procedure(Sender: TObject) of object;

According to the Delphi help "a method pointer is really a pair of pointers; the first stores the address
of a method, and the second stores a reference to the object the method belongs to". Such method
pointers can point to any member functions in any class. For example by means of a method pointer
the event handling of a special instance of a control - e.g. TButton - can be delegated to the instance
of another class - e.g. TForm .

Delphi's method pointers cannot be translated as standard C++ member function pointers, because
they can point to other member functions of the same inheritance hierarchy only. That's why Borland
has extended the standard C++ syntax by the keyword __closure. With this keyword method pointers
with the same properties as Delphi's method pointers can be declared in Borland C++. E.g. the event
above is:

typedef void __fastcall (__closure *TNotifyEvent)(TObject* Sender);

For other compilers C++Builder closures can be substituted by means of the new standard functions in
C++11. The definition of the TNotifyEvent above then becomes to:

typedef std::function<void (TObject*)> TNotifyEvent;

A class instance - e.g. TButton* pButton - can be bound to a member function of this signature - e.g.
TButton::OnClick - by means of std::bind1st and std::mem_fun:

TNotifyEvent ev = std::bind1st(std::mem_fun(&TMyButton::OnClickHandle), pButton);

Once a handler is assigned, further operations with the event are looking as simple as in the original
Delphi code. E.g.:

// calling the event
Button1.OnClick(Button1); -> Button1->OnClick(Button1);

// assigning the event handler to another button
Button2.OnClick = Button1.OnClick; -> Button2->OnClick = Button1->OnClick;

Remark: In contrast to Aurora2Cpp the first version of Aurora2Cpp used a similar solution from Tamas
Demjen :

http://tweakbits.com/articles/events/index.html

Aurora2Cpp152

© 2024 Dr. Detlef Meyer-Eltz

8.17 Libraries

Aurora2Cpp can translate library files for Dll's like the following example from the Delphi help. It shows
a DLL with two exported functions, Min and Max.

library MinMax;

function min(X, Y: integer): integer; stdcall;
begin
 if X < Y then min := X else min := Y;
end;

function max(X, Y: integer): integer; stdcall;
begin
 if X > Y then max := X else max := Y;
end;

exports
 min,
 max;

begin
end.

->

extern "C" __declspec(dllexport) int __stdcall max(int X, int Y);
extern "C" __declspec(dllexport) int __stdcall min(int X, int Y);

int __stdcall min(int X, int Y)
{
 int result = 0;
 if (X < Y)
 result = X;
 else
 result = Y;
 return result;
}

int __stdcall max(int X, int Y)
{
 int result = 0;
 if (X > Y)
 result = X;
 else
 result = Y;
 return result;
}

The Delphi help recommends: "If you want your DLL to be available to applications written in other
languages, it’s safest to specify stdcall in the declarations of exported functions." However, the names
of such exported functions get a special "decorated" signature in order to facilitate language features
like overloading. To avoid such name mangling a module definition (.def-) file can be used in the Dll
project. Aurora2Cpp creates module definition files automatically.

New features since Delphi 7 153

© 2024 Dr. Detlef Meyer-Eltz

9 New features since Delphi 7

The Delphi language has been extended since Delphi 7 by following items:

Unicode
Unit scope names (Dotted filenames)
Operator overloading
Class helpers
Class-like records
Nested classes
Anonymous methods
Generics
for-in loops
Inline variable declarations

In contrast to Delphi2Cpp, these features are not supported in Aurora2Cpp. If such features appear in
the Delphi code, either the parsing or the output of the C++ code is aborted by throwing an exception
or the output does not result in correct C++ code.

10 DFM-Translator

Delphi units, which either define Delphi VCL forms or frames are associated with form modules. These
form modules are files with the extension dfm. The code in a DFM-files determines how forms or
frames are constructed by means of the members of the visual component library (VCL). The code in
DFM-files is not Object Pascal, but describes graphical interfaces in an abbreviated way. Aurora2Cpp
can parse the DFM-code and and translate it into C++ code to create the form at runtime. Therefore
the option to convert the DFM code has to be enabled.

Per default all lines of the DFM code are converted to C++ assignment statements. However, when the
Delphi compiler reads the DFM code, more can actually happen than simple assignments.
Aurora2Cpp tries to reproduce the complex loading process in the most intuitively simple way possible
when dynamically creating the components at runtime. To reproduce the additional effects just
mentioned, Aurora2Cpp uses some special routines. Instead of assigning values directly to properties,
they are passed as arguments to the routines in which additional actions can then be carried out.
Based on some exemplary examples, there are a number of such predefined routines. More routines
can be defined by the user if necessary.

The names of these routines are formed in a systematic manner from the types and properties
involved. The routines themselves should be declared and defined in the file d2c_dfm.h/d2c_dfm.cpp.
In order to trigger the output of these routines into the generated code, Aurora2Cpp must be
configured accordingly..There is a dialog with the label DFM Conversion, in which the list of types and
properties for which such special assignment routines should be issued will be defined.

The code will be written into the constructor of the form or into the constructor of a frame. If the
components are created dynamically at runtime the form file is not needed any more.

10.1 Normal assignments

By default, when DFM translation is enabled in the processor options, all lines of DFM code are
converted to C++ assignment statements. As an example of such a conversion, the original code and

Aurora2Cpp154

© 2024 Dr. Detlef Meyer-Eltz

the resulting code in the constructor of a TForm are compared line by line:below:

 DFM code C++ code

 Object AboutBox: TAboutBox
 Left = 229 Left = 229;
 Top = 166 Top = 166;
 BorderStyle = bsDialog BorderStyle = TFormBorderStyle::bsDialog;
 Caption = 'About RichEdit' Caption = L"About RichEdit";

 Object OKButton: TButton OKButton = new TButton(this);
 Left = 269 OKButton->Left = 269;
 Top = 208 OKButton->Top = 208;
 Width = 75 OKButton->Width = 75;
 Height = 25 OKButton->Height = 25;
 Cancel = True OKButton->Cancel = true;
 Caption = 'OK' OKButton->Caption = L"OK";
 Default = True OKButton->Default = true;
 ModalResult = 2 OKButton->ModalResult = 2;
 TabOrder = 0 OKButton->TabOrder = 0;
 end OKButton->Parent = this;
 end

Only the creation of the button goes beyond a simple assignment: in C++ the OKButton is explicitely
created at runtime and the form is set as its parent.

10.2 Special assignments

Some cases where the assignments in the DFM file cannot be directly translated into C++ statements.
This is due to the dependencies between properties and because the DefineProperties procedure,
which is called when the component is loaded, can be overridden individually for each component.
Some special cases are listed below:

Internally used properties
Design time only properties
Binary data
Protected properties
TDataSet
TSplitter
TToolBar
Sets
Lists
Collections
Setting the parent
List of predefined DFM routines

In these cases, DFM conversion routines can be executed instead. Such procedures can be defined
by the user, others are predefined.

10.2.1 DefineProperties

Unpublished data of a component can be written into a form file and read from a form file by means of
the overwritten function DefineProperties. These data often concern the presentation of non-visible
components at design time. Such data are not used, when the code of a DFM-file is translated to C++.
Other effects of DefineProperties can be simulated in Aurora2Cpp using special assignment

DFM-Translator 155

© 2024 Dr. Detlef Meyer-Eltz

procedures

Here is a short sketch of how "DefineProperties" comes into play when creating the components: when
Delphi creates a new form (TApplication.CreateForm), a TResourceStream is created in which the
DFM content is read with a TReader to create the complete tree of the components on the from.
Individual components are read and generated by the function:

function TReader.ReadComponent(Component: TComponent): TComponent;

In the procedure

procedure TReader.ReadProperty(AInstance: TPersistent);

first the name of the property is read and then its value. Normally, a setter method is determined here
via property information (TProperty) for the property, which can be used to set the value. If this is not
possible, the component method DefineProperties is called to set the value. DefineProperties has
access to the internal state of the component and can manipulate it. This access cannot be fully
reproduced with Aurora2Cpp simple approach of dynamically creating the components.

10.2.2 DFM conversion routines

The names for the DFM conversion routines are constructed in a systematically way: depending on
whether the procedure is used for a simple assignment or whether a function is used to assign a new
variable instance, its name starts with Assign or Create. For collections functions with the prefix Get
can be created. As fourth kind of procedures events can be defined.

The second part of the name of the assignment function specifies a type. This type is either assigned a
property, or an element is created or modified in it, or an event occurs on it.

The type is either the concrete type of the current element - e.g. TButton - or one of the following base
classes. In the latter case, the initial 'T' is omitted from the name.

Type Name part

TControl Control
TForm Form
TFrame Frame
TDataModu
le

DataModule

TDataSet DataSet
TConcreteT
ype

TConcreteType

Assignment procedures for these base classes are applied to all elements with types, which are
derived from the base class.

1. Assignment

In this case the name for the assignment procedure is constructed by the word Assign followed the
name of the type that owns the property and finally the name of the property. Some predefined
procedures can demonstrate this naming convention:

Aurora2Cpp156

© 2024 Dr. Detlef Meyer-Eltz

Type Propert
y

Name

TBitma
p

Data AssignTBitmapData

TDataM
odule

Height AssignTDataModuleHeight

TDataM
odule

PixelsP
erInch

AssignTDataModulePixelsPerInch

TDataM
odule

Width AssignTDataModuleWidth

TForm PixelsP
erInch

AssignTFormPixelsPerInch

TForm TextHei
ght

AssignTFormTextHeight

TIcon Data AssignTIconData
TImage
List

Bitmap AssignTImageListBitmap

TPictur
e

Data AssignTPictureData

For example bitmap data can be assigned to the Glyph property of a TSpeedButton with
AssignTBitmapData.

void AssignTBitmapData(TSpeedButton* xp, const System::DynamicArray<System::Byte>& xBytes)

Remark: Not the property itself is passed to the procedure, but it's parent, because the property might
not exist at runtime.

By use of this function the following DFM code:

 Object LineButton: TSpeedButton
...
 Glyph.Data = {
 66010000424D6601000000000000760000002800000014000000140000000100
...

will be converted to:

 LineButton = new TSpeedButton(Panel1);
...
 AssignTBitmapData(LineButton, {
 0x66,0x01,0x00,0x00,0x42,0x4D,0x66,0x01,0x00,0x00
...

2. Creation / Modification

A creation function is constructed by the word Create followed by the name of the type of the parent of
the new variable finally followed by the name of the child variable type..Again, some predefined
functions can demonstrate this naming convention:

Parent Child Name

DFM-Translator 157

© 2024 Dr. Detlef Meyer-Eltz

TMainM
enu

TMenuIt
em

CreateTMainMenuTMenuItem

TMenuIt
em

TMenuIt
em

CreateTMenuItemTMenuItem

These creation functions return the type of the new child. For example a new menu item in the main
menu will be created with:

TMenuItem* CreateTMainMenuTMenuItem(TMainMenu* xp);

By use of this function the following dfm code:

 Object MainMenu1: TMainMenu
...
 Object File1: TMenuItem
...

will be converted to:

 MainMenu1 = new TMainMenu(this);
...
 File1 = CreateTMainMenuTMenuItem(MainMenu1);
...

3. Item

Collection items can be assigned by means of functions, whose names are constructed from the
prefix Get, followed by the name of the collection and the word item. Such a predefined getter function
is:

TFieldDef* GetTFieldDefsitem(TFieldDefs* xp, int xiIndex)

4. Event

An event procedure is constructed by the prefix On followed by the name of the type for which this
event shall be executed, finally followed by the type of event. A variable of that type will be passed as
parameter.Four event procedures are predefined: Two kinds of events can be defined

1. the Begin-event will be executed when a new Control will be created or modified
1. the End-event will be executed after the properties of the Contorl are set.

Four such event procedures are predefined:

Type Event Name

TDataSet Begin OnTDataSetBegin
TDataSet End OnTDataSetEnd
TSplitter Begin OnTSplitterBegin
TSplitter End OnTSplitterEnd

Aurora2Cpp158

© 2024 Dr. Detlef Meyer-Eltz

10.2.3 Internally used properties

A special case when converting DFM files are internally used properties:

ExplicitLeft
ExplicitRight
ExplicitTop
ExplicitBottom

Because they are used internally by Delphi only Aurora2Cpp only outputs them as comments.

10.2.4 Design time only properties

A special case when converting DFM files are design time properties Such properties are in
TCustomForm

PixelsPerInch
TextHeight
IgnoreFontProperty

They are useful at design time only and cannot be set at runtime at all. Aurora2Cpp suppresses the
output of these frequent properties by means of the pre-defined procedures:

void AssignFormTextHeight(TForm* xpForm, int xi);
void AssignFormPixelsPerInch(TForm* xp, int xi);
void AssignDataModulePixelsPerInch(TDataModule* xp, int xi);

10.2.5 Binary data

A special case when converting DFM files are binary data. Binary data are assigned for example to
TIcon's or TBitmaps as in the following example:

 object EllipseButton: TSpeedButton
 ...
 Glyph.Data = {
 4E010000424D4E01000000000000760000002800000012000000120000000100
 040000000000D800000000000000000000001000000010000000000000000000
 80000080000000808000800000008000800080800000C0C0C000808080000000
 FF0000FF000000FFFF00FF000000FF00FF00FFFF0000FFFFFF00333333000000
 3333330000003333003333330033330000003330333333333303330000003303
 3333333333303300000030333333333333330300000030333333333333330300
 0000033333333333333330000000033333333333333330000000033333333333
 3333300000000333333333333333300000000333333333333333300000000333
 3333333333333000000030333333333333330300000030333333333333330300
 0000330333333333333033000000333033333333330333000000333300333333
 003333000000333333000000333333000000}

Glyph is a TBitmap. But a TBitmap doesn't really has a Data property.Rather, Delphi reads and writes
this data by means of the functions

ReadData(System::Classes::TStream* Stream)
WriteData(System::Classes::TStream* Stream);

Aurora2Cpp converts this into:

 AssignTBitmapData(EllipseButton, {
 0x4E,0x01,0x00,0x00,0x42,0x4D,0x4E,0x01,0x00,0x00

DFM-Translator 159

© 2024 Dr. Detlef Meyer-Eltz

 ,0x00,0x00,0x00,0x00,0x76,0x00,0x00,0x00,0x28,0x00
 ,0x00,0x00,0x12,0x00,0x00,0x00,0x12,0x00,0x00,0x00
 ,0x01,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0xD8,0x00
 ,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
 ,0x10,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x00,0x00
 ,0x00,0x00,0x00,0x00,0x80,0x00,0x00,0x80,0x00,0x00
 ,0x00,0x80,0x80,0x00,0x80,0x00,0x00,0x00,0x80,0x00
 ,0x80,0x00,0x80,0x80,0x00,0x00,0xC0,0xC0,0xC0,0x00
 ,0x80,0x80,0x80,0x00,0x00,0x00,0xFF,0x00,0x00,0xFF
 ,0x00,0x00,0x00,0xFF,0xFF,0x00,0xFF,0x00,0x00,0x00
 ,0xFF,0x00,0xFF,0x00,0xFF,0xFF,0x00,0x00,0xFF,0xFF
 ,0xFF,0x00,0x33,0x33,0x33,0x00,0x00,0x00,0x33,0x33
 ,0x33,0x00,0x00,0x00,0x33,0x33,0x00,0x33,0x33,0x33
 ,0x00,0x33,0x33,0x00,0x00,0x00,0x33,0x30,0x33,0x33
 ,0x33,0x33,0x33,0x03,0x33,0x00,0x00,0x00,0x33,0x03
 ,0x33,0x33,0x33,0x33,0x33,0x30,0x33,0x00,0x00,0x00
 ,0x30,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x03,0x00
 ,0x00,0x00,0x30,0x33,0x33,0x33,0x33,0x33,0x33,0x33
 ,0x03,0x00,0x00,0x00,0x03,0x33,0x33,0x33,0x33,0x33
 ,0x33,0x33,0x30,0x00,0x00,0x00,0x03,0x33,0x33,0x33
 ,0x33,0x33,0x33,0x33,0x30,0x00,0x00,0x00,0x03,0x33
 ,0x33,0x33,0x33,0x33,0x33,0x33,0x30,0x00,0x00,0x00
 ,0x03,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x30,0x00
 ,0x00,0x00,0x03,0x33,0x33,0x33,0x33,0x33,0x33,0x33
 ,0x30,0x00,0x00,0x00,0x03,0x33,0x33,0x33,0x33,0x33
 ,0x33,0x33,0x30,0x00,0x00,0x00,0x30,0x33,0x33,0x33
 ,0x33,0x33,0x33,0x33,0x03,0x00,0x00,0x00,0x30,0x33
 ,0x33,0x33,0x33,0x33,0x33,0x33,0x03,0x00,0x00,0x00
 ,0x33,0x03,0x33,0x33,0x33,0x33,0x33,0x30,0x33,0x00
 ,0x00,0x00,0x33,0x30,0x33,0x33,0x33,0x33,0x33,0x03
 ,0x33,0x00,0x00,0x00,0x33,0x33,0x00,0x33,0x33,0x33
 ,0x00,0x33,0x33,0x00,0x00,0x00,0x33,0x33,0x33,0x00
 ,0x00,0x00,0x33,0x33,0x33,0x00,0x00,0x00
 });

AssignTBitmapData belongs to the predefined DFM conversion routines and is declared in the helper
file d2c_vcl.h which, will be included automatically.

void AssignTBitmapData(TSpeedButton* xp, const System::DynamicArray<System::Byte>& xBytes)

The creation of the DynamicArray only works if the use of the clang compiler is enabled in C++Builder.
For the classic compiler an error "E2188: expression syntax" will be produced:

The dats of TClientDataSet are to large to be treated this way and can be suppressed.

10.2.5.1 TClientDataSet

If treated in the same way as other binary data, the data in a TClientdataset cause a stack overflow,
because these data can be very large.

The data of a TClientdataset are used only at design time. In fact, these data are only needed for
display at design time. Therefore, the output of this data is suppressed in Aurora2Cpp and only a small
comment is output

// The data of a TClientdataset are only used at design time

However, if you like, you can try to construct the assignment procedure AssignTClientDataSetData by
use of the type TClientDataSet and the property Data.

Aurora2Cpp160

© 2024 Dr. Detlef Meyer-Eltz

The field definition of a client data set are a special case of collection assignments.

10.2.5.2 TImageList

Currently, the AssignTImageListBitmap routine for assigning the binary data to the instance of a
TImageList at runtime is a dummy routine that makes the converted code compile, but does not work.
As a workaround, the images in the list can be saved to the hard drive and loaded one after the other
and added to the list.

To do this, the Delphi file can first be opened in C++Builder. Double-clicking on the TImagelist icon will
then display a dialog that offers the option of saving the individual images.

void AssignTImageListBitmap2(TImageList* xp, const System::DynamicArray<System::Byte>& Bytes)
{
//D:\develop\Delphi2Cpp\Tests\CBTestDone\RichEdit\ToolbarImages.bmp
// xp->FileLoad(rtBitmap, L"D:\\develop\\Delphi2Cpp\\Tests\\CBTestDone\\RichEdit\
\ToolbarImages.bmp", clFuchsia);

xp->Masked = true;

DFM-Translator 161

© 2024 Dr. Detlef Meyer-Eltz

TBitmap* pBitmap = new TBitmap;
pBitmap->LoadFromFile(L"D:\\develop\\Delphi2Cpp\\Tests\\CBTestDone\\TListViewItems\

\Images0.bmp");
xp->AddMasked(pBitmap, clFuchsia);
pBitmap->LoadFromFile(L"D:\\develop\\Delphi2Cpp\\Tests\\CBTestDone\\TListViewItems\

\Images1.bmp");
xp->AddMasked(pBitmap, clFuchsia);
pBitmap->LoadFromFile(L"D:\\develop\\Delphi2Cpp\\Tests\\CBTestDone\\TListViewItems\

\Images2.bmp");
xp->AddMasked(pBitmap, clFuchsia);

delete pBitmap;
}

10.2.6 Protected properties

A special case when converting DFM files are protected properties as for example IsControl in
BMPDlg.dfm of the Graphex example:

 object Bevel1: TBevel
 ...
 IsControl = True

The standard translation would produce an error:

Bevel1->IsControl = true; // 'IsControl' is a protected member of 'Vcl::Controls::TControl'

There is a pre-defined procedure, which takes care for the correct assignment.

void AssignControlIsControl(TControl* xp, bool xb)

10.2.7 TDataSet

A special case when converting DFM files concerns TDataSets. Properties that affect the status of a
database or the display of its data can only be changed if the corresponding dataset is deactivated. If a
dataset is set to active in a DFM file, this assignment will be shifted to the end of the generated C++
code.

If properties of a dataset in a frame are changed the Active property is temporarily set to false and
reset to it's original value at the begin and at the end of the changes by means of the procedures

void OnTDataSetBegin(TDataSet* xp);
void OnTDataSetEnd(TDataSet* xp);

10.2.8 TSplitter

A special case when converting DFM files is TSplitter. To ensures that TSplitter controls are placed
correctly without moving the positions of other controls, following two event procedures are predefined:

void OnTSplitterBegin(TSplitter* xp);
void OnTSplitterEnd(TSplitter* xp);

Aurora2Cpp162

© 2024 Dr. Detlef Meyer-Eltz

10.2.9 TToolBar

A special case when converting DFM files is TToolBar. If the toolbar is first created with its parent and
then components are placed in it, it may happen that the components do not appear in the desired
positions. However, the correct positions arise if the parent of the toolbar is only set after the
components have been placed.

Unfortunately, the delayed setting of the parent of the toolbar also requires a delayed setting of some
properties of its components. Property assignments that require a parent can be configured to only
occur if the parent exists.

To ensure that components placed from a toolbar appear in the desired positions, the parent of the
toolbar must only be set after the components have been placed.

10.2.9.1 Requires parent

The delayed setting of the parent of a toolbar also requires a delayed setting of some properties of its
components. If for example the Style property of a TColorBox is seton a TToolBar, which hasn't a
parent yet, the following exception is thrown:

EInvalidOperation: Element has no parent window

Therefore there is the predefined procedure AssignTColorBoxStyle, which will only be executed after
the parent is set. If a user want to define such a procedure manually, he has to check the according
box in the dialog for the definition of DFM assignment routines.

10.2.10 Sets

Set values, which shall be assigned to a property are listed in a DFM file inside of brackets "[" ... "]".
For example:

 Object FGColorBox: TColorBox
 ...
 Style = [cbStandardColors, cbExtendedColors, cbSystemColors, cbIncludeNone, cbIncludeDefault, cbPrettyNames]

Because changing the style of a TColorBox requires a parent for that box, there is a predefined
assignment procedure, which might be executed with delay.

 AssignTColorBoxStyle(FGColorBox, (System::Set<TColorBoxStyles, cbStandardColors, cbCustomColors>() << cbStandardColors << cbExtendedColors << cbSystemColors << cbIncludeNone << cbIncludeDefault << cbPrettyNames));

10.2.11 Lists

Not only individual values can be assigned, but entire lists of values can also be passed to list boxes,
The values either directly passed into an array as in simple lists or they are passed as items to a list
member. In both cases the values are listed inside of parenthesis "(" ... ")":

10.2.11.1 Simple lists

Examples of a simple lists are ColWidths or RowHeights in a TStringGrid The DFM code which assign
some column widths might look like:

 object StringGrid1: TStringGrid
 ...

DFM-Translator 163

© 2024 Dr. Detlef Meyer-Eltz

 ColWidths = (
 10
 100
 ...
)

For such lists assignment procedures can be defined, simitar as to other DFM assignments. For
TStringGrid the following two procedures are predefined:

void AssignTStringGridColWidths(TStringGrid* xp, int xi, int xiIndex);
void AssignTStringGridRowHeights(TStringGrid* xp, int xi, int xiIndex);

Here the assignment procedure a third parameter is passed, which is the number of the list value.

10.2.11.2 List items

Examples of components with list properties are TListBox, TComboBox, etc. The elements that are
assigned to a combo box, for example, are put in parenthesis in a DFM file, like:

 object ComboBox1: TComboBox
 ...
 Items.Strings = (
 'first'
 'second'
)
 end

By default, this is translated by Aurora2Cpp in the following way:

 ComboBox1 = new TComboBox(this);
 ...
 ComboBox1->Items->Add(L"first");
 ComboBox1->Items->Add(L"second");

Here too, Aurora2Cpp can be configured to output special assignment functions. With TComboBox as
type and Items as name part results:

 ComboBox1 = new TComboBox(this);
 ...
 AssignTComboBoxItems(ComboBox1, L"first", 0);
 AssignTComboBoxItems(ComboBox1, L"second", 1);

Here the assignment procedure a third parameter is passed, which is the number of the list value.

The type of the Items property is TStrings and TStrings has the property:

property Strings[Index: Integer]: string read Get write Put; default;

So also an assignment procedure for all TStrings can be defined:

 ComboBox1 = new TComboBox(this);
 ...
 AssignTStringsStrings(ComboBox1->Items, L"first", 0);
 AssignTStringsStrings(ComboBox1->Items, L"second", 1);

However, this procedure would be applied to all TStrings, not just those from TComboBox, and it
would not be applied if AssignTComboBoxItems also existed.

