
© 2002-10 Dr. Detlef Meyer-Eltz

TextTransformer 1.7.5

TextTransformer2

© 2002-10 Dr. Detlef Meyer-Eltz

Table of Contents

Part I About this help 16

Part II Registration 18

Part III Most essential operation
elements 21

Part IV Most essential syntax elements 23

Part V How to begin with a new project? 25

... 271 Practice

Part VI Introduction 30

... 301 How does the TextTransformer work?

... 302 Analysis

... 313 Synthesis

... 314 Regular expressions

... 325 Syntax tree

... 336 Productions or non-terminal symbols

... 337 Productions as functions

... 358 Four uses of productions

... 359 Looking-ahead

... 3710 Inclusions / comments

... 3711 Sub-parser

... 3712 Family concept

... 3813 Tests

Part VII Examples 40

... 411 Exchange of words

... 41Execution of a project

... 43Production

... 44Analysis step by step

... 45Using tokens

... 472 Conversion of an Atari text

... 47Tokens

... 49Productions

... 50Actions

... 51Conversion into RTF

... 543 Calculator

3Contents

© 2002-10 Dr. Detlef Meyer-Eltz

... 54Tokens

... 55Production: Calculator1

... 56Production: Expression

... 57Productions: Term and Factor

... 59Production: Number

... 59Return values

... 614 Text statistics

... 61Class members

... 62Token

... 63Productions

... 645 GrepUrls

... 64Productions

... 65Member variables and methods

... 66Put together

... 67Search in whole directory

... 706 BinaryCheck

... 70Look-ahead

... 71Use as preprocessor

... 727 E-mail address

... 73Syntax specification

... 74Productions and token

... 75Detecting a conflict

... 76Solving the conflict

... 788 Guard

... 79Startrule: guard

... 79Copying source text

... 80Tokens

... 82Productions: block, outer_block

... 83Improvement: '{' and '}' in strings

... 849 Bill

... 84Production

... 85Tokens

... 8610 XML

... 86ISO-XML

... 88XML document

... 90Tree generation

... 90Tree evaluation

... 92Character references

... 93Comments and processing instructions

... 94Insert client data

... 9611 Unit_dependence

... 96Productions

... 97Containers and parameters

... 98Include files

... 9812 Java

... 99Coco/R adaptation

... 99Simple look-ahead production

... 99Negative look ahead

... 100Complex look ahead

... 100Debugging a look-ahead

... 102Parse-Tree

TextTransformer4

© 2002-10 Dr. Detlef Meyer-Eltz

... 105Function-Table

... 10813 C-typedef

... 108Typedef

... 109Scopes

... 11014 TETRA productions

... 11015 TETRA-EditProds

... 11016 TETRA interpreter

... 11117 TETRA import

... 11218 TETRA-Management

... 11319 Cocor import

... 113Ignorable characters

... 114Tokens

... 115Productions

... 115Post processing

... 116Semantic actions

Part VIII How to ... 118

... 1181 Load data

... 1192 Structure data

... 1193 Write into additional target files

Part IX User interface 121

... 1211 Tool bar

... 1222 Main menu

... 122Menu: File

... 125Menu: Edit

... 126Menu: Search

... 127Menu: Project

... 128Menu: Start

... 129Menu: Code generation

... 130Menu: Options

.. 130User data

.. 131Options of the user interface

... 132Transformation

... 133Editing

... 133View

... 134Layouts

.. 135Environment options

... 135CONFIG

... 136EXTENSIONS

... 136FRAMES

... 136PATH

... 137File filter

.. 137Project options

... 138Names and Directories

.. 138Start rule

.. 138Test file

.. 138Preprocessor

.. 139Frame path

5Contents

© 2002-10 Dr. Detlef Meyer-Eltz

... 139Parser/Scanner

.. 139Ignorable characters

.. 141Case sensitive

.. 141Word bounds

.. 142Parameter and {{...}}

.. 142Global scanner

.. 144Look-ahead buffer

... 144Start parameters

... 145Inclusions (comments)

... 145Encoding

... 146xerces DOM

.. 149DTD

... 150Warnings/Errors

.. 150Stack maximum

... 150Code generation

.. 151const

.. 151Use wide characters

.. 152Only copy all code

.. 152Characters and increment of indentation

.. 152Operating system

.. 152Plugin type

.. 153Template parameter for plugin character type

... 153Version information

.. 154Local options

... 154Local options

... 155Menu: Windows

.. 156Docking Windows

... 158Caption Dialog

.. 159Window list

.. 160Customize layout

.. 161Save Layout

.. 162Restore default layout

... 162Menu: Help

.. 163Feedback

.. 163Wizards

... 163New project wizard

.. 164Multiple replacements of words

.. 165Multiple replacement of strings

.. 165Multiple replacements of characters

.. 167CSV-wizard

.. 168Creating a line parser from an example text

.. 169Header/Chapters/Footer

.. 170Actions

... 171Creating a production from an example text

... 172Parameter-Wizard

... 173Tree-Wizard

.. 173Tree type

... 174Function-Table-Wizard

.. 176Quick wizard for function tables

... 177Input tables

.. 178Regex test

.. 180Character class calculator

.. 184ANSI table

... 1843 Script management and parsing

TextTransformer6

© 2002-10 Dr. Detlef Meyer-Eltz

... 186Tool bar and menu

... 187Insert

... 188Delete

... 188Edit

... 188Cancel

... 188Accept

... 189Rename

... 189Navigation

... 189Parse/Test single script

... 189Parse/Test all connected scripts

... 190Parse/Test all scripts

... 190Error messages

... 191Clear semantic code

... 192Import

... 194Export

... 194Collapsing semantic code

... 1954 Debugging and executing

... 196Source text

... 197Section of text

... 197Enabling actions

... 198Choosing a start rule

... 198Interactive change of a start rule

... 199Change of the start rule

... 199Parse start rule

... 200Syntax tree

.. 202Pop up menu

.. 203Show first sets

... 208Start mode

... 209Execution step by step

... 210Execute a look-ahead step-by-step

... 211Execution at a stretch

... 211Checking success

... 212Reset

... 212Mark recognized/expected token

... 213Breakpoints

.. 213Text breakpoint

.. 214Node breakpoint

... 215Recognized token

... 215Stack window

... 216Variable-Inspector

... 218To the actual position

... 219Info box

... 219Log window

... 2195 Transformation of groups of files

... 219Transformation manager

.. 220Defining a new filter

.. 220Selecting source files

.. 222Transformation options

... 223N:N Transformation

.. 223Select target directory

.. 