Aurora2Cpp164

© 2024 Dr. Detlef Meyer-Eltz

10.2.12 Collections

Another special kind of assignments are collections. Their values are listed as items in angle brackets
"<" ... ">". Each item consists of a series of assignments within an item structure that begins with the
keyword item and ends with the keyword end. For example, a status bar consists of such items

 object xxx1: Txxx
 ...
 yyys = <
 item
 zzz = ...

 end
 item
 zzz = ...
 end>
 end

Two concrete examples for this general structure are:

 object StatusBar1: TStatusBar object ClientDataSet1: TClientDataSet

 Panels = < FieldDefs = <
 item item
 Alignment = taCenter Name = 'Species No'

 end end
 item item
 Width = 50 Name = 'Category'

 end> end>
 end end

By default, these examples are translated as follows:

StatusBar->Panels->Add(); ClientDataSet1->FieldDefs->Add();
StatusBar->Panels->Items[0]->Alignment = taCenter; ClientDataSet1->FieldDefs->Items[0]->Name = L"Species No";
... ...
StatusBar->Panels->Add(); ClientDataSet1->FieldDefs->Add();
StatusBar->Panels->Items[1]->Width = 50; ClientDataSet1->FieldDefs->Items[1]->Name = L"Category";
... ...

The call of the Add methods have to be inserted, because the item's have to be created before values
can be assigned to them. But the translated code will work in the first case only, but not in the second,
because in contrast to
TFieldDefs has no Add method: This problem again can be solved by defining according functions.
These functions are starting with the prefix Get. According to the naming conventions for the other dfm
conversion functions, the first name part should be the type name ot the collection. This would be
TStatusPanels in the first example and TFieldDefs in the second example and. With item the second
name part the resulting functions then are:

TStatusPanel* GetTStatusPanelsitem(TStatusPanels* xp, int xiIndex);
TFieldDef* GetTFieldDefsitem(TFieldDefs* xp, int xiIndex);

The implementation of the first function, which is defined in d2c_dfm.cpp is:

DFM-Translator 165

© 2024 Dr. Detlef Meyer-Eltz

TStatusPanel* GetTStatusPanelsitem(TStatusPanels* xp, int xiIndex)
{

if(xp->Count == xiIndex)
 xp->Add();

return xp->Items[xiIndex];
}

With this naming, th following calls are generated:

GetTStatusPanelsitem(StatusBar->Panels, 0)->Alignment = taCenter;
GetTStatusPanelsitem(StatusBar->Panels, 0)->Width = 150;
GetTStatusPanelsitem(StatusBar->Panels, 1)->Width = 50;

GetTFieldDefsitem is defined accordingly, but with a call to AddFieldDef instead of a call to Add.

However this naming convention cannot be applied in the case of TActionLists. E.g. for TActionClients
there is no property that return the entire collection of items. Only single items with an according index
can be accessed.
Therefore, Aurora2Cpp allows additional naming of such get-functions, using the type name of the
owner of the collection and depending on your preference by use the name of the property or the
general name “Item”. So e.g. for the TStatusBar there are following three equivalent possibilities:

TStatusPanel* GetTStatusPanelsitem(TStatusPanels* xp, int xiIndex);
TStatusPanel* GetTStatusBarPanels(TStatusPanels* xp, int xiIndex);
TStatusPanel* GetTStatusBaritem(TStatusPanels* xp, int xiIndex);

The first lines of the functions created from these alternative names are then;

GetTStatusBarPanels(StatusBar, 0)->Alignment = taCenter;
GetTStatusBaritem(StatusBar, 0)->Width = 84;

The complete component is passed as parameter instead of the collection, which is passed, when the
first naming is used.

If Aurora2Cpp cannot figure out the type of a property, either because the source files are incomplete
or because the property is not explicit but only accessible via DefineProperties, then the last two ways
of defining assignments can still work.

10.2.13 Setting the parent

A special case when converting DFM files are parents. The Parent property of a control is not set in
the DFM file expilcitely, nevertheless Aurora2Cpp automatically sets the parent for all newly created
controls. It is necessary, because all displayable components, i.e. all controls, must have a parent in
order to be visible. Position properties of these controls then apply relative to the position of the
parent.

Assignment procedures can also be defined for setting the parent property, like

void AssignTSplitterParent(TSplitter* xp, TControl* xpParent);

This procedure is predefined.

Aurora2Cpp166

© 2024 Dr. Detlef Meyer-Eltz

10.2.14 List of predefined DFM routines

Some procedures for the conversion of DFM files are predefined in d2c_dfm.h/.cpp, which is provided
by the Aurora2Cpp installer . Their names are constructed in the same way as other user defined DFM
assignment routines.. The DfmRoutines.txt file in the project folder contains the name parts for DFM
conversion routines which were used in applications from which the DFM feature of Aurora2Cpp was
developed. DfmRoutines.txt can be opened and inserted into project files directly in the according
dialog.

1. Assignment

void AssignTIconData(TForm* xp, const System::DynamicArray<System::Byte>& Bytes);
void AssignTImageListBitmap(TImageList* xp, const System::DynamicArray<System::Byte>& Bytes);
void AssignTPictureData(TImage* pImage, const System::DynamicArray<System::Byte>& Bytes);

void AssignFormTextHeight(TForm* xpForm, int xi);
void AssignTBitmapData(TSpeedButton* xp, const System::DynamicArray<System::Byte>& xBytes);
void AssignFormPixelsPerInch(TForm* xp, int xi);
void AssignDataModuleHeight(TDataModule* xp, int xi);
void AssignDataModulePixelsPerInch(TDataModule* xp, int xi);
void AssignDataModuleWidth(TDataModule* xp, int xi);

void AssignTStringGridColWidths(TStringGrid* xp, int xi, int xiIndex);
void AssignTStringGridRowHeights(TStringGrid* xp, int xi, int xiIndex);

void AssignControlIsControl(TControl* xp, bool xb);

// requires parent

void AssignTRichEditHideSelection(TRichEdit* xp, bool xb);
void AssignTColorBoxStyle(TColorBox* xp, const System::Set<TColorBoxStyles, cbStandardColors, cbCustomColors>& xSet);

2. Creation

TMenuItem* CreateTMainMenuTMenuItem(TMainMenu* xp);
TMenuItem* CreateTMenuItemTMenuItem(TMenuItem* xp);

3. Items

TFieldDef* GetTFieldDefsitem(TFieldDefs* xp, int xiIndex)

4. Events

void OnTDataSetBegin(TDataSet* xp);
void OnTDataSetEnd(TDataSet* xp);
void OnTSplitterBegin(TSplitter* xp);
void OnTSplitterEnd(TSplitter* xp);

An example for the implementation of such a routine is:

TMenuItem* CreateTMainMenuTMenuItem(TMainMenu* xp)
{

TMenuItem* pItem = new TMenuItem(xp);
xp->Items->Add(pItem);
return pItem;

}

DFM-Translator 167

© 2024 Dr. Detlef Meyer-Eltz

10.3 Creating Forms dynamically

Compilers other than the C++Builder don't know DFM files and therefore forms have to be created
dynamically. In Cpp-Builder projects form can be created by means of DFM files like in Delphi, But
forms may be created dynamicall too. I fhte option to convert DFM files is enabled, the dpr file will be
changed accordingly.

The two options are explained using the example of the GraphEx demo, which is one of the
Embaradero example applications. graphex.dpr looks like:

program GraphEx;

uses
 Forms,
 GraphWin in 'GraphWin.pas' {Form1},
 BMPDlg in 'BMPDlg.pas' {NewBMPForm},
 Vcl.Themes in 'Vcl.Themes.pas';

{$R *.RES}

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.CreateForm(TNewBMPForm, NewBMPForm);
 Application.Run;
end.

This becomes to:

using graphex.dfm dybnamic creation at runtime

#include <vcl.h> #include <vcl.h>
#pragma hdrstop #pragma hdrstop
#include <tchar.h> #include <tchar.h>
//--- //---
USEFORM("GraphWin.cpp", Form1); #include "GraphWin.h"
USEFORM("BMPDlg.cpp", NewBMPForm); #include "BMPDlg.h"
//--- //---
int WINAPI _tWinMain(HINSTANCE, HINSTANCE, LPTSTR, int) int WINAPI _tWinMain(HINSTANCE, HINSTANCE, LPTSTR, int)
{ {

try try
{ {

Application->Initialize(); Application->Initialize();
Application->MainFormOnTaskBar = true; Form1 = new TForm1(Application, 0);
Application->CreateForm(__classid(TForm1), &Form1); NewBMPForm = new TNewBMPForm(Application, 0);
Application->Run(); Application->Run();

} Form1->ShowModal();
catch (Exception &exception) }
{ catch (Exception& exception)

Application->ShowException(&exception); {
} Application->ShowException(&exception);
catch (...) }
{ catch (...)

try {
{ try

throw Exception(""); {
} throw Exception("");
catch (Exception &exception) }
{ catch (Exception& exception)

Application->ShowException(&exception); {
} Application->ShowException(&exception);

} }
return 0; }

} return 0;

Aurora2Cpp168

© 2024 Dr. Detlef Meyer-Eltz

 }

The differences are:

1. for pure C++ there will be no DFM file (otherwise components could be duplicated)
2. the pure C++ code doesn't need the USEFORM macro.
3. the pure C++ code doesn't use the Application->CreateForm method, but create the forms with new
directly.
4. the pure C++ code needs an additional call of ShowModal for the main form of the application

The first form automatically created with Application.CreateForm becomes the main form of the
application.

The call of Application->Run in the pure C++ code sometimes takes care that the code is cleaned
correctly, when the application is closed.

It is very important, that forms have to be constructed like

Form1 = new TForm(this, 0); // in Delphi: CreateNew

with the second parameter being a dummy parameter that distinguishes it from the normally used
constructor with one parameter only. In Vcl.Forms.pas two constructors for TForm are defined:

constructor TCustomForm.Create(AOwner: TComponent);
constructor TCustomForm.CreateNew(AOwner: TComponent; Dummy: Integer = 0);

to which the constructors in Vcl.Forms.hpp correspond:

/* TCustomForm.Create */ inline __fastcall virtual TForm(System::Classes::TComponent* AOwner) : TCustomForm(AOwner) { }
/* TCustomForm.CreateNew */ inline __fastcall virtual TForm(System::Classes::TComponent* AOwner, int Dummy) : TCustomForm(AOwner, Dummy) { }

When the first constructor is called, it always tries to read the DFM file, which then results in an error:
EResNotFound exception will be thrown.

10.3.1 EResNotFound

If all components of a form are generated by code in C++Builder without using the DFM file, the
constructor like

Form1 = new TForm(this);

fails with the meessage:

In the project .. an exception of the class EResNotFound with the message 'Resource T... not found' has occurred.

When using this constructor, the InternalReadComponentRes method is called indirectly. Since the
resource is not found, the exception is thrown. Therefore the constructor

Form1 = new TForm(this, 0);

has to be used, with the second parameter being a dummy parameter that distinguishes it from the
other constructor (in Delphi it is the CreateNew constructor).

DFM-Translator 169

© 2024 Dr. Detlef Meyer-Eltz

The same problem arises when generating frames dynamically. Unfortunately, the alternative
constructor is not defined here. Therefore, a dynamically generated frame must be derived from a
specially defined TCustomDynFrame.
TCustomDynFrame is a copy of TCustomFrame that defines the second constructor instead of the
first.

10.3.2 Main form

The first form automatically created with Application.CreateForm becomes the main form of the
application. However, if the form is created dynamically with new and shown with ShowModal, it does
not have this status. As a result, no icon is displayed in the taskbar for the application and it is no
longer possible to switch back to the application once it has been minimized.

The read-only property Application.MainForm cannot be easily changed, but overriding the
CreateParams function helps here. Since Aurora2Cpp translates Delphi files independently without
project information, it does not know which form files are used as main forms. The CreateParams
function is therefore only output as a comment. If a form is used as the main form, the comment
characters have to be be removed manually.

 //# please uncomment for main form
 //# void __fastcall CreateParams(Vcl::Controls::TCreateParams &Params)
 //# {inherited::CreateParams(Params); Params.ExStyle = Params.ExStyle | WS_EX_APPWINDOW;}

->

void __fastcall CreateParams(Vcl::Controls::TCreateParams &Params)
 {inherited::CreateParams(Params); Params.ExStyle = Params.ExStyle | WS_EX_APPWINDOW;}

10.4 Creating Frames dynamically

As already mentioned for the creation of forms, these must not be created with the usual constructor
(with only one parameter) if there is no longer an associated DFM file, as this constructor always tries
to read this file. But while with forms you can simply use the other constructor (with the additional
dummy parameter) in this case, this is not possible with frames because there is no such second
constructor there. The only way out in this case is to derive frames to be created dynamically at
runtime not from TFrame, but from a newly created class that contains the required constructor.
TCustomDynFrame consists of the code of the TCustomFrame class translated into C++, whereby its
constructor is replaced by the required constructor.

For example the class TFancyFrame from the Embarcadero frames demo then becomes to:

class TFancyFrame : public TCustomDynFrame
{
__published:
public:
 TDBMemo* DBMemo1;
 TDBImage* DBImage1;
 TSplitter* Splitter1;
private:
 /* Private declarations */

Aurora2Cpp170

© 2024 Dr. Detlef Meyer-Eltz

public:
 /* Public declarations */
 typedef TCustomDynFrame inherited;
 __fastcall TFancyFrame(TComponent* AOwner, int Dummy);
};

In the constructor of TDataFrame, which is part of the same demo, a TFancyFrame will be constructed
with:

 FancyFrame1 = new TFancyFrame(this, 0);

11 Recursive translation

A recursive translation starts the translation of a selected file and looks up all the files from which it
depends and translates them too. The start file and a target folder are selected by the

Start parameter dialog.

When the recursive translation is started, at first the start file is processed like described for the
translation of a single file. But in contrast to that case, all files that are used in the first file are
remembered and as soon as the conversion of start file is completed the translation of the first
remembered file is started. Only files that are found in the set of folders of files, which might be be
translated are remembered. All files from which this second file depends are remembered too, and so
on. The result of the translation of the start file is written into the target folder and the results of the
other translations are written into folders, with retention of the original relative file structure.

12 What is partially translated

Some features of Delphi can be translated partly only.

Variant parts in records
Visibility of class members
Virtual class methods
Abstract classes cannot be created, they have to made non-abstract before
A creation of class instances from class references is possible only, if the class has a standard
constructor
API functions often are specified too vaguely in Delphi

In contrast to Delphi2Cpp with Aurora2Cpp the results of the formatting procedures from SysUtils
couldn't be reproduced completely.

12.1 API parameter casts

The Delphi files, which bridge the gap between the Delphi code and the API of the operation system,
sometimes are too vague to allow a precise back translation. For example the third parameter of the
function SetFilePointer in Winapi.Windows.pas is specified as Pointer:

function SetFilePointer(hFile: THandle; lDistanceToMove: Longint;
 lpDistanceToMoveHigh: Pointer; dwMoveMethod: DWORD): DWORD; stdcall;

The original specification is:

WINBASEAPI

What is partially translated 171

© 2024 Dr. Detlef Meyer-Eltz

DWORD
WINAPI
SetFilePointer(
 In HANDLE hFile,
 In LONG lDistanceToMove,
 _Inout_opt_ PLONG lpDistanceToMoveHigh,
 In DWORD dwMoveMethod
);

The type of the third parameter is specified here as PLONG. If a void Pointer is passed instead of a
PLONG Visual Studio produces the error message:

Conversion of argument 3 from "void *" to "PLONG" is not possible

Another example:

type DWORD = Cardinal;

Aurora2Cpp converts a Cardinal to unsigned int. But it's not possible to assign an unsigned int* to
PDWORD or to LPDWORD in C++,

12.2 Formatting procedures

In contrast to Delphi2Cpp Aurora2Cpp cannot completely reproduce the results of the SysUtils
formatting procedures. while there is a pure pascal version of this code in later versions of Delphi
these procedures are written by use of assembler code in Delphi 7. Therefore the C++ code was
generated on base of the according free pascal code.
However, there are some subtle differences in Free Pascal compared to Delphi that could not be
corrected.

13 What is not translated

There are some principle problems at the conversion of Delphi code to C++ which cannot be resolved
by an automatic translator. But even things which Aurora2Cpp, normally can handle may fail in
complex nested cases. Sometimes Aurora2Cpp generates explicit "todo"-comments where something
has to be completed manually.
The conversion to C++Builder code seamlessly works together with the existing adoption to the Delphi
RTL/VCL, but manual justifications to some helper names might be necessary. Aurora2Cpp makes
little effort to cooperate with own Delphi code. An example of using a Delphi interface is here. If you
need more, please contact me.

Some Delphi constructs, which aren't, automatically translated yet are:

· Inline assembler code in Delphi and C++ almost are identically. Aurora2Cpp doesn't translate these
parts.but only copies them.

· Several special compiler directives such as {$J+} are not supported
· Code that relies on the internal members or memory layout of Delphi types cannot be converted

automatically.
· Aurora2Cpp always assumes unique names.But e.g. there might be symbols from the operation

system, which differ in notation..
· parameters for destructors are ignored
· In Delphi everything inside of a unit is accessible to each other. As s compromise only classes are

made friends to each others
· Manual post-processing to achieve const-correctness is necessary.

Aurora2Cpp172

© 2024 Dr. Detlef Meyer-Eltz

· Multithreading classes and routines are formally translated, but not checked by an expert
· Resource strings simply are treated as non-resource strings
· In C++ classes with abstract methods cannot be created
· The consequences of the ZEROBASEDSTRING directive are not corrected automatically.
· Parts of the RTL operate directly on the virtual method table of objects. These parts aren't

reproduced. The most important consequence of this lack is, that streaming of forms and other
types isn't possible in Delphi manner.

· Advanced techniques such as ActiveX, COM, CORBA etc. are not specifically supported
· For C++Builder Variant is supported for other compilers not, but TVarRec
· At the current state Aurora2Cpp doesn't deal with method resolution clauses
· Aurora2Cpp has no solution to simulate the results of overwritten DefineProperty functions at the

conversion of dfm-files.

There are more items, which can be translated partially only.

Special problems:

https://isocpp.org/wiki/faq/strange-inheritance#calling-virtuals-from-ctors

13.1 inline assembler

Inline assembler code isn't converted. It is put into comments instead, so that the translated code will
not stop to compile because of invalid assembler parts. In the first version of Delphi2Cpp, there is a
minimalistic option to convert Delphi comments and Delphi expressions and to substitute identifiers.
The option wasn't taken over here to Delphi2Cpp 2, because it is of little use and because in the
actual Delphi RTL the definition of PUREPASCAL can be set, to avoid the use of assembler code at
all,

13.2 const-correctness

Compared with the concept the const-correctness in C++ the use of const in Delphi is very limited. In
the Delphi const-section true constants are declared whose values cannot change and the keyword
const also can be used to declare constant parameters. No values can be assigned to constant
parameters and they cannot be passed to routines, where var parameters are expected. But unlike C+
+, Delphi does not permit methods to be marked as const. The VCL pendant of the C++Builder is not
designed for C++ const-correctness.

If the translated Delphi code simply should compile, it would be the best to ignore the const-qualifier
totally. But it is the aim of Aurora2Cpp, that the created C++ code should be C++-like code and the
translation also is orientated at the way the C++Builder produces C++-header files from Delphi
sources. C++Builder leaves the const qualifiers for parameters. For example:

TMyClass = class

What is not translated 173

© 2024 Dr. Detlef Meyer-Eltz

private
 FObject : TObject;
public
 constructor Create(const Obj: TObject);

The declaration of a constructor is translated by C++Builder and accordingly by Aurora2Cpp to

__fastcall TMyClass(const TObject* Obj);

But this leads to a problem in the body of the constructor, where the parameter is assigned to a
member of the class:

__fastcall TMyClass::TMyClass(const TObject* Obj)
 : FObject(Obj)
{
}

Compiling this code produces the error: E2034 conversion of 'const TObject *' to 'TObject *' not
possible. So a cast is necessary, which strips the const qualifier away:

__fastcall TMyClass::TMyClass(const TObject* Obj)
 : FObject((TObject*)Obj)
{
}

or more precisely:

__fastcall TMyClass::TMyClass(const TObject* Obj)
 : FObject(const_cast<TObject*>(Obj))
{
}

This example suggests to leave out the const-qualifier at the translation anyway as mentioned above.
You can correct the code in this way, but there are other cases where the const-qualifier should be
preserved.

For other compilers than C++Builder the methods, which are created for the read-specifiers of
properties are made const-methods.

13.3 Low level code

It is not possible to convert code automatically, that uses low level tricky pointer manipulation, which in
addition may rely on the memory layout of the intrinsic Delphi types as in the following example:

procedure SetTBytesLength(var b : TBytes; len : integer);
type
 PDynArrayRec = ^TDynArrayRec;
 TDynArrayRec = packed record
 RefCnt: LongInt;
 Length: NativeInt;
 end;
var
 p : Pointer;
 oldL, minL : NativeInt;
begin
 if len = 0 then begin

Aurora2Cpp174

© 2024 Dr. Detlef Meyer-Eltz

 b := nil
 end
 else begin
 p := Pointer(b);
 oldL := 0;
 if p <> nil then begin
 dec(PByte(p), SizeOf(TDynArrayRec));
 oldL := PDynArrayRec(p).Length
 end;

 if (p = nil) or (PDynArrayRec(p).RefCnt = 1) then begin
 ReallocMem(p, SizeOf(TDynArrayRec) + len)
 end
 else begin
 ...

For other compilers then C++Builder Aurora2Cpp uses a std::vector as substitute for a dynamic array.
std::vector has no RefCnt ond no Length element. The translation of the example case is fortunately
easy because an existing method can be used.

void SetTBytesLength(TBytes& B, int Len)
{
 B.resize(Len);
}

14 Unit tests

The quality of the translation results of Delphi code to C++ with Aurora2Cpp is guaranteed by a
collection of test files. The test cases mostly are modified examples from Embarcadero and from
Delphi Basics:

http://www.delphibasics.co.uk

The output operations in the examples were replaced by boolean expressions which can be checked
at the execution of the tests. The modified files then were inserted into a DUnit application. (DUnit is a
testing framework which is integrated into the RAD Studio.)

After verification that the tests are working correctly in Delphi, the code is translated with Aurora2Cpp
to C++. The translated test files then are inserted into a C++ test application (C++-Builder or Visual C+
+ respectively). There the tests are repeated then in C++.

Unit tests 175

© 2024 Dr. Detlef Meyer-Eltz

The examples below are only a small selection of the whole test suite, which comprises more than a
hundred of such test files.

Format
TStringList

14.1 Format

The formatting routines account for a considerable part of the SysUtils unit. Some of them are nested
and consist in about 1000 lines of code. Nevertheless their translation with Delphi2Cpp is nearly
perfect. In Delphi 7 these routines are defined by use of assembler code. The C++ code is based on
the according routines in free pascal therefore. Examples to the formatting routines from

http://www.delphibasics.co.uk/RTL.asp?Name=format

were modified slightly to be able to use them for test purposes. The code translated with Delphi2Cpp
compiles and works without additional manual processing without faults. With Aurora2Cpp the results
of the formatting procedures from SysUtils couldn't be reproduced completely. there is a different
result in FloatToStrTest1. Other tests using scientific notation produce even worse results.

Aurora2Cpp176

© 2024 Dr. Detlef Meyer-Eltz

bool FormatTest1()
{
 bool result = false;
 result = true;
 // Just 1 data item
 result = result && (Format("%s", ArrayOfConst(String("Hello"))) == "Hello");

 // A mix of literal text and a data item
 result = result && (Format("String = %s", ArrayOfConst(String("Hello"))) == "String = Hello");
 //ShowMessage('');

 // Examples of each of the data types
 result = result && (Format("Decimal = %d", ArrayOfConst(-123)) == "Decimal = -123");
 result = result && (Format("Exponent = %e", ArrayOfConst(12345.678L)) == "Exponent = 1,23456780000000E+004");
 result = result && (Format("Fixed = %f", ArrayOfConst(12345.678L)) == "Fixed = 12345,68");
 result = result && (Format("General = %g", ArrayOfConst(12345.678L)) == "General = 12345,678");
 result = result && (Format("Number = %n", ArrayOfConst(12345.678L)) == "Number = 12.345,68");
 result = result && (Format("Money = %m", ArrayOfConst(12345.678L)) == "Money = 12.345,68 €");
 // makes no sense under C#
 // result := result and (Format('Pointer = %p', [addr(text)]) = 'Pointer = 0069FC90');
 result = result && (Format("String = %s", ArrayOfConst(String("Hello"))) == "String = Hello");
 result = result && (Format("Unsigned decimal = %u", ArrayOfConst(123)) == "Unsigned decimal = 123");
 result = result && (Format("Hexadecimal = %x", ArrayOfConst(140)) == "Hexadecimal = 8C");
 return result;
}

bool FormatTest2()
{
 bool result = false;
 result = true;
 // The width value dictates the output size
 // with blank padding to the left
 // Note the <> characters are added to show formatting
 result = result && (Format("Padded decimal = <%7d>", ArrayOfConst(1234)) == "Padded decimal = < 1234>");

 // With the '-' operator, the data is left justified
 result = result && (Format("Justified decimal = <%-7d>", ArrayOfConst(1234)) == "Justified decimal = <1234 >");

 // The precision value forces 0 padding to the desired size
 result = result && (Format("0 padded decimal = <%.6d>", ArrayOfConst(1234)) == "0 padded decimal = <001234>");

 // A combination of width and precision
 // Note that width value precedes the precision value
 result = result && (Format("Width + precision = <%8.6d>", ArrayOfConst(1234)) == "Width + precision = < 001234>");

 // The index value allows the next value in the data array
 // to be changed
 result = result && (Format("Reposition after 3 strings = %s %s %s %1:s %s", ArrayOfConst(String("Zero"), String("One"), String("Two"), String("Three"))) == "Reposition after 3 strings = Zero One Two One Two");

 // One or more of the values may be provided by the
 // data array itself. Note that testing has shown that an *
 // for the width parameter can yield EConvertError.
 result = result && (Format("In line = <%10.4d>", ArrayOfConst(1234)) == "In line = < 1234>");
 result = result && (Format("Part data driven = <%*.4d>", ArrayOfConst(10, 1234)) == "Part data driven = < 1234>");
 result = result && (Format("Data driven = <%*.*d>", ArrayOfConst(10, 4, 1234)) == "Data driven = < 1234>");
 return result;
}

bool FloatToStrTest1()
{
 bool result = false;
 long double amount1 = 0.0L;
 long double amount2 = 0.0L;
 long double amount3 = 0.0L;
 result = true;
 amount1 = 1234567890.123456789L; // High precision number
 amount2 = 1234567890123456.123L; // High mantissa digits
 amount3 = 1E100L; // High value number
// Aurora2Cpp: "1234567890,12345" result = result && (FloatToStr(amount1) == "1234567890,12346"); // Aurora2Cpp: "1234567890,12345"
 result = result && (FloatToStr(amount2) == "1,23456789012346E15"); // Aurora2Cpp: "1,23456789012346E15"
 result = result && (FloatToStr(amount3) == "1E100"); // Aurora2Cpp: "1E100"
 return result;
}

Unit tests 177

© 2024 Dr. Detlef Meyer-Eltz

bool FormatFloatTest1()
{
 bool result = false;
 long double flt = 0.0L;
 result = true;
 // Set up our floating point number
 flt = 1234.567L;

 // Display a sample value using all of the format options

 // Round out the decimal value
 result = result && (FormatFloat("#####", flt) == "1235");
 result = result && (FormatFloat("00000", flt) == "01235");
 result = result && (FormatFloat("0", flt) == "1235");
 result = result && (FormatFloat("#,##0", flt) == "1.235");
 result = result && (FormatFloat(",0", flt) == "1.235");

 // Include the decimal value
 result = result && (FormatFloat("0.####", flt) == "1234,567");
 result = result && (FormatFloat("0.0000", flt) == "1234,5670");

 // Scientific format
 result = result && (FormatFloat("0.0000000E+00", flt) == "1,2345670E+03");
 result = result && (FormatFloat("0.0000000E-00", flt) == "1,2345670E03");
 result = result && (FormatFloat("#.#######E-##", flt) == "1,234567E3");

 // Include freeform text
 result = result && (FormatFloat("\"Value = \"0.0", flt) == "Value = 1234,6");

 // Different formatting for negative numbers
 result = result && (FormatFloat("0.0", -1234.567L) == "-1234,6");
 result = result && (FormatFloat("0.0 \"CR\";0.0 \"DB\"", -1234.567L) == "1234,6 DB");
 result = result && (FormatFloat("0.0 \"CR\";0.0 \"DB\"", 1234.567L) == "1234,6 CR");

 // Different format for zero value
 result = result && (FormatFloat("0.0", 0.0L) == "0,0");
 result = result && (FormatFloat("0.0;-0.0;\"Nothing\"", 0.0L) == "Nothing");
 return result;
}

bool FormatTest()
{
 bool result = false;
 result = true;
 result = result && FormatTest1();
 result = result && FormatTest2();
// todo dme result = result && FloatToStrTest1();
 result = result && FormatFloatTest1();
 return result;
}

14.2 TStringList

A frequently used Delphi class is TStringList. The translation of the defining code in System.Classes
needs little manual post-processing. However there are some streaming operations namely in the
base class TPersitent, which aren't implemented. However, the example from

http://www.delphibasics.co.uk/RTL.asp?Name=tstringlist

compiles and works without manual post-processing. (Again, the original code has been slightly
modified for the testing purpose.)

#include "dbsc_tstringlist.h"
#include "d2c_convert.h"

Aurora2Cpp178

© 2024 Dr. Detlef Meyer-Eltz

using namespace std;
using namespace System;
using namespace System::Classes;

namespace dbsc_tstringlist
{
bool TStringListTest1()
{
 bool result = false;
 TStringList* animals = nullptr; // Define our string list variable
 int i = 0;
 result = true;
 // Define a string list object, and point our variable at it
 animals = new TStringList();

 // Now add some names to our list
 animals->Add(L"Cat");
 animals->Add(L"Mouse");
 animals->Add(L"Giraffe");

 // Now display these animals
 // for i := 0 to animals.Count-1 do
 // ShowMessage(animals[i]); // animals[i] equates to animals.Strings[i]
 result = result && (animals->ReadPropertyStrings(0) == L"Cat");
 result = result && (animals->ReadPropertyStrings(1) == L"Mouse");
 result = result && (animals->ReadPropertyStrings(2) == L"Giraffe");

 // Free up the list object
 delete animals;
 return result;
}

bool TStringListTest2()
{
 bool result = false;
 TStringList* Names = nullptr; // Define our string list variable
 String ageStr;
 int i = 0;
 int stop = 0;
 result = true;
 // Define a string list object, and point our variable at it
 Names = new TStringList();

 // Now add some names to our list
 Names->WritePropertyCommaText(L"Neil=45, Brian=63, Jim=22");

 // And now find Brian's age
 ageStr = Names->ReadPropertyValues(L"Brian");

 // Display this value
 // ShowMessage('Brians age = '+ageStr);
 result = result && (ageStr == L"63");

 // Now display all name and age pair values
 for(stop = Names->ReadPropertyCount() - 1, i = 0; i <= stop; i++)
 {
 //ShowMessage(names.Names[i]+' is '+names.ValueFromIndex[i]);
 if(i == 0)
 result = result && (String(ustr2pwchar(Names->ReadPropertyNames(i))) == L"Neil") && (String(ustr2pwchar(Names->ReadPropertyValueFromIndex(i))) == L"45");
 if(i == 1)
 result = result && (String(ustr2pwchar(Names->ReadPropertyNames(i))) == L"Brian") && (String(ustr2pwchar(Names->ReadPropertyValueFromIndex(i))) == L"63");
 if(i == 2)
 result = result && (String(ustr2pwchar(Names->ReadPropertyNames(i))) == L"Jim") && (String(ustr2pwchar(Names->ReadPropertyValueFromIndex(i))) == L"22");
 }

 // Free up the list object
 delete Names;
 return result;
}

bool TStringListTest3()
{
 bool result = false;
 TStringList* cars = nullptr; // Define our string list variable
 int i = 0;

Unit tests 179

© 2024 Dr. Detlef Meyer-Eltz

 result = true;
 // Define a string list object, and point our variable at it
 cars = new TStringList();

 // Now add some cars to our list - using the DelimitedText property
 // with overriden control variables
 cars->WritePropertyDelimiter(L' '); // Each list item will be blank separated
 cars->WritePropertyQuoteChar(L'|'); // And each item will be quoted with |'s
 cars->WritePropertyDelimitedText(L"|Honda Jazz| |Ford Mondeo| |Jaguar \"E-type\"|");

 // Now display these cars
// for i := 0 to cars.Count-1 do
// ShowMessage(cars[i]); // cars[i] equates to cars.Strings[i]
 result = result && (cars->ReadPropertyStrings(0) == L"Honda Jazz");
 result = result && (cars->ReadPropertyStrings(1) == L"Ford Mondeo");
 result = result && (cars->ReadPropertyStrings(2) == L"Jaguar \"E-type\"");

 // Free up the list object
 delete cars;
 return result;
}

bool TStringListTest()
{
 bool result = false;
 result = true;
 result = result && TStringListTest1();
 result = result && TStringListTest2();
 result = result && TStringListTest3();
 return result;
}
} // namespace dbsc_tstringlist

15 Pretranslated C++ code

Aurora2Cpp ships with some pre-translated parts of the Delphi RTL/VCL.
You also can improve and accelerate your translations, if you prepare parts of your own Delphi code.

15.1 Delphi RTL/VCL

The user's Delphi code is based on the Delphi RTL and the VCL The translations of the user's code
therefore also need translations of these Delphi libraries.

C++ Builder

The C++ Builder already has its own version of the Delphi RTL/VCL with C++ interface files.
Aurora2Cpp provides some additional helper files.

Other Compilers

For other compilers one could think this isn't a problem, since this code can be translated by
Aurora2Cpp as well as the own code. Unfortunately, it is not quite so simple. Particularly the file
System.pas makes problems. System.pas is interlocked with the Delphi compiler narrowly. Some
fundamental function are built into the the Delphi compiler and some parts are encoded in a special
manner, which are interpreted correctly from the Delphi compiler only. For example the symbol
"_AnsiStr" is used instead of "AnsiString" and the same applies to quite a number of other basic types.
System pas further depends partly on assembler code. RTL/VCL sources also convert C++ API
functions and types of the operating system such that they are conform to Delphi. In C++ this
conversion isn't necessary, you better use the original API instead.. In addition some parts of
System.pas aren't needed in C++ at all.

Therefore some parts of the Delphi RTL are pre-translated and prepared to use with the code

Aurora2Cpp180

© 2024 Dr. Detlef Meyer-Eltz

translated by Aurora2Cpp. Because Embarcadero has the copyright of the Delphi RTL/VCL the
translated parts cannot be shipped with the Aurora2Cpp installer. However as customer of Aurora2Cpp
you certainly will have a license of Delphi 7 too and as owner you also have the right to use the
translated code. So you can get the C++ version of the Delphi code, if you provide a proof of your
Delphi ownership. To get the code, please contact me.

Some helping code is already delivered with the Aurora2Cpp installer:
It is recommended to prepare some files of the Delphi RTL

15.1.1 C++ code for C++Builder

The C++ Builder already has its own version of the Delphi RTL/VCL with C++ interface files. If the
option to produce C++ for C++ Builder is enabled Aurora2Cpp tries to optimize the translated code to
work together with these libraries. For the parts which are missing in System.pas, there is
pre-translated code in the folder (if installed as suggested):

C:\Users\[USER]\Documents\Aurora2Cpp\d2c_cb

You also should use the extended System.pas extension in

d2c_convert
d2c_openarray
d2c_smallstringconvert
d2c_sysexcept
d2c_sysfile
d2c_syshelper
d2c_sysiter
d2c_sysmath
d2c_sysstring
d2c_system
d2c_systypes

15.1.1.1 d2c_convert

d2c_convert contains Aurora2Cpp helper functions to convert different string and array types into each
other.

AnsiString wstr2str(const System::WideString& xs);
WideString str2wstr(const System::AnsiString& xs);
AnsiChar wchar2char(WideChar xc);
WideChar char2wchar(AnsiChar xc);

System::AnsiString wstr2astr(const System::WideString& xs);
System::AnsiString ustr2astr(const System::UnicodeString& xs);
System::AnsiString sstr2astr(const System::SmallString<255>& xs);

System::WideString astr2wstr(const System::AnsiString& xs);
System::WideString ustr2wstr(const System::UnicodeString& xs); // see WStrFromUStr
System::WideString sstr2wstr(const System::SmallString<255>& xs);

Pretranslated C++ code 181

© 2024 Dr. Detlef Meyer-Eltz

System::UnicodeString astr2ustr(const System::AnsiString& xs);
System::UnicodeString wstr2ustr(const System::WideString& xs); // see UStrFromWStr
System::UnicodeString sstr2ustr(const System::SmallString<255>& xs);

void* astr2address(const System::AnsiString& xs, int index = 0);
void* wstr2address(const System::WideString& xs, int index = 0);
void* ustr2address(const System::UnicodeString& xs, int index = 0);
void* sstr2address(const System::SmallString<255>& xs, int index = 0);

System::PWideChar address2pwchar(void* p);

System::PAnsiChar astr2pchar(const System::AnsiString& xs, int index = 0);
System::PAnsiChar wstr2pchar(const System::WideString& xs, int index = 0);
System::PAnsiChar ustr2pchar(const System::UnicodeString& xs, int index = 0);
System::PAnsiChar sstr2pchar(const System::SmallString<255>& xs, int index = 0);

System::PWideChar astr2pwchar(const System::AnsiString& xs, int index = 0);
System::PWideChar wstr2pwchar(const System::WideString& xs, int index = 0);
System::PWideChar ustr2pwchar(const System::UnicodeString& xs, int index = 0);
System::PWideChar sstr2pwchar(const System::SmallString<255>& xs, int index = 0);
System::PWideChar ustr2punichar(const System::UnicodeString& xs, int index = 0);

inline System::ShortString ustr2sstr(const System::UnicodeString& xs) ...
inline System::ShortString astr2sstr(const System::AnsiString& xs) ...
template <class T> T* array2ptr(const DynamicArray<T>& s, int offset = 0) ...
inline unsigned char* bytearray2pbyte(const DynamicArray<unsigned char>& s, int offset = 0) ...
inline PAnsiChar bytearray2pchar(const DynamicArray<unsigned char>& s, int offset = 0) ...
inline void* bytearray2pvoid(const DynamicArray<unsigned char>& s, int offset = 0) ...
inline System::PAnsiChar wchararray2pchar(const DynamicArray<WideChar>& s, int offset = 0) ...
inline System::PWideChar wchararray2pwchar(const DynamicArray<WideChar>& s, int offset = 0) ...

template <typename Type, Type Low, Type High> System::Set<Type, Low, High> IntToSet(int xi) ...
template <typename Type, Type Low, Type High> int SetToInt(const System::Set<Type, Low, High>&
xsi) ...
template <typename Type, Type Low, Type High> unsigned char ToByte(const System::Set<Type,
Low, High>& xset) ...

template <unsigned char sz = 255> SmallString<sz> astr2sstr(const AnsiString xs) ...
template <unsigned char sz> SmallString<sz> wstr2sstr(const WideString xs) ...
template <unsigned char sz> SmallString<sz> sstr2ustr(const UnicodeString xs) ...
template <unsigned char sz> SmallString<255> sstr2sstr(const SmallString<sz>& xs) ...

template <class T> std::vector<T> DynArrayToVector(const DynamicArray<T> &arr) ...
template <class T> std::vector<T> move(DynamicArray<T>& source) ...
template <class T> DynamicArray<T> VecorToDynArray(const std::vector<T> &arr) ...

15.1.1.2 d2c_openarray

d2c_openarray contains Aurora2Cpp helper code for open array parameters. The C++Builder
OPENARRAY macro is used to pass an array of values on the fly. In addition Aurora2Cpp provides an
extended class OpenArrayEx by which dynamic and fixed arrays can be passed where a function
expects an open array parameter. In addition there are cases, where open arrays are passed as var-
parameters. Strings, SmallStrings, and fixed arrays con be passed to such parameters as well as

Aurora2Cpp182

© 2024 Dr. Detlef Meyer-Eltz

dynamic arrays. For that case Aurora2Cpp uses a special template type OpenArrayRef, which is
defined in d2c_openarray.

template <class T>
class OpenArrayEx
{
public:

__fastcall OpenArrayEx(const DynamicArray<T>& src);
__fastcall OpenArrayEx(const T* pArr, int Count);
template <class InputIterator> __fastcallOpenArrayEx(InputIterator first,

InputIterator last);

...
};

template <class T>
class OpenArrayRef
{
public:

__fastcall OpenArrayRef(DynamicArray<T>& arr);
__fastcall OpenArrayRef(std::basic_string<T>& s);

...
};

15.1.1.3 d2c_sysexcept

d2c_sysexcept contains a Aurora2Cpp helper enumeration of runtime errors.

15.1.1.4 d2c_sysfile

d2c_sysfile contains Aurora2Cpp helper code for basic file reading and writing routines. This version
for C++Builder is analogous to the version for other compilers but with C++Builder string types.

Pretranslated C++ code 183

© 2024 Dr. Detlef Meyer-Eltz

15.1.1.5 d2c_syshelper

d2c_syshelper is a translation of the helper classes from System.SysUtils for C++Builder. These
classes are needed sometimes to be able to translate other Delphi code, where functions from the
helper classes are used.

struct TStringHelper
{

TStringHelper(UnicodeString& Helped) : m_Helped(Helped) {}
TStringHelper(const UnicodeString& Helped) : m_Helped(const_cast<UnicodeString&>(Helped)) {}

private:
enum TSplitKind {StringSeparatorNoQuoted,

 StringSeparatorQuoted,
 CharSeparatorNoQuoted,
 CharSeparatorQuoted };

Char __fastcall GetChars(int Index) const;
int __fastcall GetLength() const;
static bool __fastcall CharInArray(const Char C, const Char* InArray, int iMaxIndex);
TArray<String> __fastcall InternalSplit(TSplitKind SplitType, const Char* SeparatorC, int SeparatorC_maxidx, const String* separators, int separators_maxidx, Char QuoteStart, Char QuoteEnd, int Count, TStringSplitOptions Options);
int __fastcall IndexOfAny(const String* Values, int Values_maxidx, int& Index, int StartIndex);
int __fastcall IndexOfAnyUnquoted(const String* Values, int Values_maxidx, Char StartQuote, Char EndQuote, int& Index, int StartIndex);
int __fastcall IndexOfQuoted(const String Value, Char StartQuote, Char EndQuote, int StartIndex);
static int __fastcall InternalCompare(const String StrA, int IndexA, const String StrB, int IndexB, int LengthA, int lengthb, bool IgnoreCase, TLocaleID LocaleID);
static int __fastcall InternalCompare(const String StrA, int IndexA, const String StrB, int IndexB, int LengthA, int lengthb, TCompareOptions Options, TLocaleID LocaleID);
static unsigned long __fastcall InternalMapOptionsToFlags(TCompareOptions AOptions);

public:
static const WideChar Empty[]; // = L"";

// Methods
static String __fastcall Create(Char C, int Count);
static String __fastcall Create(const Char* Value, int Value_maxidx, int StartIndex, int Length);
static String __fastcall Create(const Char* Value, int Value_maxidx);
static int __fastcall Compare(const String StrA, const String StrB);
static int __fastcall Compare(const String StrA, const String StrB, TLocaleID LocaleID);
static int __fastcall Compare(const String StrA, const String StrB, bool IgnoreCase); //deprecated 'Use same with TCompareOptions';
static int __fastcall Compare(const String StrA, const String StrB, bool IgnoreCase, TLocaleID LocaleID); //deprecated 'Use same with TCompareOptions';
static int __fastcall Compare(const String StrA, const String StrB, TCompareOptions Options);
static int __fastcall Compare(const String StrA, const String StrB, TCompareOptions Options, TLocaleID LocaleID);
static int __fastcall Compare(const String StrA, int IndexA, const String StrB, int IndexB, int Length);
static int __fastcall Compare(const String StrA, int IndexA, const String StrB, int IndexB, int Length, TLocaleID LocaleID);
static int __fastcall Compare(const String StrA, int IndexA, const String StrB, int IndexB, int Length, bool IgnoreCase); //deprecated 'Use same with TCompareOptions';
static int __fastcall Compare(const String StrA, int IndexA, const String StrB, int IndexB, int Length, bool IgnoreCase, TLocaleID LocaleID); //deprecated 'Use same with TCompareOptions';
static int __fastcall Compare(const String StrA, int IndexA, const String StrB, int IndexB, int Length, TCompareOptions Options);
static int __fastcall Compare(const String StrA, int IndexA, const String StrB, int IndexB, int Length, TCompareOptions Options, TLocaleID LocaleID);
static int __fastcall CompareOrdinal(const String StrA, const String StrB);
static int __fastcall CompareOrdinal(const String StrA, int IndexA, const String StrB, int IndexB, int Length);
static int __fastcall CompareText(const String StrA, const String StrB);
static String __fastcall parse(const int Value);
static String __fastcall parse(const __int64 Value);
static String __fastcall parse(const bool Value);
static String __fastcall parse(const long double Value);
static bool __fastcall ToBoolean(const String s);
static int __fastcall toInteger(const String s);

/// <summary>Class function to Convert a string to an Int64 value</summary>
static __int64 __fastcall ToInt64(const String s);
static float __fastcall ToSingle(const String s);
static double __fastcall ToDouble(const String s);
static long double __fastcall ToExtended(const String s);
static String __fastcall LowerCase(const String s);
static String __fastcall LowerCase(const String s, TLocaleOptions LocaleOptions);
static String __fastcall UpperCase(const String s);
static String __fastcall UpperCase(const String s, TLocaleOptions LocaleOptions);
int __fastcall compareTo(const String StrB);
bool __fastcall contains(const String Value);
static String __fastcall Copy(const String Str);
//void __fastcall CopyTo(int sourceIndex, Char* Destination, int Destination_maxidx, int DestinationIndex, int Count);
void __fastcall CopyTo(int sourceIndex, OpenArrayRef<WideChar> Destination, int DestinationIndex, int Count);
int __fastcall CountChar(const Char C);
String __fastcall DeQuotedString();
String __fastcall DeQuotedString(const Char QuoteChar);
static bool __fastcall EndsText(const String ASubText, const String AText);

Aurora2Cpp184

© 2024 Dr. Detlef Meyer-Eltz

bool __fastcall endsWith(const String Value);
bool __fastcall endsWith(const String Value, bool IgnoreCase);
bool __fastcall Equals(const String Value);
static bool __fastcall Equals(const String A, const String B);
static String __fastcall Format(const String Format, const TVarRec* Args, int Args_maxidx);
int __fastcall GetHashCode();
int __fastcall IndexOf(Char Value);
int __fastcall IndexOf(const String Value);
int __fastcall IndexOf(Char Value, int StartIndex);
int __fastcall IndexOf(const String Value, int StartIndex);
int __fastcall IndexOf(Char Value, int StartIndex, int Count);
int __fastcall IndexOf(const String Value, int StartIndex, int Count);
int __fastcall IndexOfAny(const Char* AnyOf, int AnyOf_maxidx);
int __fastcall IndexOfAny(const Char* AnyOf, int AnyOf_maxidx, int StartIndex);
int __fastcall IndexOfAny(const Char* AnyOf, int AnyOf_maxidx, int StartIndex, int Count);

/// <summary>Index of any given chars, excluding those that are between quotes</summary>
int __fastcall IndexOfAnyUnquoted(const Char* AnyOf, int AnyOf_maxidx, Char StartQuote, Char EndQuote);
int __fastcall IndexOfAnyUnquoted(const Char* AnyOf, int AnyOf_maxidx, Char StartQuote, Char EndQuote, int StartIndex);
int __fastcall IndexOfAnyUnquoted(const Char* AnyOf, int AnyOf_maxidx, Char StartQuote, Char EndQuote, int StartIndex, int Count);
String __fastcall Insert(int StartIndex, const String Value);
bool __fastcall IsDelimiter(const String Delimiters, int Index);
bool __fastcall IsEmpty();
static bool __fastcall IsNullOrEmpty(const String Value);
static bool __fastcall IsNullOrWhiteSpace(const String Value);
static String __fastcall JOIN(const String separator, const TVarRec* Values, int Values_maxidx);
static String __fastcall JOIN(const String separator, const String* Values, int Values_maxidx);

// todo static String __fastcall JOIN(const String separator, IEnumerator<String>* const Values);
// todo static String __fastcall JOIN(const String separator, IEnumerable<String>* const Values);

static String __fastcall JOIN(const String separator, const String* Values, int Values_maxidx, int StartIndex, int Count);
int __fastcall LastDelimiter(const String delims);
int __fastcall LastIndexOf(Char Value);
int __fastcall LastIndexOf(const String Value);
int __fastcall LastIndexOf(Char Value, int StartIndex);
int __fastcall LastIndexOf(const String Value, int StartIndex);
int __fastcall LastIndexOf(Char Value, int StartIndex, int Count);
int __fastcall LastIndexOf(const String Value, int StartIndex, int Count);
int __fastcall LastIndexOfAny(const Char* AnyOf, int AnyOf_maxidx);
int __fastcall LastIndexOfAny(const Char* AnyOf, int AnyOf_maxidx, int StartIndex);
int __fastcall LastIndexOfAny(const Char* AnyOf, int AnyOf_maxidx, int StartIndex, int Count);
String __fastcall PadLeft(int TotalWidth);
String __fastcall PadLeft(int TotalWidth, Char PaddingChar);
String __fastcall PadRight(int TotalWidth);
String __fastcall PadRight(int TotalWidth, Char PaddingChar);
String __fastcall QuotedString();
String __fastcall QuotedString(const Char QuoteChar);
String __fastcall Remove(int StartIndex);
String __fastcall Remove(int StartIndex, int Count);
String __fastcall replace(Char OldChar, Char NewChar);
String __fastcall replace(Char OldChar, Char NewChar, TReplaceFlags ReplaceFlags);
String __fastcall replace(const String OldValue, const String NewValue);
String __fastcall replace(const String OldValue, const String NewValue, TReplaceFlags ReplaceFlags);
TArray<String> __fastcall split(const Char* separator, int separator_maxidx);
TArray<String> __fastcall split(const Char* separator, int separator_maxidx, int Count);
TArray<String> __fastcall split(const Char* separator, int separator_maxidx, TStringSplitOptions Options);
TArray<String> __fastcall split(const Char* separator, int separator_maxidx, int Count, TStringSplitOptions Options);
TArray<String> __fastcall split(const String* separator, int separator_maxidx);
TArray<String> __fastcall split(const String* separator, int separator_maxidx, int Count);
TArray<String> __fastcall split(const String* separator, int separator_maxidx, TStringSplitOptions Options);
TArray<String> __fastcall split(const String* separator, int separator_maxidx, int Count, TStringSplitOptions Options);
TArray<String> __fastcall split(const Char* separator, int separator_maxidx, Char Quote);
TArray<String> __fastcall split(const Char* separator, int separator_maxidx, Char QuoteStart, Char QuoteEnd);
TArray<String> __fastcall split(const Char* separator, int separator_maxidx, Char QuoteStart, Char QuoteEnd, TStringSplitOptions Options);
TArray<String> __fastcall split(const Char* separator, int separator_maxidx, Char QuoteStart, Char QuoteEnd, int Count);
TArray<String> __fastcall split(const Char* separator, int separator_maxidx, Char QuoteStart, Char QuoteEnd, int Count, TStringSplitOptions Options);
TArray<String> __fastcall split(const String* separator, int separator_maxidx, Char Quote);
TArray<String> __fastcall split(const String* separator, int separator_maxidx, Char QuoteStart, Char QuoteEnd);
TArray<String> __fastcall split(const String* separator, int separator_maxidx, Char QuoteStart, Char QuoteEnd, TStringSplitOptions Options);
TArray<String> __fastcall split(const String* separator, int separator_maxidx, Char QuoteStart, Char QuoteEnd, int Count);
TArray<String> __fastcall split(const String* separator, int separator_maxidx, Char QuoteStart, Char QuoteEnd, int Count, TStringSplitOptions Options);
bool __fastcall startsWith(const String Value);
bool __fastcall startsWith(const String Value, bool IgnoreCase);
String __fastcall SubString(int StartIndex);
String __fastcall SubString(int StartIndex, int Length);
bool __fastcall ToBoolean();
int __fastcall toInteger();

Pretranslated C++ code 185

© 2024 Dr. Detlef Meyer-Eltz

/// <summary>Converts the string to an Int64 value</summary>
__int64 __fastcall ToInt64();
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
TArray<Char> __fastcall ToCharArray();
TArray<Char> __fastcall ToCharArray(int StartIndex, int Length);
String __fastcall ToLower();
String __fastcall ToLower(TLocaleID LocaleID);
String __fastcall ToLowerInvariant();
String __fastcall toupper();
String __fastcall toupper(TLocaleID LocaleID);
String __fastcall ToUpperInvariant();
String __fastcall Trim();
String __fastcall TrimLeft();
String __fastcall TrimRight();
String __fastcall Trim(const Char* TrimChars, int TrimChars_maxidx);
String __fastcall TrimLeft(const Char* TrimChars, int TrimChars_maxidx);
String __fastcall TrimRight(const Char* TrimChars, int TrimChars_maxidx);
String __fastcall TrimEnd(const Char* TrimChars, int TrimChars_maxidx)/*# 'use trimright' */;
String __fastcall TrimStart(const Char* TrimChars, int TrimChars_maxidx)/*# 'use trimleft' */;
__property Char Chars[int Index] = { read = GetChars };
__property int Length = { read = GetLength };

private:
UnicodeString& m_Helped;

};

struct TSingleHelper
{

TSingleHelper(float& Helped) : m_Helped(Helped) {}
TSingleHelper(const float& Helped) : m_Helped(const_cast<float&>(Helped)) {}

private:
UInt8 __fastcall InternalGetBytes(unsigned int Index) const;
UInt16 __fastcall InternalGetWords(unsigned int Index) const;
void __fastcall InternalSetBytes(unsigned int Index, const UInt8 Value);
void __fastcall InternalSetWords(unsigned int Index, const UInt16 Value);
UInt8 __fastcall GetBytes(unsigned int Index) const;
UInt16 __fastcall GetWords(unsigned int Index) const;
unsigned __int64 __fastcall GetExp() const;
unsigned __int64 __fastcall GetFrac() const;
bool __fastcall GetSign() const;

 void __fastcall setbytes(unsigned int Index, const UInt8 Value);
 void __fastcall SetWords(unsigned int Index, const UInt16 Value);
 void __fastcall SetExp(unsigned __int64 NewExp);
 void __fastcall SetFrac(unsigned __int64 NewFrac);
 void __fastcall SetSign(bool NewSign);
public:
 static const float epsilon; // = 1.4012984643248170709e-45F;
 static const float MaxValue; // = 340282346638528859811704183484516925440.0F;
 static const float MinValue; // = -340282346638528859811704183484516925440.0;
 static const float PositiveInfinity; // = 1.0F / 0.0F;
 static const float NegativeInfinity; // = -1.0F / 0.0F;
 static const float NaN; // = 0.0F / 0.0F;
 int __fastcall Exponent();
 long double __fastcall Fraction();
 unsigned __int64 __fastcall mantissa();
 __property bool sign = { read = GetSign, write = SetSign };
 __property unsigned __int64 Exp = { read = GetExp, write = SetExp };
 __property unsigned __int64 Frac = { read = GetFrac, write = SetFrac };

TFloatSpecial __fastcall SpecialType();
 void __fastcall BuildUp(const bool SignFlag, const unsigned __int64 mantissa, const int Exponent);
 String __fastcall toString();
 String __fastcall toString(const TFormatSettings& AFormatSettings);
 String __fastcall toString(const TFloatFormat Format, const int Precision, const int Digits);
 String __fastcall toString(const TFloatFormat Format, const int Precision, const int Digits, const TFormatSettings& AFormatSettings);
 bool __fastcall IsNan();
 bool __fastcall IsInfinity();
 bool __fastcall IsNegativeInfinity();
 bool __fastcall IsPositiveInfinity();
 __property UInt8 Bytes[unsigned int Index] = { read = GetBytes, write = setbytes }; // 0..3
 __property UInt16 Words[unsigned int Index] = { read = GetWords, write = SetWords }; // 0..1
 static String __fastcall toString(const float Value);
 static String __fastcall toString(const float Value, const TFormatSettings& AFormatSettings);

Aurora2Cpp186

© 2024 Dr. Detlef Meyer-Eltz

 static String __fastcall toString(const float Value, const TFloatFormat Format, const int Precision, const int Digits);
 static String __fastcall toString(const float Value, const TFloatFormat Format, const int Precision, const int Digits, const TFormatSettings& AFormatSettings);
 static float __fastcall parse(const String s);
 static float __fastcall parse(const String s, const TFormatSettings& AFormatSettings);
 static bool __fastcall TryParse(const String s, float& Value);
 static bool __fastcall TryParse(const String s, float& Value, const TFormatSettings& AFormatSettings);
 static bool __fastcall IsNan(const float Value);
 static bool __fastcall IsInfinity(const float Value);

static bool __fastcall IsNegativeInfinity(const float Value);
 static bool __fastcall IsPositiveInfinity(const float Value);
 static int __fastcall Size();
private:
 float& m_Helped;

};

struct TDoubleHelper
{

TDoubleHelper(double& Helped) : m_Helped(Helped) {}
TDoubleHelper(const double& Helped) : m_Helped(const_cast<double&>(Helped)) {}

private:
UInt8 __fastcall InternalGetBytes(unsigned int Index) const;
UInt16 __fastcall InternalGetWords(unsigned int Index) const;
void __fastcall InternalSetBytes(unsigned int Index, const UInt8 Value);
void __fastcall InternalSetWords(unsigned int Index, const UInt16 Value);
UInt8 __fastcall GetBytes(unsigned int Index) const;
UInt16 __fastcall GetWords(unsigned int Index) const;
unsigned __int64 __fastcall GetExp() const;
unsigned __int64 __fastcall GetFrac() const;
bool __fastcall GetSign() const;
void __fastcall setbytes(unsigned int Index, const UInt8 Value);
void __fastcall SetWords(unsigned int Index, const UInt16 Value);
void __fastcall SetExp(unsigned __int64 NewExp);
void __fastcall SetFrac(unsigned __int64 NewFrac);
void __fastcall SetSign(bool NewSign);

public:
 static const double epsilon; // = 4.9406564584124654418e-324;
 static const double MaxValue; // = 1.7976931348623157081e+308;
 static const double MinValue; // = -1.7976931348623157081e+308;
 static const double PositiveInfinity; // = 1.0 / 0.0;
 static const double NegativeInfinity; // = -1.0 / 0.0;
 static const double NaN; // = 0.0 / 0.0;
 int __fastcall Exponent();
 long double __fastcall Fraction();
 unsigned __int64 __fastcall mantissa();
 __property bool sign = { read = GetSign, write = SetSign };
 __property unsigned __int64 Exp = { read = GetExp, write = SetExp };
 __property unsigned __int64 Frac = { read = GetFrac, write = SetFrac };
 TFloatSpecial __fastcall SpecialType();
 void __fastcall BuildUp(const bool SignFlag, const unsigned __int64 mantissa, const int Exponent);
 String __fastcall toString();
 String __fastcall toString(const TFormatSettings& AFormatSettings);

String __fastcall toString(const TFloatFormat Format, const int Precision, const int Digits);
 String __fastcall toString(const TFloatFormat Format, const int Precision, const int Digits, const TFormatSettings& AFormatSettings);
 bool __fastcall IsNan();
 bool __fastcall IsInfinity();
 bool __fastcall IsNegativeInfinity();
 bool __fastcall IsPositiveInfinity();
 __property UInt8 Bytes[unsigned int Index] = { read = GetBytes, write = setbytes }; // 0..7
 __property UInt16 Words[unsigned int Index] = { read = GetWords, write = SetWords }; // 0..3
 static String __fastcall toString(const double Value);
 static String __fastcall toString(const double Value, const TFormatSettings& AFormatSettings);
 static String __fastcall toString(const double Value, const TFloatFormat Format, const int Precision, const int Digits);
 static String __fastcall toString(const double Value, const TFloatFormat Format, const int Precision, const int Digits, const TFormatSettings& AFormatSettings);
 static double __fastcall parse(const String s);
 static double __fastcall parse(const String s, const TFormatSettings& AFormatSettings);
 static bool __fastcall TryParse(const String s, double& Value);
 static bool __fastcall TryParse(const String s, double& Value, const TFormatSettings& AFormatSettings);
 static bool __fastcall IsNan(const double Value);
 static bool __fastcall IsInfinity(const double Value);
 static bool __fastcall IsNegativeInfinity(const double Value);
 static bool __fastcall IsPositiveInfinity(const double Value);
 static int __fastcall Size();
private:

double& m_Helped;

Pretranslated C++ code 187

© 2024 Dr. Detlef Meyer-Eltz

};

struct TExtendedHelper
{

TExtendedHelper(long double& Helped) : m_Helped(Helped) {}
TExtendedHelper(const long double& Helped) : m_Helped(const_cast<long double&>(Helped)) {}

private:
UInt8 __fastcall InternalGetBytes(unsigned int Index) const;
UInt16 __fastcall InternalGetWords(unsigned int Index) const;
void __fastcall InternalSetBytes(unsigned int Index, const UInt8 Value);
void __fastcall InternalSetWords(unsigned int Index, const UInt16 Value);
UInt8 __fastcall GetBytes(unsigned int Index) const;
UInt16 __fastcall GetWords(unsigned int Index) const;
unsigned __int64 __fastcall GetExp() const;
unsigned __int64 __fastcall GetFrac() const;
bool __fastcall GetSign() const;
void __fastcall setbytes(unsigned int Index, const UInt8 Value);
void __fastcall SetWords(unsigned int Index, const UInt16 Value);
void __fastcall SetExp(unsigned __int64 NewExp);
void __fastcall SetFrac(unsigned __int64 NewFrac);
void __fastcall SetSign(bool NewSign);

public:
 static const long double epsilon; // = 4.9406564584124654418e-324L;
 static const long double MaxValue; // = 1.7976931348623157081e+308L;
 static const long double MinValue; // = -1.7976931348623157081e+308;
 static const long double PositiveInfinity; // = 1.0L / 0.0L;
 static const long double NegativeInfinity; // = -1.0L / 0.0L;
 static const long double NaN; // = 0.0L / 0.0L;
 int __fastcall Exponent();
 long double __fastcall Fraction();
 unsigned __int64 __fastcall mantissa();
 __property bool sign = { read = GetSign, write = SetSign };
 __property unsigned __int64 Exp = { read = GetExp, write = SetExp };
 __property unsigned __int64 Frac = { read = GetFrac, write = SetFrac };
 TFloatSpecial __fastcall SpecialType();
 void __fastcall BuildUp(const bool SignFlag, const unsigned __int64 mantissa, const int Exponent);
 String __fastcall toString();
 String __fastcall toString(const TFormatSettings& AFormatSettings);
 String __fastcall toString(const TFloatFormat Format, const int Precision, const int Digits);
 String __fastcall toString(const TFloatFormat Format, const int Precision, const int Digits, const TFormatSettings& AFormatSettings);
 bool __fastcall IsNan();
 bool __fastcall IsInfinity();

bool __fastcall IsNegativeInfinity();
 bool __fastcall IsPositiveInfinity();
 __property UInt8 Bytes[unsigned int Index] = { read = GetBytes, write = setbytes }; // 0..7 or 0..9
 __property UInt16 Words[unsigned int Index] = { read = GetWords, write = SetWords }; // 0..3 or 0..4
 static String __fastcall toString(const long double Value);
 static String __fastcall toString(const long double Value, const TFormatSettings& AFormatSettings);
 static String __fastcall toString(const long double Value, const TFloatFormat Format, const int Precision, const int Digits);
 static String __fastcall toString(const long double Value, const TFloatFormat Format, const int Precision, const int Digits, const TFormatSettings& AFormatSettings);
 static long double __fastcall parse(const String s);
 static long double __fastcall parse(const String s, const TFormatSettings& AFormatSettings);
 static bool __fastcall TryParse(const String s, long double& Value);
 static bool __fastcall TryParse(const String s, long double& Value, const TFormatSettings& AFormatSettings);
 static bool __fastcall IsNan(const long double Value);
 static bool __fastcall IsInfinity(const long double Value);
 static bool __fastcall IsNegativeInfinity(const long double Value);
 static bool __fastcall IsPositiveInfinity(const long double Value);
 static int __fastcall Size();
private:
 long double& m_Helped;

};

struct TByteHelper
{

TByteHelper(unsigned char& Helped) : m_Helped(Helped) {}
TByteHelper(const unsigned char& Helped) : m_Helped(const_cast<unsigned char&>(Helped)) {}
static const int MaxValue; // = 255;
static const int MinValue; // = 0;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);

Aurora2Cpp188

© 2024 Dr. Detlef Meyer-Eltz

float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const unsigned char Value);
static unsigned char __fastcall parse(const String s);
static bool __fastcall TryParse(const String s, unsigned char& Value);

private:
unsigned char& m_Helped;

};

struct TShortIntHelper
{

TShortIntHelper(signed char& Helped) : m_Helped(Helped) {}
TShortIntHelper(const signed char& Helped) : m_Helped(const_cast<signed char&>(Helped)) {}
static const int MaxValue; // = 127;
static const int MinValue; // = -128;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const signed char Value);

 static signed char __fastcall parse(const String s);
 static bool __fastcall TryParse(const String s, signed char& Value);
private:
 signed char& m_Helped;

};

struct TWordHelper
{

TWordHelper(WORD& Helped) : m_Helped(Helped) {}
TWordHelper(const WORD& Helped) : m_Helped(const_cast<WORD&>(Helped)) {}
static const int MaxValue; // = 65535;
static const int MinValue; // = 0;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const WORD Value);
static WORD __fastcall parse(const String s);
static bool __fastcall TryParse(const String s, WORD& Value);

private:
 WORD& m_Helped;

};

struct TSmallIntHelper
{

TSmallIntHelper(short int& Helped) : m_Helped(Helped) {}
TSmallIntHelper(const short int& Helped) : m_Helped(const_cast<short int&>(Helped)) {}
static const int MaxValue; // = 32767;
static const int MinValue; // = -32768;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const short int Value);
static short int __fastcall parse(const String s);
static bool __fastcall TryParse(const String s, short int& Value);

Pretranslated C++ code 189

© 2024 Dr. Detlef Meyer-Eltz

private:
 short int& m_Helped;

};

struct TCardinalHelper
{

TCardinalHelper(unsigned int& Helped) : m_Helped(Helped) {}
TCardinalHelper(const unsigned int& Helped) : m_Helped(const_cast<unsigned int&>(Helped)) {} /* for LongWord type too */
static const int MaxValue; // = 4294967295;
static const int MinValue; // = 0;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const unsigned int Value);
static unsigned int __fastcall parse(const String s);
static bool __fastcall TryParse(const String s, unsigned int& Value);

private:
unsigned int& m_Helped;

};

struct TIntegerHelper
{

TIntegerHelper(int& Helped) : m_Helped(Helped) {}
TIntegerHelper(const int& Helped) : m_Helped(const_cast<int&>(Helped)) {} /* for LongInt type too */
static const int MaxValue; // = 2147483647;
static const int MinValue; // = -2147483648;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const int Value);
static int __fastcall parse(const String s);
static bool __fastcall TryParse(const String s, int& Value);

private:
int& m_Helped;

};

struct TUInt64Helper
{

TUInt64Helper(unsigned __int64& Helped) : m_Helped(Helped) {}
TUInt64Helper(const unsigned __int64& Helped) : m_Helped(const_cast<unsigned __int64&>(Helped)) {}
static const int MaxValue; // = 18446744073709551615;
static const int MinValue; // = 0;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const unsigned __int64 Value);
static unsigned __int64 __fastcall parse(const String s);
static bool __fastcall TryParse(const String s, unsigned __int64& Value);

private:
unsigned __int64& m_Helped;

};

struct TInt64Helper
{

Aurora2Cpp190

© 2024 Dr. Detlef Meyer-Eltz

TInt64Helper(__int64& Helped) : m_Helped(Helped) {}
TInt64Helper(const __int64& Helped) : m_Helped(const_cast<__int64&>(Helped)) {}
static const int MaxValue; // = 9223372036854775807;
static const int MinValue; // = -9223372036854775808;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const __int64 Value);
static __int64 __fastcall parse(const String s);
static bool __fastcall TryParse(const String s, __int64& Value);

private:
__int64& m_Helped;

};

struct TNativeUIntHelper
{

TNativeUIntHelper(NativeUInt& Helped) : m_Helped(Helped) {}
TNativeUIntHelper(const NativeUInt& Helped) : m_Helped(const_cast<NativeUInt&>(Helped)) {}
static const int MaxValue; // = 4294967295;
static const int MinValue; // = 0;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const NativeUInt Value);
static NativeUInt __fastcall parse(const String s);
static bool __fastcall TryParse(const String s, NativeUInt& Value);

private:
NativeUInt& m_Helped;

};

struct TNativeIntHelper
{

TNativeIntHelper(NativeInt& Helped) : m_Helped(Helped) {}
TNativeIntHelper(const NativeInt& Helped) : m_Helped(const_cast<NativeInt&>(Helped)) {}
static const int MaxValue; // = 2147483647;
static const int MinValue; // = -2147483648;
String __fastcall toString();
bool __fastcall ToBoolean();
String __fastcall ToHexString();
String __fastcall ToHexString(const int MinDigits);
float __fastcall ToSingle();
double __fastcall ToDouble();
long double __fastcall ToExtended();
static int __fastcall Size();
static String __fastcall toString(const NativeInt Value);
static NativeInt __fastcall parse(const String s);
static bool __fastcall TryParse(const String s, NativeInt& Value);

private:
NativeInt& m_Helped;

};

/*$SCOPEDENUMS ON*/
enum TUseBoolStrs {False,

 True };

/*$SCOPEDENUMS OFF*/

struct TBooleanHelper
{

Pretranslated C++ code 191

© 2024 Dr. Detlef Meyer-Eltz

TBooleanHelper(bool& Helped) : m_Helped(Helped) {}
TBooleanHelper(const bool& Helped) : m_Helped(const_cast<bool&>(Helped)) {}
int __fastcall toInteger();
String __fastcall toString(TUseBoolStrs UseBoolStrs = TUseBoolStrs::False);
static int __fastcall Size();
static String __fastcall toString(const bool Value, TUseBoolStrs UseBoolStrs = TUseBoolStrs::False);
static bool __fastcall parse(const String s);
static bool __fastcall TryToParse(const String s, bool& Value);

private:
bool& m_Helped;

};

struct TByteBoolHelper
{

TByteBoolHelper(unsigned char& Helped) : m_Helped(Helped) {}
TByteBoolHelper(const unsigned char& Helped) : m_Helped(const_cast<unsigned char&>(Helped)) {}
int __fastcall toInteger();
String __fastcall toString();
static int __fastcall Size();
static String __fastcall toString(const bool Value);
static bool __fastcall parse(const String s);
static bool __fastcall TryToParse(const String s, bool& Value);

private:
unsigned char& m_Helped;

};

struct TWordBoolHelper
{

TWordBoolHelper(unsigned short& Helped) : m_Helped(Helped) {}
TWordBoolHelper(const unsigned short& Helped) : m_Helped(const_cast<unsigned short&>(Helped)) {}
int __fastcall toInteger();
String __fastcall toString();
static int __fastcall Size();
static String __fastcall toString(const bool Value);
static bool __fastcall parse(const String s);
static bool __fastcall TryToParse(const String s, bool& Value);

private:
unsigned short& m_Helped;

};

struct TLongBoolHelper
{

TLongBoolHelper(BOOL& Helped) : m_Helped(Helped) {}
TLongBoolHelper(const BOOL& Helped) : m_Helped(const_cast<BOOL&>(Helped)) {}
int __fastcall toInteger();
String __fastcall toString();
static int __fastcall Size();
static String __fastcall toString(const bool Value);
static bool __fastcall parse(const String s);
static bool __fastcall TryToParse(const String s, bool& Value);

private:
BOOL& m_Helped;

};

15.1.1.6 d2c_sysiter

d2c_sysiter contains Aurora2Cpp helper code to enable range based for-loops.

template<class T> class DynamicArrayIter ...

template<class T> const DynamicArrayIter<T> begin(const DynamicArray<T>& Array) ...
template<class T> const DynamicArrayIter<T> end(const DynamicArray<T>& Array) ...

Aurora2Cpp192

© 2024 Dr. Detlef Meyer-Eltz

template <class T, size_t N> T* begin(T (&array_of_const)[N]) ...
template <class T, size_t N> T* end(T (&array_of_const)[N]) ...

template<class T, T minEl, T maxEl> class SetIter ...
template<class T, T minEl, T maxEl> SetIter<T, minEl, maxEl> begin(const System::Set<T, minEl,
maxEl>& ASet) ...
template<class T, T minEl, T maxEl> SetIter<T, minEl, maxEl> end(const System::Set<T, minEl,
maxEl>& ASet) ...

15.1.1.7 d2c_sysmath

d2c_sysmath contains Aurora2Cpp helper routines for Delphi intrinsic mathematical functions, which
aren't provided by C++Builder itself.

int64_t Round(long double d);
int64_t Trunc(long double d);
long double Int(long double d);
int Sqr(int l);
int64_t Sqr(int64_t l);
uint64_t Sqr(uint64_t l);
long double Sqr(long double d);
#if (__BORLANDC__ < 0x0570)
int Random(int l);
long double Random();
long double Sqrt(long double d);
long double Frac(long double d);
long double ArcTan(long double d);
long double Ln(long double d);
long double Sin(long double d);
long double Cos(long double d);
long double Exp(long double d);
#endif

15.1.1.8 d2c_sysstring

d2c_sysstring contains some Aurora2Cpp helper functions which are useful at the translation of Delphi
code to C++ code for C++Builder.

int Pos(char Substr, const AnsiString& S);
int Pos(const WideString& Substr, const WideString& Source);
int Pos(wchar_t C, const WideString& S);

AnsiString Copy(const AnsiString& xs, int Index, int Count);
WideString Copy(const WideString& xs, int Index, int Count);

template <class T> std::vector<T> Copy(const std::vector<T>& V, int Index, int Count) ...
template <size_t N> void d2c_CopyToArray(Char(&CharArray)[N], const String& xs) ...

int d2c_strncmp(const char* xs1, const char* xs2);
int d2c_wcsncmp(const wchar_t* xs1, const wchar_t* xs2);
Char Chr(unsignedchar B);

Pretranslated C++ code 193

© 2024 Dr. Detlef Meyer-Eltz

void Insert(const AnsiString& Source, AnsiString& S, int Index);
void Insert(const WideString& Source, WideString& S, int Index);
void Delete(AnsiString& S, int Index, int Size);
void Delete(WideString& S, int Index, int Size);
#if (__BORLANDC__ <= 0x570) // not in CBuilder 6
AnsiString StringOfChar(char C, int l);
WideString StringOfChar(wchar_t C, int l);
#endif
void SetString(AnsiString& S, char* Buffer, int Len);
void SetString(WideString& S, wchar_t* Buf, int Len);
void SetLength(AnsiString& S, int Len);
void SetLength(WideString& S, int Len);
int Length(const SmallString<255>& xS);
int Length(const char* xp);
int Length(const wchar_t* xp);
int Length(const AnsiString& S);
int Length(const WideString& S);

#if (__BORLANDC__ >= 0x0610)
UnicodeString Copy(const UnicodeString& S, int Index, int Count);

void SetString(UnicodeString& S, wchar_t* Buf, int Len);
void SetLength(UnicodeString& S, int Len);
int Length(const UnicodeString& S);

UnicodeString Concat(const UnicodeString& s1);
UnicodeString Concat(const UnicodeString& s1, const UnicodeString& s2);
UnicodeString Concat(const UnicodeString& s1, const UnicodeString& s2, const UnicodeString& s3);
UnicodeString Concat(const UnicodeString& s1, const UnicodeString& s2, const UnicodeString& s3,

 const UnicodeString& s4);
UnicodeString Concat(const UnicodeString& s1, const UnicodeString& s2, const UnicodeString& s3,
 const UnicodeString& s4, const UnicodeString& s5);
UnicodeString Concat(const UnicodeString& s1, const UnicodeString& s2, const UnicodeString& s3,
 const UnicodeString& s4, const UnicodeString& s5, const UnicodeString& s6);
UnicodeString Concat(const UnicodeString& s1, const UnicodeString& s2, const UnicodeString& s3,
 const UnicodeString& s4, const UnicodeString& s5, const UnicodeString& s6,
 const UnicodeString& s7);
UnicodeString Concat(const UnicodeString& s1, const UnicodeString& s2, const UnicodeString& s3,
 const UnicodeString& s4, const UnicodeString& s5, const UnicodeString& s6,
 const UnicodeString& s7, const UnicodeString& s8);
UnicodeString Concat(const UnicodeString& s1, const UnicodeString& s2, const UnicodeString& s3,
 const UnicodeString& s4, const UnicodeString& s5, const UnicodeString& s6,
 const UnicodeString& s7, const UnicodeString& s8, const UnicodeString& s9);
#endif

15.1.1.9 d2c_system

d2c_system contains Aurora2Cpp helper routines, which simulate intrinsic Delphi functions, which are
not provided by C++Builder itself.

#define ARRAYHIGH(arr) ...
#define ObjectIs(xObj, xIs) ...

Aurora2Cpp194

© 2024 Dr. Detlef Meyer-Eltz

namespace System
{
 const double PI = 3.141592653589793238463; // float 3.14159265358979f;
}

template <class T> void d2c_Move(const wchar_t* Source, DynamicArray<T>& Dest, int Startindex,
unsigned int Count) ...
template <class T> void d2c_Move(const wchar_t* Source, DynamicArray<T>& Dest, unsigned int
Count) ...
void d2c_Move(const wchar_t* Source, Char* Dest, int Startindex, unsigned int Count);

template <class T> T Pred(const T& xT) ...
template <class T> T Succ(const T& xT) ...
template <class T> T Abs(const T xT) ...

void FillChar(void* X, int Count, unsignedchar Value);
void FillChar(char* X, int Count, unsignedchar Value);
void FillChar(wchar_t* X, int Count, unsignedchar Value);
void FillChar(AnsiString& X, int Count, unsignedchar Value);
void FillChar(WideString& X, int Count, unsignedchar Value);

template <typename T> void Val(const AnsiString& S, T& V, int& Code) ...
template <typename T> void Val(const WideString& S, T& V, int& Code) ...

#if (__BORLANDC__ >= 0x0610)
template <typename T> void Val(const UnicodeString& S, T& V, int& Code) ...
#endif
template <typename T> void Str(T xT, AnsiString& xs) ...
template <typename T> void Str(T xT, WideString& xs) ...
#if (__BORLANDC__ >= 0x0610)
template <typename T> void Str(T xT, UnicodeString& xs) ..
#endif

void Str(double xd, AnsiString& xs);
void Str(long double xd, AnsiString& xs);
void Str(int xd, int xiMinWidth, AnsiString& xs);
void Str(double xd, int xiMinWidth, AnsiString& xs);
void Str(long double xd, int xiMinWidth, AnsiString& xs);
void Str(long double xd, int xiMinWidth, AnsiString& xs);
void Str(double xd, int xiMinWidth, int xiDecPlaces, AnsiString& xs);
void Str(long double xd, int xiMinWidth, int xiDecPlaces, AnsiString& xs);
void Str(const Currency& xcr, int xiMinWidth, int xiDecPlaces, AnsiString& xs);

void Str(double xd, WideString& xs);
void Str(long double xd, WideString& xs);
void Str(int xd, int xiMinWidth, WideString& xs);
void Str(double xd, int xiMinWidth, WideString& xs);
void Str(long double xd, int xiMinWidth, WideString& xs);
void Str(double xd, int xiMinWidth, int xiDecPlaces, WideString& xs);
void Str(long double xd, int xiMinWidth, int xiDecPlaces, WideString& xs);
void Str(const Currency& xcr, int xiMinWidth, int xiDecPlaces, WideString& xs);

#if (__BORLANDC__ >= 0x0610)
void Str(double xd, UnicodeString& xs);
void Str(long double xd, UnicodeString& xs);
void Str(int xd, int xiMinWidth, UnicodeString& xs);

Pretranslated C++ code 195

© 2024 Dr. Detlef Meyer-Eltz

void Str(double xd, int xiMinWidth, UnicodeString& xs);
void Str(long double xd, int xiMinWidth, UnicodeString& xs);
void Str(double xd, int xiMinWidth, int xiDecPlaces, UnicodeString& xs);
void Str(long double xd, int xiMinWidth, int xiDecPlaces, UnicodeString& xs);
void Str(const Currency& xcr, int xiMinWidth, int xiDecPlaces, UnicodeString& xs);
#endif

template <typename T> PChar pchar(const T& xT) ...

// Pchar call is not created for wchar_t*, PChar instead

template <> inline PChar pchar<wchar_t>(const wchar_t& xT) ...
template <> inline PChar pchar<char>(const char& xT) ..
template <> inline PChar pchar<std::wstring>(const std::wstring& xT) ...

WORD Swap(WORD X);
int Swap(int X);
unsignedint Swap(unsignedint X);
int64_t Swap(int64_t X);

template <class T> unsigned char Hi(const T& xt) ...
template <class T> unsigned char Lo(const T& xt) ...
template <class T> bool Odd(const T xT) ...
template <class T> T Dec(T& xT) ...
template <class T> T Dec(T& xT, int xi) ...
template <class T> T Inc(T& xT) ...
template <class T> T Inc(T& xT, int xi) ...
template <class T> T Sqr(const T& xT) ...
template <class T> T High() ...
template <class T> T High(const T& X)
inline int High(const AnsiString& s) ...
inline int High(const WideString& s) ...
inline int High(const UnicodeString& s) ...
template <class T> T Low() ...
template <class T> T Low(const T& X) ...
template <class T, class C> void CastDec(T& xT, C xC) ...
template <class T, class C, class I> void CastDec(T& xT, C xC, I xI) ...
template <class T, class C> void CastDec(T*& xpT, C* xpC) ...
template <class T, class C, class I> void CastDec(T*& xpT, C* xpC, I xI) ...
template <class T, class C, class I> void CastDec(T*& xpT, C xC, I xI) ...
template <class T, class C> void CastInc(T& xT, C xC) ...
template <class T, class C, class I> void CastInc(T& xT, C xC, I xI) ...
template <class T, class C> void CastInc(T*& xpT, C xpC) ...
template <class T, class C, class I> void CastInc(T*& xpT, C* xpC, I xI) ...
template <class T, class C, class I> void CastInc(T*& xpT, C xC, I xI) ...
template <class TargetType, class SouceType, class Value> void CastAssign(SouceType* target,
Value v) ...
void Assert(bool expr);
void Assert(bool expr, const AnsiString& Msg);
void Halt(int Exitcode = - 1);
bool Assigned(void* P);
template<class R, class... Args > bool Assigned(R __fastcall (__closure * Func) (Args ...)) ...
void* Ptr(int Address);
template <class T> void* Addr(const T& X) ...
template <typename CH> int charLen(const CH* src) ...
String d2c_LoadResourceString(int Ident);

Aurora2Cpp196

© 2024 Dr. Detlef Meyer-Eltz

template<class T, T minEl, T maxEl> System::Set<T, minEl, maxEl> CreateSetFromRange(T First, T
Last) ...
template<class T, unsigned char minEl = 0, unsigned char maxEl = 255> System::Set<T, minEl,
maxEl> CreateSetFromRange(unsigned char First, unsigned char Last) ...
template <unsigned char sz> bool operator == (SmallString<sz> SmallS, AnsiString AnsiS) ...
template <unsigned char sz> bool operator == (AnsiString AnsiS, SmallString<sz> SmallS) ...
template <unsigned char sz> bool operator != (SmallString<sz> SmallS, AnsiString AnsiS) ...
template <unsigned char sz> bool operator != (AnsiString AnsiS, SmallString<sz> SmallS) ...

class ENoDefaultConstructorError : public std::exception ...

void ThrowAbstractError(const String& xsClassName); // d2c
void ThrowNoDefaultConstructorError(const String& xsClassName); // d2c

15.1.1.10 d2c_systypes

d2c_systypes contains Aurora2Cpp helper types.

// definitions in one word are needed at the C++Builder for properties
typedef short int shortint;
typedef unsigned char unsignedchar;
typedef signed char signedchar;
typedef unsigned int unsignedint;
typedef unsigned short unsignedshort;
typedef SmallString<255> ShortString;

namespace System {

typedef std::wstring::size_type d2c_size_t;
const d2c_size_t d2c_npos = std::wstring::npos;

template <int v> struct Int2Type ...
typedef Int2Type<0> uniquetype;

template <size_t Count, typename Elem> void ArrAssign(Elem* Dest, const Elem* Src) ...
template <int Count1, int Count2, typename Elem> void ArrAssign(Elem (*Dest)[Count2], const Elem
(*Src)[Count2]) ...
template <class T> void Initialize(DynamicArray<T>& DynArr, const T* pArr, int Count) ...
template <class T> DynamicArray<T> CreateDynArray(const T* pArr, int Count) ...
template <class T, class InputIterator> DynamicArray<T> CreateDynArray(InputIterator first,
InputIterator last) ...
template <class T> DynamicArray<T> CreateDynArray(const std::initializer_list<T>& List, int Count) ...
template<typename T> using TArray = DynamicArray<T>;
template <class T> void SetLength(DynamicArray<DynamicArray<T>>& MultiDimArr, int Dim1, int
Dim2) ...

15.1.2 C++ code for other compilers

There is only one version of RTL C++ code for all compilers other then C++Builder. This is possible,
because this code is based on the standard library. However, there is a special extension in Visual
C++ to define property getters and setters. These definitions also exist in the RTL code, but are initially

Pretranslated C++ code 197

© 2024 Dr. Detlef Meyer-Eltz

commented out so that they do not affect compilers other than Visual C++. Commenting is done using
the expression VC_ONLY defined as a line comment. For example:

 int ReadPropertyCapacity() const {return FCapacity;}
 void WritePropertyCapacity(int NewCapacity){SetCapacity(NewCapacity);}
 VC_ONLY __declspec(property(get = ReadPropertyCapacity, put = WritePropertyCapacity)) int Capacity;

If the definition of VC_ONLY as comment is replace by the empty definition:

#define VC_ONLY

the specific Visual C++ properties are enabled.If Visual C++ is set as target compiler, the resulting
code will use these properties.

The code for Visual C++ and other compilers is in the folder (if installed as suggested):

C:\Users\[USER]\Documents\Delphi2Cpp\d2c_vc

(The postfix _vc allows possible future parallel installation of special code variants for other compilers.)

d2c_config
d2c_convert
d2c_openarray
d2c_smallstring
d2c_smallstringconvert
d2c_sysconst
d2c_syscurr
d2c_sysdate
d2c_sysfile
d2c_sysiter
d2c_sysmac
d2c_sysmath
d2c_sysmem
d2c_sysmeta
d2c_sysobject
d2c_sysstring
d2c_system
d2c_systypes
d2c_sysvariant
DelphiSets
OnLeavingScope

The complete code also contains:

and an rtl-folder with the pre-translated files of the Delphi RTL

15.1.2.1 d2c_config

d2c_config can be used to set definitions for different targets. At the moment only Windows 64 bit is
completely supported.

Aurora2Cpp198

© 2024 Dr. Detlef Meyer-Eltz

For Visual C++ a constant "_CPP_VER" for the used version of C++ is calculated in dependence from
the value of "__cplusplus".

#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900)
 #if __cplusplus == 201704L
 #define _CPP_VER 100
 #else
 #if __cplusplus == 201703L
 #define _CPP_VER 17
 #else
 #define _CPP_VER 14
 #endif
 #endif
#else
 #define _CPP_VER 98
#endif

The file also contains a constant, which defines the base index for strings:

const int StringBaseIndex = 0;

15.1.2.2 d2c_convert

d2c_convert contains Aurora2Cpp helper functions to convert different string and array types into each
other.

System::AnsiString wstr2str(const System::WideString& xs);
System::WideString str2wstr(const System::AnsiString& xs);
System::AnsiChar wchar2char(System::WideChar xc);
System::WideChar char2wchar(System::AnsiChar xc);

System::AnsiString wstr2astr(const System::WideString& xs);
System::AnsiString ustr2astr(const System::UnicodeString& xs);
System::AnsiString sstr2astr(const System::SmallString<255>& xs);

System::WideString astr2wstr(const System::AnsiString& xs);
System::WideString ustr2wstr(const System::UnicodeString& xs); // see
WStrFromUStr
System::WideString sstr2wstr(const System::SmallString<255>& xs);

System::UnicodeString astr2ustr(const System::AnsiString& xs);
System::UnicodeString wstr2ustr(const System::WideString& xs); // see
UStrFromWStr
System::UnicodeString sstr2ustr(const System::SmallString<255>& xs);

void* astr2address(const System::AnsiString& xs, int index = 0);
void* wstr2address(const System::WideString& xs, int index = 0);
void* ustr2address(const System::UnicodeString& xs, int index = 0);
void* sstr2address(const System::SmallString<255>& xs, int index = 0);

System::PWideChar address2pwchar(void* p);

System::PAnsiChar astr2pchar(const System::AnsiString& xs, int index = 0);

Pretranslated C++ code 199

© 2024 Dr. Detlef Meyer-Eltz

System::PAnsiChar wstr2pchar(const System::WideString& xs, int index = 0);
System::PAnsiChar ustr2pchar(const System::UnicodeString& xs, int index = 0);
System::PAnsiChar sstr2pchar(const System::SmallString<255>& xs, int index = 0);

System::PWideChar astr2pwchar(const System::AnsiString& xs, int index = 0);
System::PWideChar wstr2pwchar(const System::WideString& xs, int index = 0);
System::PWideChar ustr2pwchar(const System::UnicodeString& xs, int index = 0);
System::PWideChar sstr2pwchar(const System::SmallString<255>& xs, int index = 0);
System::PWideChar ustr2punichar(const System::UnicodeString& xs, int index = 0);

inline System::ShortString ustr2sstr(const System::UnicodeString& xs) ..
inline System::ShortString astr2sstr(const System::AnsiString& xs) ..
template <class T> T* array2ptr(const std::vector<T>& s, int offset = 0) ..
inline unsigned char* bytearray2pbyte(const std::vector<unsigned char>& s, int
offset = 0) ..
inline System::PAnsiChar bytearray2pchar(const std::vector<unsigned char>& s, int
 offset = 0) ...
inline void* bytearray2pvoid(const std::vector<unsigned char>& s, int offset = 0)
...
inline System::PAnsiChar wchararray2pchar(const std::vector<System::WideChar>& s,
int offset = 0) ...
inline System::PWideChar wchararray2pwchar(const std::vector<System::WideChar>& s
, int offset = 0) ...
template <typename Type, Type Low, Type High> TSet<Type, Low, High> IntToSet(int
 xi) ...
template <typename Type, Type Low, Type High> int SetToInt(const TSet<Type, Low,
High>& xsi) ...
template <typename Type, Type Low, Type High> unsigned char ToByte(const TSet<
Type, Low, High>& xset) ...

// to smallstringconvert.h
//template <unsigned char sz = 255> System::SmallString<sz> astr2sstr(const
std::string& xs)
//template <unsigned char sz> System::SmallString<sz> wstr2sstr(const
std::wstring& xs)
//template <unsigned char sz> System::SmallString<255> sstr2sstr(const
System::SmallString<sz>& xs)

15.1.2.3 d2c_openarray

d2c_openarray contains Aurora2Cpp helper code to simulate Delphi open arrays. For constant open
arrays simply std::vectors are used in the C++ translation. But there case, where open arrays are
passed as var-parameters. Strings, SmallStrings, and fixed arrays con be passed to such parameters
as well as dynamic arrays. For that case Delphi2Cpp uses a special template type OpenArrayRef,
which is defined in d2c_openarray.

template <class T>
class OpenArrayRef
{
public:

OpenArrayRef(std::vector<T>& v);
OpenArrayRef(std::basic_string<T>& s);

...

Aurora2Cpp200

© 2024 Dr. Detlef Meyer-Eltz

};

15.1.2.4 d2c_smallstring

d2c_smallstring contains Aurora2Cpp helper code to simulate Delphi ShortString's.
d2c_smallstringconvert contains some conversion routines between SmallString's and other types.

15.1.2.5 d2c_sysconst

d2c_sysconst contains Aurora2Cpp helper constants for formatting or to create error messages.

15.1.2.6 d2c_syscurr

d2c_syscurr contains Aurora2Cpp helper code to simulate the Delphi currency type.

15.1.2.7 d2c_sysdate

d2c_sysdate contains Aurora2Cpp helper code to simulate the Delphi DateTime type.

15.1.2.8 d2c_sysfile

d2c_sysfile contains Aurora2Cpp helper code for basic file reading and writing routines.

struct TFileRec {
 THandle Handle;
 int Mode;
 WORD Flags;
 unsigned int RecSize;
 unsigned char _private [28];
 unsigned char UserData [32];
 Char Name [260];
};

template <typename T>
struct TTypedFile
{
 THandle Handle;
 int Mode;
 WORD Flags;
 unsigned int RecSize;
 unsigned char _private [28];
 unsigned char UserData [32];
 Char Name [260];
};

typedef char TextBufA [260];

struct TTextRec {
 THandle Handle;
 int Mode;
 WORD Flags;
 unsigned int BufSize;
 unsigned int BufPos;
 unsigned int BufEnd;

Pretranslated C++ code 201

© 2024 Dr. Detlef Meyer-Eltz

 char* BufPtr;
 void* OpenFunc;
 void* InOutFunc;
 void* FlushFunc;
 void* CloseFunc;
 unsigned char UserData [32];
 Char Name [260];
 WORD CodePage;
 char LineEnd[3];
 TextBufA Buffer;
};

typedef TTypedFile<unsigned char> file;
typedef TTextRec Text;
typedef TTextRec *ptext;

// System.h enum TTextLineBreakStyle {tlbsLF, tlbsCRLF, tlbsCR };

extern bool FileNameCaseSensitive;
extern bool CtrlZMarksEOF;
extern TTextLineBreakStyle DefaultTextLineBreakStyle;

const Char DirectorySeparator = _T('\\');
const Char DriveSeparator = _T(':');
const Char PathSeparator = _T(';');
const int MaxPathLen = 260;

extern THandle UnusedHandle;
extern THandle StdInputHandle;
extern THandle StdOutputHandle;
extern THandle StdErrorHandle;

const bool LFNSupport = true;
const char ExtensionSeparator = '.';
extern TSet < UChar, 0, 255 > AllowDirectorySeparators;
extern TSet < UChar, 0, 255 > AllowDriveSeparators;

extern bool FileNameCaseSensitive;
extern bool CtrlZMarksEOF;

const int fsFromBeginning = 0;
const int fsFromCurrent = 1;
const int fsFromEnd = 2;

const THandle feInvalidHandle = ((THandle) - 1); //return value on FileOpen
error

/* file input modes */
const int fmClosed = 0xD7B0;
const int fmInput = 0xD7B1;
const int fmOutput = 0xD7B2;
const int fmInOut = 0xD7B3;
//const int fmAppend = 0xD7B4;

Aurora2Cpp202

© 2024 Dr. Detlef Meyer-Eltz

extern TTextRec ErrOutput, Output, Input, Stdout, Stderr;
//extern unsigned char FileMode;
// System.h WORD IOResult();

const int fmAppend = 0xD7B4; // unknown in C++Builder 6?

typedef void (* FileFunc)(TTextRec&);

/**
 Untyped File Management
**/

void AssignFile(TFileRec& f, const String& Name);
void AssignFile(TFileRec& f, Char c);
void Assign(TFileRec& f, const String& Name);

void Rewrite(TFileRec& f, int l = 128);
void Reset(TFileRec& f, int l = 128);
void CloseFile(TFileRec& f);
void Close(TFileRec& f);

void BlockWrite(TTypedFile<unsigned char>& f, void*& buf, int64_t Count, int&
Result);
void BlockWrite(TTypedFile<unsigned char>& f, void*& buf, int Count, int& Result
);
void BlockWrite(TTypedFile<unsigned char>& f, void*& buf, WORD Count, WORD&
Result);
void BlockWrite(TTypedFile<unsigned char>& f, void*& buf, unsigned int Count,
unsigned int& Result);
void BlockWrite(TTypedFile<unsigned char>& f, void*& buf, WORD Count, int&
Result);
void BlockWrite(TTypedFile<unsigned char>& f, void*& buf, int Count);
void BlockRead(TTypedFile<unsigned char>& f, void*& buf, int Count, int& Result
);
void BlockRead(TTypedFile<unsigned char>& f, void*& buf, int64_t Count);
int64_t FileSize(TFileRec& f); // FileSize can't be used on a text
TTypedFile<unsigned char>.
int64_t FilePos(TFileRec& f, int l = 128);
void Seek(TTypedFile<unsigned char>& f, int64_t Pos);
void Rename(TTypedFile<unsigned char>& f, const char* P);
void Rename(TTypedFile<unsigned char>& f, const wchar_t* P);
void Rename(TTypedFile<unsigned char>& f, const AnsiString& s);
void Rename(TTypedFile<unsigned char>& f, const WideString& s);
void Rename(TTypedFile<unsigned char>& f, char c);
void Rename(TTypedFile<unsigned char>& f, wchar_t c);
bool Eof(TFileRec& f, int l = 128);
void Truncate(TFileRec& f, int RecSize);

template <typename T> void AssignFile(TTypedFile<T>& f, const String& Name) ...
template <typename T> void AssignFile(TTypedFile<T>& f, const Char* P) ...
template <typename T> void AssignFile(TTypedFile<T>& f, Char c) ...
template <typename T> int64_t FileSize(TTypedFile<T>& f) ...
template <typename T> bool Eof(TTypedFile<T>& f) ...

Pretranslated C++ code 203

© 2024 Dr. Detlef Meyer-Eltz

template <typename T> void CloseFile(TTypedFile<T>& f) ...
template <typename T> void Close(TTypedFile<T>& f) ...
template <typename T> void Reset(TTypedFile<T>& f, int l = -1) ...
template <typename T> void Rewrite(TTypedFile<T>& f, int l = -1) ...
template <typename T> void Write(TTypedFile<T>& f, void* buf) ...
template <typename T> void Read(TTypedFile<T>& f, void* buf) ...
template <typename T> void Truncate(TTypedFile<T>& f) ...

/**
 Text File Management
**/

void Assign(TTextRec& f, const String& Name);
void Assign(TTextRec& t, Char c);
void AssignFile(TTextRec& f, const String& Name);
void AssignFile(TTextRec& t, Char c);
void CloseFile(TTextRec& t);
void Close(TTextRec& t);
void Rewrite(TTextRec& t);
void Reset(TTextRec& t);
void Append(TTextRec& t);
// System.h void Flush(TTextRec& t);
void Erase(TTextRec& t);
void Rename(TTextRec& t, const char* P);
void Rename(TTextRec& t, const wchar_t* P);
void Rename(TTextRec& t, const AnsiString& s);
void Rename(TTextRec& t, const WideString& s);
void Rename(TTextRec& t, char c);
void Rename(TTextRec& t, wchar_t c);
bool Eof(TTextRec& t);
bool Eof();
bool EoLn(TTextRec& t);
bool EoLn();
bool SeekEof(TTextRec& t);
bool SeekEof();
bool SeekEoLn(TTextRec& t);
bool SeekEoLn();
void SetTextBuf(TTextRec& t, void* buf, int size);
void SetTextLineEnding(TTextRec& t, String& Ending);

void Write(TTextRec& t, const SmallString<255> s, int Len = 0);
void Write(TTextRec& t, const char* P, int Len = 0);
void Write(TTextRec& t, const AnsiString& s, int Len = 0);
void Write(TTextRec& t, const wchar_t* P, int Len = 0);
void Write(TTextRec& t, const WideString& s, int Len = 0);
void Write(TTextRec& t, long l, int Len = 0);
void Write(TTextRec& t, int l, int Len = 0);
void Write(TTextRec& t, unsigned int l, int Len = 0);
void Write(TTextRec& t, unsigned short l, int Len = 0);
void Write(TTextRec& t, uint64_t q, int Len = 0);
void Write(TTextRec& t, int64_t i, int Len = 0);
void Write(TTextRec& t, long double r, int rt = -1, int fixkomma = -1);

Aurora2Cpp204

© 2024 Dr. Detlef Meyer-Eltz

void Write(TTextRec& t, double r, int rt = -1, int fixkomma = -1);
void Write(TTextRec& t, Currency c, int fixkomma = -1, int Len = 0);
void Write(TTextRec& t, bool b, int Len = 0);
void Write(TTextRec& t, char c, int Len = 0);
void Write(TTextRec& t, unsigned char c, int Len = 0);
void Write(TTextRec& t, wchar_t c, int Len = 0);
void WriteLn(TTextRec& t);
void WriteLn(TTextRec& t, const SmallString<255> s, int Len = 0);
void WriteLn(TTextRec& t, const char* P, int Len = 0);
void WriteLn(TTextRec& t, const AnsiString& s, int Len = 0);
void WriteLn(TTextRec& t, const wchar_t* P, int Len = 0);
void WriteLn(TTextRec& t, const WideString& s, int Len = 0);
void WriteLn(TTextRec& t, long l, int Len = 0);
void WriteLn(TTextRec& t, int l, int Len = 0);
void WriteLn(TTextRec& t, unsigned int l, int Len = 0);
void WriteLn(TTextRec& t, unsigned short l, int Len = 0);
void WriteLn(TTextRec& t, uint64_t q, int Len = 0);
void WriteLn(TTextRec& t, int64_t i, int Len = 0);
void WriteLn(TTextRec& t, long double r, int rt = -1, int fixkomma = -1);
void WriteLn(TTextRec& t, double r, int rt = -1, int fixkomma = -1);
void WriteLn(TTextRec& t, Currency c, int fixkomma, int Len = -1);
void WriteLn(TTextRec& t, bool b, int Len = 0);
void WriteLn(TTextRec& t, char c, int Len = 0);
void WriteLn(TTextRec& t, unsigned char c, int Len = 0);
void WriteLn(TTextRec& t, wchar_t c, int Len = 0);
void Write(const SmallString<255> s, int Len = 0);
void Write(const char* P, int Len = 0);
void Write(const AnsiString& s, int Len = 0);
void Write(long l, int Len = 0);
void Write(int l, int Len = 0);
void Write(unsigned int l, int Len = 0);
void Write(uint64_t q, int Len = 0);
void Write(int64_t i, int Len = 0);
void Write(long double r, int rt = -1, int fixkomma = -1);
void Write(double r, int rt = -1, int fixkomma = -1);
void Write(Currency c, int fixkomma = -1, int Len = 0);
void Write(bool b, int Len = 0);
void Write(char c, int Len = 0);
void WriteLn();
void WriteLn(const SmallString<255> s, int Len = 0);
void WriteLn(const char* P, int Len = 0);
void WriteLn(const AnsiString& s, int Len = 0);
void WriteLn(long l, int Len = 0);
void WriteLn(int l, int Len = 0);
void WriteLn(unsigned int l, int Len = 0);
void WriteLn(uint64_t q, int Len = 0);
void WriteLn(int64_t i, int Len = 0);
void WriteLn(long double r, int rt = -1, int fixkomma = -1);
void WriteLn(double r, int rt = -1, int fixkomma = -1);
void WriteLn(Currency c, int fixkomma = -1, int Len = 0);
void WriteLn(bool b, int Len = 0);
void WriteLn(char c, int Len = 0);
void Write(wchar_t c, int Len = 0);
void WriteLn(wchar_t c, int Len = 0);
void Write(const wchar_t* P, int Len = 0);

Pretranslated C++ code 205

© 2024 Dr. Detlef Meyer-Eltz

void Write(const WideString& s, int Len = 0);
void WriteLn(const wchar_t* P, int Len = 0);
void WriteLn(const WideString& s, int Len = 0);

void Read(TTextRec& t, SmallString<255>& s);
void Read(TTextRec& t, char* s, int maxlen = 0x7FFFFFFF);
void Read(TTextRec& t, AnsiString& s);
void Read(TTextRec& t, char& c);
void Read(TTextRec& t, WideString& s);
void Read(TTextRec& t, wchar_t& c);
void Read(TTextRec& t, unsigned int& u);
void Read(TTextRec& t, unsigned short& u);
void Read(TTextRec& t, long double& v);
void Read(TTextRec& f, Currency& v);
void Read(TTextRec& t, double& v);
void Read(TTextRec& t, int64_t& i);
void Read(TTextRec& t, uint64_t& q);
void ReadLn(TTextRec& t);
void ReadLn(TTextRec& t, SmallString<255>& s);
void ReadLn(TTextRec& t, char* s, int maxlen = 0x7FFFFFFF);
void ReadLn(TTextRec& t, AnsiString& s);
void ReadLn(TTextRec& t, char& c);
void ReadLn(TTextRec& t, WideString& s);
void ReadLn(TTextRec& t, wchar_t& c);
void ReadLn(TTextRec& t, int& l);
void ReadLn(TTextRec& t, unsigned int& u);
void ReadLn(TTextRec& t, unsigned short& u);
void ReadLn(TTextRec& t, long double& v);
void ReadLn(TTextRec& f, Currency& v);
void ReadLn(TTextRec& t, double& v);
void ReadLn(TTextRec& t, int64_t& i);
void ReadLn(TTextRec& t, uint64_t& q);
void Read(SmallString<255>& s);
void Read(char* s, int maxlen = 0x7FFFFFFF);
void Read(AnsiString& s);
void Read(char& c);
void Read(WideString& s);
void Read(wchar_t& c);
void Read(int& l);
void Read(unsigned int& u);
void Read(long double& v);
void Read(double& v);
void Read(Currency& v);
void Read(int64_t& i);
void Read(uint64_t& q);
void ReadLn();
void ReadLn(SmallString<255>& s);
void ReadLn(char* s, int maxlen = 0x7FFFFFFF);
void ReadLn(AnsiString& s);
void ReadLn(char& c);
void ReadLn(WideString& s);
void ReadLn(wchar_t& c);
void ReadLn(int& l);
void ReadLn(unsigned int& u);

Aurora2Cpp206

© 2024 Dr. Detlef Meyer-Eltz

void ReadLn(unsigned short& u);
void ReadLn(long double& v);
void ReadLn(double& v);
void ReadLn(Currency& v);
void ReadLn(int64_t& i);
void ReadLn(uint64_t& q);

template <unsigned char sz> void Write(TTextRec& t, SmallString<sz> s, int Len =
0) ...
template <unsigned char sz> void WriteLn(TTextRec& t, SmallString<sz> s, int Len
= 0) ...
template <unsigned char sz> void Write(SmallString<sz> s, int Len = 0) ...
template <unsigned char sz> void WriteLn(SmallString<sz> s, int Len = 0) ...
template <unsigned char sz> void Read(TTextRec& t, SmallString<sz>& s) ...
template <unsigned char sz> void ReadLn(TTextRec& t, SmallString<sz>& s) ...
template <unsigned char sz> void Read(SmallString<sz>& s) ...
template <unsigned char sz> void ReadLn(SmallString<sz>& s) ...

void SetLineBreakStyle(System::Text& T, TTextLineBreakStyle Style);
WORD GetTextCodePage(const System::Text T);
void SetTextCodePage(System::Text& T, WORD CodePage);
void Flush(System::Text& T);

void InOutError();
void SetInOutRes(int NewValue);

15.1.2.9 d2c_sysiter

d2c_sysiter contains Aurora2Cpp helper code to enable range based for-loops.

15.1.2.10 d2c_sysmac

d2c_sysmac contains Aurora2Cpp helper macros for message maps.

Pretranslated C++ code 207

© 2024 Dr. Detlef Meyer-Eltz

#define BEGIN_MESSAGE_MAP ...
#define VCL_MESSAGE_HANDLER(msg,type,meth) ...
#define END_MESSAGE_MAP(base) ...

15.1.2.11 d2c_sysmath

d2c_sysmath contains Aurora2Cpp helper routines for Delphi intrinsic mathematical functions.

int64_t Round(long double d);
long double Frac(long double d);
int64_t Trunc(long double d);
extern int RandSeed;
long double Sqr(long double d);
long double Sqrt(long double d);
long double ArcTan(long double d);
long double Ln(long double d);
long double Sin(long double d);
long double Cos(long double d);
long double Exp(long double d);
long double Int(long double d);
int64_t Trunc(long double d);

15.1.2.12 d2c_sysmem

d2c_sysmem contains Aurora2Cpp helper routines for memory management.

void* AllocMem(d2c_size_t Size);
void GetMem(void*& P, d2c_size_t Size);
void* GetMemory(d2c_size_t Size);
void* ReallocMemory(void* P, d2c_size_t Size);
void ReallocMem(void*& P, d2c_size_t Size);
void FreeMem(void* P);
void FreeMem(void*& P, d2c_size_t Size);
void FreeMemory(void* P);
void FreeMemory(void* P, d2c_size_t Size);

15.1.2.13 d2c_sysmeta

d2c_meta contains Aurora2Cpp helper code to partially simulate Delphi class references. The details
are protected and can be seen by customers of Aurora2Cpp only.

class TMetaClass ...
template <typename Class> class ClassRef ...
template <class Class> ClassRef+ class_id()

15.1.2.14 d2c_sysobject

d2c_sysobject contains Aurora2Cpp helper code from the original System.pas with the definition of
TObject.

Aurora2Cpp208

© 2024 Dr. Detlef Meyer-Eltz

15.1.2.15 d2c_sysstring

d2c_sysstring contains Aurora2Cpp helper routines for string operations.

int PCharLen(const AnsiChar* P);
int PWCharLen(const WideChar* P);
String Copy(const String& xs, int Index, int Count);

template <class T> std::vector<T> Copy(const std::vector<T>& V, int Index, int
Count) ...
template <size_t N> void d2c_CopyToArray(Char(&CharArray)[N], const String& xs)
...
int d2c_wcsncmp(const wchar_t* xs1, const wchar_t* xs2);
int d2c_strncmp(const char* xs1, const char* xs2);
Char LowerCase(Char C);
void Insert(const String& Source, String& S, d2c_size_t Index);
void Delete(String& S, int Index, d2c_size_t Size);
String StringOfChar(Char C, int l);
std::string StringOfChar(char C, int l);
void SetString(String& S, Char* Buffer, d2c_size_t Len);
void SetLength(String& s, d2c_size_t newLength);
void SetString(String& s, Char* Buffer, d2c_size_t Length);
void SetString(AnsiString& s, const PAnsiChar Buffer, d2c_size_t Length);
void SetString(PShortString s, PAnsiChar Buffer, d2c_size_t Len);
void SetLength(String& S, d2c_size_t Len);
void SetLength(UTF8String& S, d2c_size_t Len);

String Concat(const String s1);
String Concat(const String s1, const String s2);
String Concat(const String s1, const String s2, const String s3);
String Concat(const String s1, const String s2, const String s3,
 const String s4);
String Concat(const String s1, const String s2, const String s3,
 const String s4, const String s5);
String Concat(const String s1, const String s2, const String s3,
 const String s4, const String s5, const String s6);
String Concat(const String& s1, const String& s2, const String& s3,
 const String& s4, const String& s5, const String& s6,
 const String& s7);
String Concat(const String& s1, const String& s2, const String& s3,
 const String& s4, const String& s5, const String& s6,
 const String& s7, const String& s8);
String Concat(const String& s1, const String& s2, const String& s3,
 const String& s4, const String& s5, const String& s6,
 const String& s7, const String& s8, const String& s9);

15.1.2.16 d2c_system

d2c_system is the most important of the Aurora2Cpp helper files, because it contains routines, which
simulate intrinsic Delphi functions.

#define MAXIDX(x) ...

Pretranslated C++ code 209

© 2024 Dr. Detlef Meyer-Eltz

#define ARRAYHIGH(arr) ...
#define SLICE(a, n) ...
#define ObjectIs(xObj, xIs) ...
#define INTFOBJECT_IMPL_IUNKNOWN(BASE) ...

extern int Argc;
extern PPChar Argv;
extern HINSTANCE HInstance;

const double PI = 3.141592653589793238463; // float 3.14159265358979f;

void FillChar(void* Dest, NativeInt Count, AnsiChar Value);
void FillChar(String& X, int Count, wchar_t Value);
void FillChar(std::string& X, int Count, char Value);

template <class T> std::vector<T> Slice(const T* arr, int n) ...

void Move(const wchar_t* Source, String& Dest, unsigned int Count);

WORD swap(WORD X);
int swap(int X);
unsigned int swap(unsigned int X);
int64_t swap(int64_t X);

template <class T> T Dec(T& xT) ...
template <class T> T Dec(T& xT, int xi) ...
bool Inc(bool& b);
template <class T> T Inc(T& xT) ...
template <class T> T Inc(T& xT, int xi) ...
template <class T> unsigned char Hi(const T& xt) ...
template <class T> unsigned char Lo(const T& xt) ...
template <class T> bool Odd(const T xT) ...

template <class T> T AtomicDecrement(std::atomic<T>& Target) ...
template <class T> T AtomicDecrement(std::atomic<T>& Target, T Value) ...
template <class T> T AtomicIncrement(std::atomic<T>& Target) ...
template <class T> T AtomicIncrement(std::atomic<T>& Target, T Value) ...
template <class T> T AtomicExchange(std::atomic<T>& Target, T Value) ...
template <class T> T AtomicCmpExchange(std::atomic<T>& Target, T NewValue, T
Comparand) ...
template <class T> T AtomicCmpExchange(std::atomic<T>& Target, T NewValue, T
Comparand, bool& Succeeded) ...

template <class T, class C> void CastDec(T& xT, C xC) ...
template <class T, class C, class I> void CastDec(T& xT, C xC, I xI) ...
template <class T, class C> void CastDec(T*& xpT, C* xpC) ...
template <class T, class C, class I> void CastDec(T*& xpT, C* xpC, I xI) ...
template <class T, class C, class I> void CastDec(T*& xpT, C xC, I xI) ...
template <class T, class C> void CastInc(T& xT, C xC) ...
template <class T, class C, class I> void CastInc(T& xT, C xC, I xI) ...
template <class T, class C> void CastInc(T*& xpT, C xpC) ...
template <class T, class C, class I> void CastInc(T*& xpT, C* xpC, I xI) ...

Aurora2Cpp210

© 2024 Dr. Detlef Meyer-Eltz

template <class T, class C, class I> void CastInc(T*& xpT, C xC, I xI) ...
template <class TargetType, class SouceType, class Value> void
CastAssign(SouceType* target, Value v) ...

template <class T> T Sqr(const T& xT) ...
template <class T> constexpr T High() ...
template <class T> constexpr T High(const T& X) ...
template <class T> d2c_size_t High(const std::vector<T>& X) ...
template <unsigned char sz> d2c_size_t High(System::SmallString<sz>& X) ...
template <class T> T Succ(T xT) ...
template <class T> T Pred(T xT) ...
System::UnicodeString::size_type High(const System::UnicodeString& X);
System::AnsiString::size_type High(const System::AnsiString& X);
template <class T> T Low() ...
template <class T> constexpr d2c_size_t Low(const std::vector<T>& X) ...
template <class T> constexpr T Low(const T& X) ...
template<typename T, unsigned N> d2c_size_t Low(const T(&v)[N]) ...
template<typename T, unsigned N> d2c_size_t High(const T(&v)[N]) ...
System::UnicodeString::size_type Low(const System::UnicodeString& X);
System::AnsiString::size_type Low(const System::AnsiString& X);

void Assert(bool expr);
void Assert(bool expr, const std::wstring& Msg);

template <typename T> bool Assigned(const std::vector<T>* P) ...
template <typename T> bool Assigned(const std::vector<T>& P) ...
template <typename T> bool Assigned(std::function<T> P) ...

template <typename CH> int charLen(const CH* src) ...
template <class T> void* Addr(const T& X) ...
template <typename T> void Val(const std::wstring& S, T& V, int& Code) ...
template <typename T> void Val(const std::string& S, T& V, int& Code) ...
template <typename T> void Str(T xT, String& xs) ...
template <typename T> void Str(T xT, std::string& xs) ...

void Str(double xd, std::string& xs);
void Str(long double xd, std::string& xs);
void Str(int xd, int xiMinWidth, std::string& xs);
void Str(double xd, int xiMinWidth, std::string& xs);
void Str(long double xd, int xiMinWidth, std::string& xs);
void Str(long double xd, int xiMinWidth, std::string& xs);
void Str(double xd, int xiMinWidth, int xiDecPlaces, std::string& xs);
void Str(long double xd, int xiMinWidth, int xiDecPlaces, std::string& xs);
void Str(const System::Currency& xcr, int xiMinWidth, int xiDecPlaces,
std::string& xs);

void Str(double xd, String& xs);
void Str(long double xd, String& xs);
void Str(int xd, int xiMinWidth, String& xs);
void Str(double xd, int xiMinWidth, String& xs);
void Str(long double xd, int xiMinWidth, String& xs);
void Str(long double xd, int xiMinWidth, String& xs);
void Str(double xd, int xiMinWidth, int xiDecPlaces, String& xs);
void Str(long double xd, int xiMinWidth, int xiDecPlaces, String& xs);

Pretranslated C++ code 211

© 2024 Dr. Detlef Meyer-Eltz

template <typename T> PChar pchar(const T& xT) ...
template <> inline PChar pchar<wchar_t>(const wchar_t& xT) ...
template <> inline PChar pchar<char>(const char& xT) ...
template <> inline PChar pchar<std::wstring>(const std::wstring& xT) ...

//http://stackoverflow.com/questions/4770968/storing-function-pointer-in-stdfunct
ion
template <typename Signature> std::function<Signature> fptr_cast(void* f) ...

//http://stackoverflow.com/questions/20833453/comparing-stdfunctions-for-equality
template<typename T, typename... U> d2c_size_t getAddress(std::function<T(U...)>
f) ...

HMODULE FindResourceHInstance(unsigned int Module); // dummy function
HMODULE FindClassHInstance(const TMetaClass* ClassType);
HMODULE FindHInstance(void* Address);

template <class T> T Default() ...

15.1.2.17 d2c_systypes

d2c_systypes contains Aurora2Cpp helper types and routines.

typedef std::wstring::size_type d2c_size_t;
const d2c_size_t d2c_npos = std::wstring::npos;

// some types which originally were defined in System.Types.pas as EXTERNALSYM
...

template <int v> struct Int2Type ..
typedef Int2Type<0> uniquetype;

template <class T> void SetLength(std::vector<std::vector<T>>& MultiDimArr, int
Dim1, int Dim2) ...
template <class T> void Delete(std::vector<T>& arr, int Index, int Size) ...
template <d2c_size_t Count, typename Array> void ArrAssign(Array& Dest, const
Array& Src) ...
template <int Count1, int Count2, typename Array> void ArrAssign(Array& Dest,
const Array& Src) ...
template <typename T> void CopyArray(std::vector<T>& Dest, const std::vector<T>&
Source, uint64_t Count) ...

15.1.2.18 d2c_sysvariant

d2c_sysvariant contains the Aurora2Cpp helper types TVarRec, TVarData and ArrayOfConst.

15.1.2.19 DelphiSets

DelphiSets contains the Aurora2Cpp helper type definition from Daniel Flower to simulate Delphi Sets.

template <typename Type, Type Low, Type High> class TSet ...

Aurora2Cpp212

© 2024 Dr. Detlef Meyer-Eltz

/* DelphiSets.h
===
===

Dan's Substitute Sets ** (c) Copyright 2011, Daniel Flower
A high-performance template class that emulates Delphi's sets.

Authorized for unlimited use in any Aurora2Cpp project.

15.1.2.20 OnLeavingScope

OnLeavingScope is a file from Craig Scott, which is used as Aurora2Cpp helper to simulate finally-
statements.

/**
 * The contents of this file are based on the article posted at the
 * following location:
 *
 * http://crascit.com/2015/06/03/on-leaving-scope-part-2/
 *
 * The material in that article has some commonality with the code made
 * available as part of Facebook's folly library at:
 *
 * https://github.com/facebook/folly/blob/master/folly/ScopeGuard.h
 *
 * Furthermore, similar material is currently part of a draft proposal
 * to the C++ standards committee, referencing the same work by Andrei
 * Alexandresu that led to the folly implementation. The draft proposal
 * can be found at:
 *
 * http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4189.pdf
 *
 * With the above in mind, the content below is made available under
 * the same license terms as folly to minimize any legal concerns.
 * Should there be ambiguity over copyright ownership between Facebook
 * and myself for any material included in this file, it should be
 * interpreted that Facebook is the copyright owner for the ambiguous
 * section of code concerned.
 *
 * Craig Scott
 * 3rd June 2015
 *
 * --
 *
 * Copyright 2015 Craig Scott
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0

Pretranslated C++ code 213

© 2024 Dr. Detlef Meyer-Eltz

 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

15.1.2.21 RTL core

There is a ready translation of core files of the Delphi RTL, that are needed nearly in every Delphi
project. However, there are copyright restrictions that must be met when these files are shipped.

The RTL core in the SourceWorking folder comprises following code:

Common folder:

Classes
DateUtils
Math
RTLConsts
StrUtils

Sys folder:

SysConst
SysUtils
Types
TypeInfo

Parts of the System.pas (including replacements for intrinsic routines, see above).

The original Delphi 7 code in the Source folder has been slightly modified for use with Aurora2Cpp.
The same namespaces that exist in the current RTL were introduced. This means that the names of
names change.

System.Classes
System.DateUtils
System.Math
System.RTLConsts
System.StrUtils

System.SysConst
System.SysUtils
System.Types
System.TypeInfo

The code in SourceWorking is heavily post-processed compared to the automatically generated code.
The latter can be reproduced by calling the Delphi7.bat file in the installed Projects directory. The code
generated in this way is written to the SourceGenerated directory. Since it is located parallel to the

Aurora2Cpp214

© 2024 Dr. Detlef Meyer-Eltz

SourceWorking directory, the directories can be easily compared with each other.

15.1.2.21.1 System.h

System.h is a file of the RTL core. It is a manually created header file which is included at the top
position in every header files that Aurora2Cpp produces. System.h contains fundamental type
definitions analogously to the interface part of the Delphi System.pas. It also contains some often used
macros.

15.1.3 Visual C++ configuration

For Visual C++ projects following options are recommended:

1. set the x64 or x86 option in the menu.

2. Additional dependencies may be:

 version.lib
 mpr.lib
 netapi32.lib
 Rpcrt4.lib
 Dbghelp.lib

3. set C++ version to C++17

Normally in Visual C++ the __cplusplus preprocessor macro has a fixed value, but d2c_config uses
this value to calculate the used version of C++. There fore in Visual C++ projects the option:

/Zc:__cplusplus

has to be set in the Additional options pane of the Command Line property page in the properties
for C/C++ .

4. If newly translated code is compiled for the first time, it might be useful to disable the warning to
"possible loss of data" at type conversions:

C++ -> extended -> deactivate warnings

4244
4267

5. If C++98 code is compiled with Visual C++ you should disable secure warnings

C++ Preprocessor -> preprocessor definitions

 _CRT_SECURE_NO_WARNINGS
 _SCL_SECURE_NO_WARNINGS

This is not necessary for C++11, because here the secure commands

Pretranslated C++ code 215

© 2024 Dr. Detlef Meyer-Eltz

strcpy_s
strncpy_s
wcscpy_s

etc. are defined.

15.1.4 Special Delphi units

It already has been explained that for other compilers than C++Builder the System.pas has to be
treated in a special way. But it is recommended also to prepare some other files of the Delphi RTL.
That are the API files, System.Types.pas. Users of Aurora2Cpp with valid Delphi license get the ready
prepared pas-files together with the pre-translated RTL files.

System.pas

Because Aurora2Cpp provides ready prepared C++ substitutes for the System.pas and also an own
System.pas is used to control the output generation, the original System.pas still is needed for the
translation of the Delphi sources. Parts which are missing in the own System.pas are taken from here.

The Aurora2Cpp pre-processor cannot evaluate SizeOf expressions. The following condition:

{$IFDEF EXTENDEDIS10BYTES}
 {$IF SizeOf(Extended) <> SizeOf(TExtended80Rec)}
 {$MESSAGE ERROR 'TExtended80Rec has incorrect size'}
 {$ENDIF }
{$ENDIF EXTENDEDIS10BYTES}

is therefore replaced by

{$IFDEF D2C}
// d2c cannot check size
{$ELSE}
 {$IF SizeOf(Extended) <> SizeOf(TExtended80Rec)}
 {$MESSAGE ERROR 'TExtended80Rec has incorrect size'}
 {$ENDIF }
{$ENDIF}

and the identifiers D2C is defined in the project file for the Windows 64 bit result.

Several classes, most important TObject, aren't defined if the definition for
SYSTEM_HPP_DEFINES_OBJECTS isn't set. But this definition doesn't suffice. If for example the
NODEFINE directive for the string type is disabled, this will force Aurora2Cpp to insert the System
namespace in header files before String: System::String. This is desired and applies to a lot of other
NODEFINE directives in System.pas too.

If one tries to translate System.pas despite of the set definitions there remain some messages like:

{$MESSAGE ERROR 'Unknown platform'}

These parts have to be prepared too. These parts are in the implementation part however and do not
harm, if System.pas only is used for the translation of other files.

Aurora2Cpp216

© 2024 Dr. Detlef Meyer-Eltz

API files

Though the API files, e.g. the Winapi--files for Windows, are needed for the translation of the other
Delphi files, they mostly don't have to be translated themselves. Their purpose is just to provide the C+
+ API types and constants for Delphi. The C++ code, which is generated from the Delphi sources just
should use the original types and constants. There are some special directives written into the Delphi
code that let make the C++ Builder access the original API. Aurora2Cpp also uses these directives.

System.Types.pas

The NODEFINE directives here should be disabled. C++Builder defines these type in an extra C++
header. But for Aurora2Cpp translated code these definitions remain in System.Types.h.

System.Variants.pas/System.VarUtils.pas

Under Windows Delphi Variant is a reduplication of the VARIANT structure in OAldl.h. A C++
application should use the original Windows types..Until now Aurora2Cpp offers no special support for
the conversion of Delphi code using Variants etc. However Aurora2Cpp supports TVarRec. Advice
from users is welcome.

15.2 Preparing Delphi code

Normally a preparation of the Delphi code should not be necessary. But there are three reasons to do
so:

- sometimes the RTL/VCL code isn't clean
- some substitutions for ampersand-expressions have to be defined
- parallel updates of Delphi and C++ code can be simplified

15.2.1 Bugs in the Delphi RTL/VCL

In some cases Aurora2Cpp cannot process a unit though the Delphi compiler can That's because the
automatically generated parser of Aurora2Cpp is more strict than the Delphi parser, which might be
handwritten and tolerates bugs like the following in the System.pas of RAD Studio 10.2 Tokyo inside of
the function "FSetExceptFlag":

{$ELSEIF defined(CPUX64) and defined(Linux)) }

It is obvious, that there is a closing parenthesis too much and the code should be corrected to:

{$ELSEIF defined(CPUX64) and defined(Linux) }

Pretranslated C++ code 217

© 2024 Dr. Detlef Meyer-Eltz

The next bug in the same file is:

{$IF not (defined(PC_MAPPED_EXCEPTIONS) or defined(SJLJ_BASED_EXCEPTIONS)) or defined(ZCX_BASED_EXCEPTIONS)) }

Such bugs unfortunately exist in all versions of the RTL/VCL at different positions. They can be found
inside of the Aurora2Cpp IDE quite easily, because the position where the preprocessor or the parser
stops is shown in the input editor. If you have moved the cursor, the position is shown again by use of

the button.

Here is a list of some flaws in the RTL/VCL of RAD Studio 10.2 Tokyo.

System.ObjAuto.pas line 23:

{$IF SizeOf(Extended) >= 10)} // 10,12,16
 {$DEFINE EXTENDEDHAS10BYTES}
{$ENDIF}

{$IF SizeOf(Extended) = 10)}
 {$DEFINE EXTENDEDIS10BYTES}
{$ENDIF}

should be:

{$IF SizeOf(Extended) >= 10} // 10,12,16
 {$DEFINE EXTENDEDHAS10BYTES}
{$ENDIF}

{$IF SizeOf(Extended) = 10}
 {$DEFINE EXTENDEDIS10BYTES}

{$ENDIF}

Internal.Unwinder.pas:

{$IFDEF MACOS}
const
 U = '';
 {$EXTERNALSYM _U}
{$ELSE !MACOS}
 _U = '';
 {$EXTERNALSYM _U}
{$ENDIF}

could be:

{$IFDEF MACOS}
const
 U = '';
 {$EXTERNALSYM _U}
{$ELSE !MACOS}
const
 _U = '';
 {$EXTERNALSYM _U}
{$ENDIF}

System.pas line 6643:

{$ELSEIF defined(CPUX64) and defined(Linux)) }

->

Aurora2Cpp218

© 2024 Dr. Detlef Meyer-Eltz

{$ELSEIF defined(CPUX64) and defined(Linux) }

line 24087:

{$IF not (defined(PC_MAPPED_EXCEPTIONS) or defined(SJLJ_BASED_EXCEPTIONS)) or defined(ZCX_BASED_EXCEPTIONS)) }

->
{$IF not (defined(PC_MAPPED_EXCEPTIONS) or defined(SJLJ_BASED_EXCEPTIONS)) or defined(ZCX_BASED_EXCEPTIONS) }

Vcl.Imaging.GifImg.pas line 2421:

SetColors(GetPaletteEntries(Palette, 0, 256, nil^));
->

SetColors(GetPaletteEntries(Palette, 0, 256, nil));

WinAPI.DXFile.pas line 37:

(*$HPPEMIT '#include "dxfile.h"'{*)
(*$HPPEMIT '#include "rmxfguid.h"'{*)
(*$HPPEMIT '#include "rmxftmpl.h"'{*)

->

(*$HPPEMIT '#include "dxfile.h"'*)
(*$HPPEMIT '#include "rmxfguid.h"'*)
(*$HPPEMIT '#include "rmxftmpl.h"'*)

ToolsApi/ToolsApi.pas line 123/250/252

(*$HPPEMIT 'DEFINE_GUID(IID_IOTAStreamModifyTime,0x49F2F63F,0x60CB,0x4FD4,0xB1,0x2F,0x81,0x67,0xFC,0x79,0xB2,0x93);*)
...
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAToolsFilterNotifier,0xCEF1F13A,0xE877,0x4F20,0x88,0xF2,0xF7,0xE2,0xBA,0x61,0xAA,0xF4); *)
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAToolsFilter,0x8864B891,0x9B6D,0x4002,0xBB,0x2E,0x1D,0x6E,0x59,0xBF,0xA4,0x9A); *)
.
(*$HPPEMIT 'DEFINE_GUID(IID_IOTATypeLibrary, 0x7A2F5910,0x58D2,0x448E,0xB4,0x57,0x2D,0xC0,0x1E,0x85,0x3D,0x46);*)

->
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAStreamModifyTime,0x49F2F63F,0x60CB,0x4FD4,0xB1,0x2F,0x81,0x67,0xFC,0x79,0xB2,0x93);'*)
...
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAToolsFilterNotifier,0xCEF1F13A,0xE877,0x4F20,0x88,0xF2,0xF7,0xE2,0xBA,0x61,0xAA,0xF4);'*)
(*$HPPEMIT 'DEFINE_GUID(IID_IOTAToolsFilter,0x8864B891,0x9B6D,0x4002,0xBB,0x2E,0x1D,0x6E,0x59,0xBF,0xA4,0x9A);'*)
.
(*$HPPEMIT 'DEFINE_GUID(IID_IOTATypeLibrary, 0x7A2F5910,0x58D2,0x448E,0xB4,0x57,0x2D,0xC0,0x1E,0x85,0x3D,0x46);'*)

\rtl\osx\Macapi.ObjectiveC.pas

there are several occurrences of:

{$ELSE Defined(...

This syntax isn't documented and seems not to be used anywhere else (with one exception in
SysUtils). The Code can be processed, when {$ELSE is changed to {$ELSEIF

Flaws in the RTL of RAD Studio 10.4.1 Alexandria

Pretranslated C++ code 219

© 2024 Dr. Detlef Meyer-Eltz

{$IF SizeOf(Extended) >= 10)}
->
{$IF SizeOf(Extended) >= 10}

{$IF SizeOf(Extended) = 10)}
->
{$IF SizeOf(Extended) = 10}

Posix.SysSocket.pas

function CMSG_NXTHDR

System.pas

{$ELSEIF defined(CPUX64) and defined(Linux)) }
->
{$ELSEIF defined(CPUX64) and defined(Linux) }

{$IF Defined(OSX64) or defined(IOSSIMULATOR) and defined(CPUX64))}
->
{$IF Defined(OSX64) or defined(IOSSIMULATOR) and defined(CPUX64)}

{$ELSEIF defined(CPUX64) and defined(Linux)) }
->
{$ELSEIF defined(CPUX64) and defined(Linux) }

procedure Set8087CW(NewCW: Word);
function Get8087CW: Word;
procedure SetMXCSR(NewMXCSR: UInt32);
procedure SetMXCSRExceptionFlag(NewExceptionFlag: UInt32);
procedure ClearMXCSRStatus(ExceptionFlag: UInt32);
{$IF defined(CPUX86) and defined(ASSEMBLER)}

{$IF not (defined(PC_MAPPED_EXCEPTIONS) or defined(SJLJ_BASED_EXCEPTIONS)) or defined(ZCX_BASED_EXCEPTIONS)) }
->
{$IF not (defined(PC_MAPPED_EXCEPTIONS) or defined(SJLJ_BASED_EXCEPTIONS)) or defined(ZCX_BASED_EXCEPTIONS) }

System.Rtti.pas: unknown SizeOf(TValue)

Winapi.DXFile.pas cannot parse:

(*$HPPEMIT '#include "dxfile.h"'{*)
(*$HPPEMIT '#include "rmxfguid.h"'{*)
(*$HPPEMIT '#include "rmxftmpl.h"'{*)

Aurora2Cpp220

© 2024 Dr. Detlef Meyer-Eltz

15.2.2 Frequent re-translation

Users who like to continue to develop their Delphi code and in parallel also need the C++ code
updated certainly don't want to post-process the generated code again and again. Therefore
Aurora2Cpp offers the possibility to prepare the Delphi source code such, that Aurora2Cpp will

reproduce the corrected code fragments. These fragments either can be inserted as special

comments (*#_ ... _#*) or can be hidden by conditional compilation with use of the
predefined identifier CPP. In fact the second method is based on the first, because the Aurora2Cpp
pre-processor converts the CPP part into the special comments and the Aurora2Cpp translator than

simply removes the special brackets (*#_ ... _#*).

In the section about the overwritten System.pas there are examples and explanations how to use this
feature.

15.2.2.1 Comments (*#_ ... _#*)

Frequent re-translations can be simplified by automatically insertions of prepared C++ code.
Aurora2Cpp interprets the extended Delphi brackets (*#_ ... _#*) in a special way. A text in such
brackets is taken unchanged into the C++ code.

For example an additional header is included into the C++ code by the following line:

(*#_#include "math.h"_#*)

->
//# copied begin
#include "math.h"
//# copied end

Unfortunately, the positioning of comments is generally a difficult problem because code parsers
usually ignore them. The subsequent insertion of comments occurs outside of certain parsed units and
therefore sometimes not exactly in the expected places. The user may have to experiment a bit here.

Remark: in the first version of Aurora2Cpp program these parenthesis were defined as (*_ ... _*). This
led to errors in code like in WinAPI.DXGI1_2.pas:

 function GetDisplayModeList1(
 (* [in] *) EnumFormat: DXGI_FORMAT;
 (* [in] *) Flags: UINT;
 (*_Inout_*) var pNumModes: UINT;
 (*_Out_writes_to_opt_(*pNumModes,*pNumModes)*) out pDes: DXGI_MODE_DESC1): HRESULT; stdcall;

15.2.2.2 Predefined identifier Cpp

In addition the the definitions which the user can set in the translation options the identifier CPP always
is defined in Aurora2Cpp. The pre-processor treats this identifier in a special manner. The pre-
processor not simply writes the according code into the pre-processed code, but it puts it into the

special brackets (*#_ ... _#*). In a second step the translator then removes the brackets.

For example:

Pretranslated C++ code 221

© 2024 Dr. Detlef Meyer-Eltz

{$ifdef CPP}
 out << s << endl;
{$else}
 WriteLn(s);
{$endif}

 The pre-processed code then is:

 (*#_ out << s << endl; _#*)

 and because of the special treatment of the brackets (*#_..._#*), the final C++ output is:

 out << s << endl;

Aurora2Cpp ignores the part of code in the {$else}-section completely, but it is visible to the Delphi
compiler. So, this special way of the conditional compilation makes it possible that both the original
Delphi code and the generated C++ code remain compiling.

The identifiers in these section either can be normalized or can be left untouched. This is controlled by
the CPP unification option.

Unfortunately, the positioning of comments is generally a difficult problem because code parsers
usually ignore them. The subsequent insertion of comments occurs outside of certain parsed units and
therefore sometimes not exactly in the expected places. The user may have to experiment a bit here.

15.2.3 Delphi directives to support C++Builder

There are four directives defined in Delphi to support the generation of C++ header files for C+
+Builder. All the Delphi translations of Windows interfaces don't have to be translated back, but simply
are left out by means of these directives. In Aurora2Cpp they work for other compilers too and you also
can use them for your own purposes.
All these directives only have an effect in the global parts of units.

$HPPEMIT
$EXTERNALSYM
$NODEFINE
$NOINCLUDE

These directives can have an impact on the notations of the according types.

15.2.3.1 $HPPEMIT

The HPPEMIT directive adds a specified symbol to the C++ header file.
HPPEMIT directives are output into the "user supplied" section at the top of the header file in the order
in which they appear in the Pascal file.
The HPPEMIT directive accepts an optional END directive that instructs the compiler to emit the string
at the bottom of the header file. Otherwise, the string is emitted at the top of the file.

Syntax:

{$HPPEMIT string}

Example:

{$HPPEMIT 'Symbol goes to top of file' }.
{$HPPEMIT END 'Symbol goes to bottom of file'}

Aurora2Cpp222

© 2024 Dr. Detlef Meyer-Eltz

15.2.3.2 $EXTERNALSYM

The EXTERNALSYM directive prevents the specified Pascal symbol from appearing in C++ header
files. This directive is used for types, which already are defined in the API of the operation system. For
Delphi these types have to be redefined, for C++ not.

Aurora2Cpp doesn't output code parts, which are marked with the EXTERNALSYM directive if the
according option is enabled.

Syntax:

{$EXTERNALSYM identifier}

Example:

type
 size_t : LongWord;
 {$EXTERNALSYM size_t}

15.2.3.3 $NODEFINE

The NODEFINE directive prevents the specified symbol from being included in the C++ header file,
while allowing some information to be output to the OBJ file.
Such symbols are expected in special files for C++Builder. For example for C++Builder there is a file "
System.Types.h" where the types TSize, TPoint and, TRect are defined in C++ manner. In
System.Types.pas these types are marked with NODEFINE.

For other target compilers it is recommended to disable the NODEFINE option. Types like the just
mentioned TSize, TPoint and, TRect remain then in the translated files.

Syntax:

{$NODEFINE identifier}

Example:

type
 Temperature = type single;
 {$NODEFINE Temperature}

15.2.3.4 $NOINCLUDE

The NOINCLUDE directive prevents the specified file from being included in header files generated for

C++.

Syntax:

{$NOINCLUDE filename}

Pretranslated C++ code 223

© 2024 Dr. Detlef Meyer-Eltz

Example:

 {$NOINCLUDE Unit1} // removes #include Unit1.

15.2.3.5 Impact on notations

Types, which are marked as "EXTERNALSYM" or "NODEFINE" are not written into the generated C++
output, if the according option is enabled.. External symbols are provided by the operating system.
Therefore the notation which is used in the API of the operation system has to be set in the list of
notations.

For example in System.pas there is:

 PByte = ^Byte; {$NODEFINE PByte} { defined in sysmac.h }

In this case "PBYTE" from Windows.h could be used. (However most symbols which are marked with
NODEFINE don't exist in the API and would have to be defined in your own utility files if the
NODEFINE option isn't disabled.)

16 Delphi projects

Aurora2Cpp doesn't convert project files (*.dproj), but if you use C++Builder, Delphi form files (*.dfm)
can be reused. However it is recommended to create and maintain Delphi project files (*.dpr) with C+
+Builder.

For other compilers all these files are not converted.

16.1 Clang

Enter topic text here.

Aurora2Cpp224

© 2024 Dr. Detlef Meyer-Eltz

16.2 dpr Files

Delphi project files with the extension "dpr" are listing all files that are used in a project and contain the
code, which starts the application. Normally such files only contains code, which is generated by the
Delphi IDE:Though Aurora2Cpp converts such dpr files to C++ files, it is recommended not to use the
converted file, but to let C++Builder create and maintain this file. What C++Builder exactly does isn't
documented anywhere and it changes with different versions of C++Builder.

The default dpr file for a VCL forms application looks like:

program Project1;

uses
 Vcl.Forms,
 Unit1 in 'Unit1.pas' {Form1};

{$R *.res}

begin
 Application.Initialize;
 Application.MainFormOnTaskbar := True;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

The according file created by C++Builder XE10 Tokyo 2 looks like:

//---

#include <vcl.h>
#pragma hdrstop

Delphi projects 225

© 2024 Dr. Detlef Meyer-Eltz

#include <tchar.h>
//---
USEFORM("Unit1.cpp", Form1);
//---
int WINAPI _tWinMain(HINSTANCE, HINSTANCE, LPTSTR, int)
{
 try
 {
 Application->Initialize();
 Application->MainFormOnTaskBar = true;
 Application->CreateForm(__classid(TForm1), &Form1);
 Application->Run();
 }
 catch (Exception &exception)
 {
 Application->ShowException(&exception);
 }
 catch (...)
 {
 try
 {
 throw Exception("");
 }
 catch (Exception &exception)
 {
 Application->ShowException(&exception);
 }
 }
 return 0;
}
//---

16.3 dfm Files

To reuse Delphi form files, that are files with the extension "dfm", you have to create a C++Builder
project manually like your Delphi project, but with empty forms and without user code. It is important
however, that the forms in this dummy project get the exactly the same names as the according Delphi
forms and also the the corresponding units have to have identical names. The tool
MainFormExchange assists the following steps.

There are several ways to accomplish this task. Below is a description how to proceed, if the C+
+Builder project shall be placed into the same folder as the existing Delphi project.

Create a new C++Builder VCL application. You have to choose a configuration that compiles C++11
code.

Let's assume that the name of your Delphi main form is "MainForm", then rename the automatically
created main form to this name.

Aurora2Cpp226

© 2024 Dr. Detlef Meyer-Eltz

Now you can save the project into the same folder where your Delphi project is saved. At first you will
be prompted to enter the name of the main unit. Here you have to choose the same name as the
Delphi main form has. Of course it will have the "cpp" extension instead of the original "pas" extension.
Let's assume the original file calls "Main.pas":

Now it is important, that you rename your original form file "Main.dfm" to another temporary name. If
you don't do that, you will be prompted to overwrite the original file. But we still need it.

Next you will be prompted to choose a name for the precompiled header file. It is recommended to
take the name of the Delphi project file plus PCH1.h

<Delphi projectname>PCH<n>.h

Finally you have to choose a name for the C++Builder project. Again it is recommended to take the
name of your Delphi project.

<Delphi projectname>.cbproj

Now you have to close the C++Builder project, delete the automatically created main form file "Main.
dfm" and rename the original Delphi main form back to "Main.dfm". This is also a good moment to
overwrite the C++ files that were created by the C++Builder IDE with the files of the Aurora2Cpp
translation.

Now you can reopen the C++Builder project. If all components, that you used in the Delphi main form

Delphi projects 227

© 2024 Dr. Detlef Meyer-Eltz

are installed in C++Builder too, the form that you know from your Delphi project is shown identically in
C++Builder now.

If you used Components, which are not installed in C++Builder, you will get according error messages.
You either can ignore them with the risk that something gets lost on your form or you can cancel and
install the needed components first.

17 Tools

There are a few tools that support working with Aurora2Cpp:

ExtractIdentifiers: helps to extract identifiers from files
MainFormExchange: helps to adopt the files of the main form of the Delphi project for C++Builder
projects
ExtractReworked: simplifies the adoption of code improvements

17.1 ExtractIdentifiers

The ExtractIdentifiers tool can be used to create or correct identifier lists by extracting identifiers from
individual files or groups of files. ExtractIdentifiers is a command
ExtractIdentifiers is a command line tool. It can be called with the following parameters:

ExtractIdentifiers -a or -c -i identifer file -f folder [-m Filemask]

Param
eter

Name Meaning

-c correct Correct all identifiers with identifier notation in the scanned
files. the last found notation will correct the previous

-a add Add all identifiers which were not in the identifier file before. If
parameter c is not set the first found notation will be added,
otherwise the last one

-i identifier list File path to the identifier file. If it doesn't exist, it will be
created.

-s source A single source file or a source directory of files which
recursively will be scanned for identifiers.

-m mask Optional file mask like \"*.pas;*.cs\", if not specified, all files
are processed

-/ C++ comments Skip C++ comments instead of Delphi comments

The a- or c- parameter have to be set, otherwise the program will do nothing. The parameters can be
passed in any order. Paths may be absolute or relative. Line comments are skipped as well as strings
and Delphi comments per default if not changed by -/ parameter

For example the following commands will extract all Delphi identifiers from the Delphi RTL in .\Source
\Rtl and correct and supplement the resulting list in RTL_7.txt with the identifiers from the fie
CorrectIdentifiers.txt

Aurora2Cpp228

© 2024 Dr. Detlef Meyer-Eltz

ExtractIdentifiers.exe -a -i RTL_7.txt -s ..\Source\Rtl\Common -m *.pas;*.inc
ExtractIdentifiers.exe -a -i RTL_7.txt -s ..\Source\Rtl\Sys -m *.pas;*.inc
ExtractIdentifiers.exe -a -i RTL_7.txt -s ..\Source\Rtl\Win -m *.pas;*.inc
ExtractIdentifiers.exe -a -i RTL_7.txt -s ..\Source\Rtl\Bde -m *.int
ExtractIdentifiers.exe -c -a -i RTL_7.txt -s CorrectIdentifiers.txt

17.2 MainFormExchange

There is a tool called MainFormExchange that assists the creation of C++Builder projects.

After you have selected the main form of the Delphi application, the name of the form and the name of
the according C++ unit are shown in the fields of MainFormExchange. As in the previous example the
main form is called MainForm and the main unit is called main.cpp in the picture.

When the button Rename is pressed, the following renaming is carried out:

Original name New name
Main.dfm Main,dfm.001 original Delphi form file
Main.h Main,h.001 generated from Main.pas
Main.cpp Main,cpp.001 generated from Main.pas

Now the steps 5 to 9 shown at the top of image above have to be executed. As result there now is a
new C++Builder VCL Form Application analogously to the original Delphi application. Next the original
Delphi form file and the generated C++ files have to be restored, by pressing the button Undo rename.
At this step also a backup of the manually created clean C++Builder files is made:

Original name New name

Tools 229

© 2024 Dr. Detlef Meyer-Eltz

Main.dfm Main.dfm.000 newly created clean C++Builder form file
Main.h Main.h.000 newly created clean C++Builder header file
Main.cpp Main.cpp.000 newly created clean C++Builder source file
Main,dfm.001 Main,dfm original Delphi form file
Main,h.001 Main,h generated from Main.pas
Main,cpp.001 Main,cpp generated from Main.pas

The 000-backup files are created in order to be able to make comparisons with the generated files in
the case of an error. By pressing the Clear button, they are deleted.

If all went well, the basic framework for the C ++ version of the original Delphi application now exists.
You have to add the d2c helper files now and the rest of the C++ files, that were generated from the
Delphi source files.

The Tetris example demonstrates the use of MainFormexchange.

17.3 ExtractReworked

The ExtractReworked tool can be used to incorporate changed translation results into the already
translated code without overwriting the manual changes. Using this tool only makes sense if most of
the translated files are used unchanged, because only changes in these files are automatically applied.

ExtractReworked -g GeneratedFiles -w WorkingFiles -r ReworkedFiles [-m Filemask] [-c] [-c]

Parameter Name Meaning

-g generated files path to a directory where the newly translated files will be written
-w working files path to the directory where the translated files used in the C++ project are located
-r reworked files path to a directory where manually modified files are saved
-m file mask optional file mask like \"*.cpp;*.h\", if not specified, all files are processed
-c clean first clean the existing reworked directory i.e. delete all files and folders contained therein
-d delete may delete files in the reworked directory, if the generated file doesn't differ from the working file any more

It is important that the files generated by Aurora2Cpp are already in the "generated" directory before
using ExtractReworked. Otherwise all manual changes will be lost. ExtractReworked then should be
called as the first of four steps within a batch file.

1. ExtractReworked compares all files from the "generated" directory with the files from "working". In
cases where the file contents differ, the versions from the "working" directory are saved to the
"reworked" directory.
2. The C++ files are recreated with Aurora2Cpp from the Delphi code in the "generated" directory.
3. The newly generated C++ files are all copied from the "generated" directory to the "working"
directory. This step overrides the manual changes.
4. The files previously saved in the "reworked" directory are copied to the "working" directory, so the
manual changes are restored.

The result of this process is that all changes from the new translation in files that were not manually
post-processed were incorporated into the "working" code. Changes to files that were previously edited
manually must now be transferred manually.

5. Manual application of changes to files that were previously changed manually

If you use a version control system, only the “reworked” files need to be saved in it.

Aurora2Cpp230

© 2024 Dr. Detlef Meyer-Eltz

The use of the ExtractReworked process is recommended, for example, if the identifier list needs to be
optimized. Changes to the project options can also be tested in this way. The use of ExtractReworked
is particularly successful when the customer collaborates with the manufacturer of Aurora2Cpp.

The SyneditDemo example demonstrates the use of ExtractReworked.

18 Formatting

The generated C++ code should be readable, but little effort was made to make it beautiful. There are
free pretty-printers available, which have a lot of options to format the code just as you like it. I
recommend:

http://universalindent.sourceforge.net/

With UniversalIndentGUI "you change the value of a parameter and directly see how your reformatted
code will look like. Save your beauty looking code or create an anywhere usable batch/shell script to
reformat whole directories or just one file even out of the editor of your choice that supports external
tool calls."

19 TextTransformer

Aurora2Cpp is made from a TextTransformer project, which is based on the Delphi parser and the
Delphi pretty-printer, which can be obtained freely from

https://www.texttransformer.org/Delphi_en.html

https://www.texttransformer.org/DelphiPrettyPrint_en.html

20 Service

There is also a service to make translations of Delphi source code for you. So you don't have to buy
the program:

https://www.texttransformer.com/D2C_TranslationService_en.html

or in German at:

https://www.texttransformer.de/D2C_TranslationService_ge.html

I also like make extensions of Aurora2Cpp or other translators adapted individually for you. The
translation results can be increased drastically by such customizations.

Contact

Service 231

© 2024 Dr. Detlef Meyer-Eltz

21 Contact

If you need some help, additional code or other services, please contact me by the contact form at:

https://www.texttransformer.com/Contact_en.html

or in German at:

https://www.texttransformer.de/Contact_ge.html

If you are using a popup blocker the contact form will not work. Then please contact me via:

Please excuse me, this information is only shown as an image to protect against email scrapers.

Aurora2Cpp232

© 2024 Dr. Detlef Meyer-Eltz

Index
- - -
-- 23, 127

- " -
"String" as 36

- # -
#pragma exit 142

#pragma resource "*.dfm" 168

#pragma startup 142

- & -
& 75

- (-
(*#_ ... _#*) 220

(*_ ... _*) 220

(*_..._*) 21

- / -
/*# 52

//# 52

/conflict with existing function name 131

- _ -
__classid 145

__classmethod 91, 92

__closure 151

__cplusplus 197

__declspec(property(129

__fastcall 50

__finally 141

__interface 96

__property 129

__thread 115

_CPP_VER 197, 214

_CreatingClassInstance 149

_friends 94

- { -
{$DEFINE name} 10

{$J+} directive 44

{$M+} directive 94

- + -
++ 23, 127

- < -
<< 127

- > -
>> 127

- A -
Abs 21

Absolute address 150

abstract 47

Abstract classes 170

abstract methods 94

Active 161

ActiveX 171

Adaption of parameters 122

Add include path 15

Add recursively 15

AddError 70

additional 'this' parameter for class methods 48

AddMessage 70

Addr 45

Address 18

AddWarning 70

AllocMem 45, 207

ambiguity 111

Ampersand 75

Ancestor 83

and 116

Index 233

© 2024 Dr. Detlef Meyer-Eltz

AnsiString 36

API 170

Api files 215

API functions 170

API functions often are specified too vaguely in
Delphi 170

API Integration 112

ArrAssign 136

Array 98, 99

array of const 104, 105, 106

array parameter 100, 123

array property 136

array reference 106

array result 106

Array size 108

ARRAYHIGH 193, 208

ArrayOfConst 104, 105, 211

arrays 100

arrays assignement 119

Assembler 26, 171

AssignControlIsControl 161

AssignDataModulePixelsPerInch 158

Assigned 45, 127

AssignFile 200

AssignFormPixelsPerInch 158

AssignFormTextHeight 158

assignment 119

Assignments 117

AssignTBitmapData 158

AssignTComboBoxItems 163

AssignTImageListBitmap 160

AssignTRichEditHideSelection 162

AssignTSplitterParent 165

AssignTStringGridColWidths 162

AssignTStringGridRowHeights 162

AssignTStringsStrings 163

astr2pchar 180, 198

astr2ustr 180, 198

astr2wstr 180, 198

AtomicDecrement 208

AtomicIncrement 208

Aurora2CppLic.dat 4

auto 142

- B -
Backup 70

Base class 84, 91

BDE 18

BDE.dcu 18

BDE.int 18

BDE.pas 18

Beautifier 230

BEGIN_MESSAGE_MAP 149, 206

Binary data 158

bitwise operator 116

BlockRead 128, 200

BlockWrite 128, 200

BOOL 112

boolean operator 116

break 64

Bugs in the Delphi RTL/VCL 216

BytesOf 64

ByteType 64

- C -
c_str 64

C++ Builder 6, 221

C++ header 66

C++ source file 66

C++11 100, 124, 142

C++17 105

C++98 126

C++Builder 50, 115, 137, 223, 224, 225

C++Builder namespaces 39

Case sensibility 73

Case sensitivity 64

case statement 139

Casesensitivity 29, 30

Case-sensivity 32

Cast 118

CastDec 193, 208

CastInc 193, 208

cat_printf 64

cat_sprintf 64

cat_vprintf 64

CBuilder 2, 50, 76, 141

Char 36, 64

character array 119

Chr 45

Class 82

Class creation 96

class method 91, 92

class methods 48

Class references 170

Aurora2Cpp234

© 2024 Dr. Detlef Meyer-Eltz

class refererence 145, 146

class_id 146, 207

ClassRef 48, 146, 207

class-reference 144

ClassRefType 146

Clear types and variables 8, 66

Clear windows 8

C-like 36

CodePage 64

Collections 164

ColWidths 162

COM technologies 171

command line mode 71

Command line parameter 71

Comments 78

Compare 64

CompareIC 64

Compile time functions 21

Compiler 6, 50

Concat 192, 208

Conditional compilation 18, 63

configuration 214

conflict with existing procedure name 131

Conflicting names 171

Connect 151

ConsoleDemo 2, 4

const 44, 172

const correctness 44

const parameter 172

const parameters 120

const_cast 172

constant 44, 46, 172

const-correctness 47, 172

Constructor 84, 87

Constructor delegation 85

constructor problems 88

constructor signature 88

Constructors of the base class 171

Contact 230

continue 64

Conversion of DFM code to C++ 153

copied begin 220

copied end 220

Copy 45, 127

Cpp 21, 26

Cpp definition 73, 220

Cpp sections 24

CPUX86 19

Craig Scott 212

Create component at runtimme 153

Create dummy code 53

Create dummy routines 53

CreateClass.hpp 145

CreateClass.pas 145

CreateForm 45

CreateNew 167, 168

CreateObject 145

CreateParams 169

Creating Forms dynamically 167

Creating Frames dynamically 169

currency 179, 200

CurrToStr 64

CurrToStrF 64

Customization 230

- D -
D2C 215

d2c string 36

d2c_cb 2

d2c_config 197

d2c_convert 180, 198

d2c_dfm.cpp 153, 166

d2c_dfm.h 153, 166

d2c_LoadResourceString 115

d2c_openarray 181, 199

d2c_size_t 196, 211

d2c_smallstring 200

d2c_smallstringconvert 200

d2c_strncmp 192, 208

d2c_sysconst 200

d2c_syscurr 200

d2c_sysdate 200

d2c_sysexcept 182

d2c_sysfile 149, 180, 182, 200

d2c_sysfile.cpp 128

d2c_sysfile.h 128

d2c_syshelper 183

d2c_sysiter 191, 206

d2c_sysmac 206

d2c_sysmath 180, 192, 207

d2c_sysmem 207

d2c_sysmeta 207

d2c_sysobj 37, 90

d2c_sysobject 207

d2c_sysstring 180, 192, 208

Index 235

© 2024 Dr. Detlef Meyer-Eltz

d2c_system 21, 78, 180, 193, 208

d2c_system.pas 22

d2c_systobj 180

d2c_systypes 180, 196, 211

d2c_sysvariant 211

d2c_vc 2

d2c_wcsncmp 192, 208

Daniel Flower 109, 211

data 64, 158, 159

DateTime 200

Dec 23, 45, 127

Decimals 129

DECLARE_DYNAMIC 37

declspec(thread) 115

Default array-property 135

Default.prj 2

def-file 152

DefineProperties 154, 164

Defineproperty 171

Definition 6, 18

Delete 23, 45, 64, 127

Delphi ActiveX framework 171

Delphi I/O routines 21

Delphi RTL/VCL 6, 179, 180

Delphi string 36

Delphi2C++ 3

Delphi2CB 3, 35, 48

Delphi2Cpp 2, 106

DelphiSets 211

DelphiSets.h 109

Delphi-translator 24

Demjen 151

Dependencies 66, 170

Dependencies of a unit 61

Design time only properties 158

designintf.pas 18

Destroy 45

Destructor 91

DFM code conversion 59

DFM Conversion 13

DFM conversion routines 154, 155

DFM coversion routines 60

DFM file 164, 167

DFM Files 59, 60, 153, 154, 158, 159, 161, 162,
163, 165, 166, 168

dfm-files 223, 225

DfmRoutines.txt 60

DFM-translator 24

Directive 18, 221

Directives 63

Dispose 45, 127

Dll 152

dotted file names 20

dproj-files 223, 224

dsgnintf.pas 18

Dummy routines 53

DUnit 174

DWORD 112

Dynamic array 99

Dynamic array parameter 103

Dynamic creation of components 153

dynamic_cast 117

DynamicArray 99, 158

DynamicArrayIter 191

DynamicArrayPointer 103

- E -
E2034 172

E2188 158

EInvalidOperation 162

Element has no parent window 162

ElementSize 64

END_MESSAGE_MAP 149, 206

EnsureUnicode 64

Enumerated types 23, 108

enumerator 137

equality operators 116

EResNotFound 167, 168

event 151

Event handling 151

Examples 3

Exclude 45, 127

Exclude units 52

Excluding individual files 68, 69

ExplicitBottom 158

ExplicitLeft 158

ExplicitRight 158

ExplicitTop 158

Extended "System.pas" 21

extended System.pas 6

extern 80

EXTERNALSYM 47, 222

ExtractIdentifiers 227

ExtractIdentiifers 227

ExtractReworked 4, 229

Aurora2Cpp236

© 2024 Dr. Detlef Meyer-Eltz

- F -
FCL 128

field property 129

File 149

File layout 77

File manager 66

Files, not to translate 17

FillChar 193, 208

finalization 142

Finalization part 171

finally 141

finally-statement 212

Fingerprint 4

Fixed identifiers 31

FloatToStrF 64

FmtLoadStr 64, 115

for loop 137

for loop variable 138

Forced namespaces 42

for-in loop 137

for-loop 46

Form files 223, 225

form parser 39

Format 64

FormatFloat 64

Formatting 230

Formatting of real types 179

Formatting parameters 129

Free 45

Free pascal 175, 179, 180

FreeAndNil 45

FreeMem 21, 23, 45, 207

FreePascal FCL 128

FreePascal2Cpp 179

friend 94

function 124

Function name 34, 120

Functions 120

- G -
gcc 50, 115, 179

generated files 229

GetMem 21, 23, 45, 207

GNU Lesser General Public License 128

GUID 96

- H -
hardware ID 4

hash character 52

High 21, 45, 99, 100, 127, 138, 193, 208

hpp 54

hpp extension 17

HPPEMIT 221

- I -
I/O routines 128

Identifier notation 64

Ignore NODEFINE 42

IgnoreFontProperty 154, 158

IInterface 98

IMPLEMENT_DYNAMIC 37

Inc 23, 45, 127

inc-files 94

Include 45, 127

Include directive 63

Include paths 15

Included files 66

Indentation 52

Indexes 80

infinite loop 138

Inheritance 83

inherited 124

initexit 142

initialization 44, 142

Initialization lists 85

Initialization part 171

Initialize Variables 47

initializer_list 100

Initializing arrays 100

inline assembler 172

Inline assembler code 171

Inline variable declarations 153

in-operator 117

Input options 13, 14

Insert 45, 64, 127

Installation 2

installation folder 2

Int2Type 196, 211

IntDivide 45

Index 237

© 2024 Dr. Detlef Meyer-Eltz

Interface 82, 96

Internal.Unwinder.pas: 216

Internally used properties 158

INTFOBJECT_IMPL_IUNKNOWN 98, 193, 208

IntToHex 64

IsControl 161

IsDelimiter 64

IsEmpty 64

IsLeadSurrogate 64

is-operator 117

IsPathDelimiter 64

IsTrailSurrogate 64

Item 164

Items 163, 164

IUnknown 98

- J -
Jedi 63

JvConsts.pas 63

- K -
Keyword 33

- L -
lambda-functions 124

Last error position 8

LastChar 64

LastDelimiter 64

Learning option 24

Learning types and variables 8

Length 45, 64, 99, 127

Library 8, 152

License 2, 4

linker error 96

Linux 179

Lists 162, 163

Load DFM routines 60

LoadResourceString 115

LoadStr 64, 115

LoadString 64

Log panel 11

Log-file 66

LogicalXor 45

Lookup algorithm 21

lookup order 111

Lookup translation 61

Low 21, 45, 99, 127, 138, 193, 208

LowerCase 64

LPDWORD 170

- M -
-m 71

Macapi.ObjectiveC.pas 216

Main form 169

MainFormExchange 227, 228

Management 66, 71

Mangement 71

manual changes 229

Marco 10

Match declaration case 30

Max 45

MAXIDX 102, 208

MAXIDX(x) 99

memcpy 119

Memory management 21, 23

Mersenne twister 179

Message directive 24, 26

MESSAGE ERROR 215

Message handlers 149

message map 48, 206

Meta cpapbilities, enabling 37

Method pointers 151

method resulution clause 171

Min 45

Missing constructor 87

missing file 11

module definition file 8, 152

Move 18, 45

MSWINDOWS 6

Multiple constructors with the same signature 88

Multiple interfaces 98

- N -
N:1 66

N:N 66

name space 18

Names of helping variables 33

namespace 21, 79, 111

Namespace options 13, 39

Aurora2Cpp238

© 2024 Dr. Detlef Meyer-Eltz

namespace, suppress 41

Nested functions 171

Nested routines 124, 126

New 23, 45, 127

New features 153

NODEFINE 47, 222

NOINCLUDE 222

non-abstract 47

Normalize namespaces 40

Notation 32

- O -
ObjectIs 117, 193, 208

octothorpe 52

Odd 21, 45

OnLeavingScope 141, 212

OnTDataSetBegin 161

OnTDataSetEnd 161

OnTSplitterBegin 161

OnTSplitterEnd 161

open array 100, 123, 137

Open array var parameters 101

OpenArray 104, 105

OPENARRAY macro 100

OpenArrayEx 181

OpenArrayRef 101, 181, 199

OpenArrayRef2 101

Operator 116

operator precedence 116

Operators 116

Options 13

or 116

Ord 45

Order of lookup 111

order of type definitions 110

order of unit initializations 142

Other compiler 6, 34, 99, 129

Other compilers 141

out parameters 120

Output options 13, 52

Overwriting "System.pas" 21

Overwritten System.pas 117

- P -
-p 71

PAnsiChar 45, 127

Parameter 122

Parameter types 120

Parent property 165

-pause 71

PByte 113, 223

pch.inc 51

PChar 45

PDWORD 170

PixelsPerInch 154, 158

plain old data types 128

POD types 128

Pos 45, 64, 127

post-procesing 229

PP-button 8

precedence of operators 116

Precompiled header 50

Pred 21, 45, 208

Prefix 34

Prefixes for properties 34, 131

Preprocessed code 6

Preprocessor 8, 63, 64

pre-processor can't evaluate 63

Preprocessor identifiers 29

Pretranslated C++ code 179, 196, 213

Pretranslator 63

Pretty-printer 230

Preview of the target files 69

printf 64

private 94

procedure 124

Procedures 120

Processor options 13, 24

professional version 8, 11, 71, 79

Project file 13

Project files 223, 224

Projects 2

Properties 196

propertiy 50

Property 34, 129

Property prefix 131

protected 94

Protected properties 161

Prprocessor 24

public 94

published 94

PUREPASCAL 18, 26, 172

PWideChar 45

Index 239

© 2024 Dr. Detlef Meyer-Eltz

- R -
-r 71

RAD Studio 10.2 Tokyo 42

RAD Studio 11.1 Alexandria 42

Range 108

range based for-loops 206

range-based loop 137

Read 45, 129, 200

Read procedure 129

Reading and Writing 149

ReadLn 45, 200

ReadLn procedure 129

ReadProperty 34, 129, 131

Real types formatting 179

ReallocMem 21, 23, 45, 120, 207

ReallocMemory 120

Record 82, 83

Recursive translation 170

Refactoring 13, 54

RefCount 64

Reference 18

Refresh 69

RegisterComponents 45, 127, 129

Registration 4

Requires parent 162

Reset 45

resource string 115

Result 120

Results 70

Returning arrays 106

return-statement 120

reworked files 229

Rewrite 45, 200

Round 45, 192, 207

Routines 119

RowHeight 162

RTL core 213

RTL functions 45

RTL/VCL cover file 24

RTLSPECIALS 45

Rudy Velthuis 4

runtime_error 94

- S -
-s 71

Save DFM routines 60

Save list of missing units 10

Save log file 10

Save new macros 10

scope 111

Search path to the RTL/VCL 17

Search path to the source files 17

Selecting source files 68

Self 92

Self instance 93

Service 230

Set 106, 109, 211

Set class 109, 117

SetIter 191

SetLength 45, 64, 127, 192, 208

Sets 162

SetString 22, 192, 208

ShellApi.pas 18

shortint 76

ShortString 196, 200

Simple lists 162

Simple substitutions 76

Single characters 76

Size of an array 99

size_t 38

sizeof 45, 63

SLICE 208

SmallString 200

SourceGenerated 213

SourceWorking 2, 213

sprintf 64

Standard string 36

Start a translation 70

Start file 61

Start parameter 13, 61

Statements 137

Static array 99

Static array parameter 102

static class method 48

static method 92

std::bind1st 151

std::function 151

std::mem_fun 151

std::runtime_error 94

Aurora2Cpp240

© 2024 Dr. Detlef Meyer-Eltz

std::variant 105

std::vector 99

stdafx.h 50, 51

stdcall 152

stdexcept 94

Stop on message directive 24, 26

stop variable 46

Str 193, 208

Str procedure 129

Strarting the translation 8

strcpy 119

strcpy_s 214

String 36, 64

String constant 76

string parameter 123

String type 6

StringBaseIndex 197

StringOfChar 64

subrange 139

subsequent error 11

Substitution in the translator 33

Substitution of the preprocessor 32

Substitution options 13, 27

Substitution table 32

SubString 45, 64, 127

Succ 21, 45, 208

Supports 45

Suppress namespace 39

Suppressed namespaces 41

swap 64

symbol lookup 111

Synchronizing Delphi and C++ code 179

SyncObjs.pas 18

SynEdit components 4

SyneditDemo 4

System 179, 180

System namespace 78

System unit 6

System. 18

System.h 78, 214

System.ObjAuto.pas 216

System.pas 6, 18, 21, 22, 79, 117, 215, 216

System.Variants.pas 215

System.VarUtils.pas 215

System::Set 33, 109

SYSTEM_HPP_DEFINES_OBJECTS 215

SystemTypes.pas 215

Sysutils 179

Sysutils unit 6

- T -
-t 71

t_str 64

Tamas Demjen 151

Target folder 61

Target options 13, 48

Target platform 51

Taskbar 169

T-button 8

TClass 144, 145, 146

TClientDataSet 159, 164

TCustomDynFrame 168, 169

TCustomFrame 168

TD2CObject 90

TDataSet 161

TDateTime 200

temporary file 70

Temporary variables 123

Tetris example 3

TExtended80Rec 63

TextHeight 154, 158

TextTransformer 230

TFieldDefs 164

THandle 114

threadvar 115

ThrowAbstractError 146

ThrowNoDefaultConstructorError 146

TMetaClass 37, 144, 145, 146, 207

TObject 18, 21, 37, 83, 90, 207

ToDouble 64

ToInt 64

ToIntDef 64

Tokens 73

Tool bar 8

ToolsApi/ToolsApi.pas 216

Translation 63

Translation options 6, 13, 66

Translation service 230

Translator 8

Treat typed constants as non-typed constants 44

Trim 64

TrimLeft 64

TrimRight 64

Trunc 45, 192, 207

TSet 33, 109, 211

Index 241

© 2024 Dr. Detlef Meyer-Eltz

TSplitter 161, 165

TStatusBar 164

TStatusPanel 164

TStringGrid 162

TStringHelper 81, 183

TStrings 163

ttm 71

TTollBar 162

Tuning options 13, 44

TVarData 211

TVarRec 104, 105, 211, 215

type cast 23

type checking 117

type identifier 76

type name 76

Type options 13, 35

Typed constant 44, 46

typedef 110

TypeInfo 45

Type-map 38

Types 82

Types option 36

- U -
ULONG 54

Unification 26

Unification of notations 64

Unify all cases 30

Union 83

Unique 64

uniquetype 196, 211

Unit frame 8

unit initialization order 142

Unit scope names 20

Unit tests 174

units order file 53, 142

UniversalIndentGUI 230

Unknown architecture 26

Unknown platform 26, 215

unknown vtable 96

unsignedchar 76, 196

unsignedint 76

untyped parameters 120

UpperCase 64

Use "stop" variable in for-loop 44

Use pch.inc 50

USEFORM 167

User defined DFM conversion routines 155

User options 12

Uses clauses 78

using 79

ustr2astr 180, 198

ustr2pchar 180, 198

- V -
Val 208

Val procedure 179

variable 80

variable parameters 120

Variables 115

Variant 83, 215

Variant class 179

Variant parts in records 170

Variant types 171

VC_ONLY 196

VCL 24, 66

VCL forms 153

Vcl.Imaging.GifImg.pas 216

VCL_MESSAGE_HANDLER 149, 206

VCL-functions 127

VCLSPECIALS 45

vector 99

Verbose 52

Verbose option 52

version control system 229

virtual class method 48, 92

Virtual class methods 170

Virtual class methods as statiic 48

virtual constructor 37, 146

Virtual constructors 90

Virtual functions at construction 89

virtual method table 171

virtual routine in constructor 88

Visibility 94

Visibility of class members 170

Visual C++ 50, 115, 179, 196

Visual C++ configuration 214

Visual Component Library 24

VisualC 50

void pointer casts 118

void* 118

vprintf 64

VType 105

Aurora2Cpp242

© 2024 Dr. Detlef Meyer-Eltz

- W -
w_str 64

waiting for definiens 110

wchar_t 36

WideString 36

Width 129

Win64 19

WinAPI.DXFile.pas 216

WINAPI::Windows 39

Window position 12

Window size 12

Windows 128, 179

Windows API 18, 221

Windows interfaces 221

Windows messages 149

Windows.pas 18, 19

WinProcs.pas 18

WinTypes.pas 18

with-statement 142

working files 229

Write 45, 129, 200

Write procedure 129

WriteLn 45, 200

WriteLn procedure 129

WriteProperty 34, 129, 131

wstr2astr 180, 198

- X -
xResult 126

- Z -
ZEROBASEDSTRING 171

ZEROBASEDSTRINGS 81

	Introduction
	Installation
	Examples
	Tetris
	SyneditDemo
	ConsoleDemo

	Registration
	How to start
	User interface
	Toolbar
	Additional menu items
	Log panel
	User options
	Window positions
	Customization

	Translation options
	Input options
	Search paths
	Paths to the source files
	Paths to the VCL\RTL
	Files, not to translate
	Special headers

	Definitions
	Windows.pas

	Unit scope names
	Extended "System.pas"
	SetString
	Memory management
	Inc and Dec

	RTL/VCL cover file

	Processor options
	Unification of CPP-sections
	Stop om message directive

	Substitution options
	Unification of upper and lower case
	Preprocessor identifiers
	Match declaration case
	Unify all cases
	Fixed identifiers

	Substitutions in the preprocessor
	Substitutions of the translator
	Prefixes for properties

	Type options
	String types
	Meta capabilities
	Type-map

	Namespace options
	Normalize namespaces
	Suppressed namespaces
	Forced namespaces
	Ignore NODEFINE

	Tuning options
	Special treatment of some RTL functions
	Use stop-variable in for-loop
	Treat typed constants as non-typed constants
	Initialize Variables
	Try to make const correct
	Apply EXTERNALSYM directive
	Apply NODEFINE directive
	Make classes non-abstract
	Write message-map as macro
	Create additional 'this' parameter for class methods
	Virtual class methods as static methods

	Target options
	Compiler
	Precompiled header
	pch.inc

	Target platform

	Output options
	Verbose
	Create units order file
	Create dummy code

	Refactoring
	Load/Save refactoring

	DFM Conversion
	Load/Save DFM routines

	Start parameter

	Translation
	Preprocessing
	Conditional compilation
	Unification of notations

	Scanning dependencies
	Writing the C++ code

	Translation manager
	Translation options
	Selecting source files
	Preview of the target files
	Starting the translation
	Results
	Management

	Use in command line mode
	Parameter

	What is translated
	Tokens
	Case sensitivity
	Ampersand
	Simple substitutions
	String constants and single characters
	Simple type identifiers

	File layout
	System Namespace
	Uses clauses
	Comments
	Namespaces
	extern variables

	Indexes
	ZEROBASEDSTRINGS

	Types
	Records, Classes, Interfaces
	Record
	Variant parts in records

	Class
	Ancestors
	Constructors
	Constructor of the base class
	Constructor delegation
	Initialization lists
	Addition of missing constructors
	Problems with constructors
	Constructors with the same signature
	Virtual functions at construction
	Virtual constructors

	Destructors
	class methods
	C++Builder __classmethod
	Other compilers cllass methods
	non virtual class methods
	virtual class methods
	Self instance

	abstract methods
	Visibility of class members
	Creation of instances of classes

	Interfaces
	Multiple interfaces

	Arrays
	Static arrays
	Dynamic arrays
	Array indices
	Initializing arrays
	Array parameters
	Open array parameters
	Open array var parameters
	Static array parameter
	Dynamic array parameter
	array of const
	array of const for C++Builder
	array of const for other compilers
	array of const vs. set's

	Returning arrays

	Enumerated types
	Ranges
	Sets
	Order of type definitions
	Order of lookup
	API Integration
	BOOL
	DWORD
	PByte
	THandle

	Variables
	threadvars
	Resource strings

	Operators
	boolean vs. bitwise operators
	operator precedence
	is-operator
	in-operator

	Assignments
	Explicit casts
	void pointer casts
	Special assignments

	Routines
	Procedures and functions
	Parameter types
	Adaption of parameters
	Temporary variables
	Calls of inherited procedures and functions
	Nested routines
	Nested routines with C++11
	Nested routines with C++98

	Special RTL/VCL-functions
	I/O routines
	Read(Ln)/Write(Ln) routines
	Formatting parameters
	RegisterComponents

	Properties
	Field properties
	Changing the property prefixes

	Indexed properties
	Default array-property
	Array property

	Statements
	for loop's
	for-in loop
	loop variable

	case statements
	finally
	with-statements
	Initialization/Finalization

	class-reference type
	C++Builder __classid
	Other compiler ClassRef
	_CreatingClassInstance

	Reading and Writing
	Message handlers
	Absolute address
	Method pointers
	Libraries

	New features since Delphi 7
	DFM-Translator
	Normal assignments
	Special assignments
	DefineProperties
	DFM conversion routines
	Internally used properties
	Design time only properties
	Binary data
	TClientDataSet
	TImageList

	Protected properties
	TDataSet
	TSplitter
	TToolBar
	Requires parent

	Sets
	Lists
	Simple lists
	List items

	Collections
	Setting the parent
	List of predefined DFM routines

	Creating Forms dynamically
	EResNotFound
	Main form

	Creating Frames dynamically

	Recursive translation
	What is partially translated
	API parameter casts
	Formatting procedures

	What is not translated
	inline assembler
	const-correctness
	Low level code

	Unit tests
	Format
	TStringList

	Pretranslated C++ code
	Delphi RTL/VCL
	C++ code for C++Builder
	d2c_convert
	d2c_openarray
	d2c_sysexcept
	d2c_sysfile
	d2c_syshelper
	d2c_sysiter
	d2c_sysmath
	d2c_sysstring
	d2c_system
	d2c_systypes

	C++ code for other compilers
	d2c_config
	d2c_convert
	d2c_openarray
	d2c_smallstring
	d2c_sysconst
	d2c_syscurr
	d2c_sysdate
	d2c_sysfile
	d2c_sysiter
	d2c_sysmac
	d2c_sysmath
	d2c_sysmem
	d2c_sysmeta
	d2c_sysobject
	d2c_sysstring
	d2c_system
	d2c_systypes
	d2c_sysvariant
	DelphiSets
	OnLeavingScope
	RTL core
	System.h

	Visual C++ configuration
	Special Delphi units

	Preparing Delphi code
	Bugs in the Delphi RTL/VCL
	Frequent re-translation
	Comments (*#_ ... _#*)
	Predefined identifier Cpp

	Delphi directives to support C++Builder
	$HPPEMIT
	$EXTERNALSYM
	$NODEFINE
	$NOINCLUDE
	Impact on notations

	Delphi projects
	Clang
	dpr Files
	dfm Files

	Tools
	ExtractIdentifiers
	MainFormExchange
	ExtractReworked

	Formatting
	TextTransformer
	Service
	Contact

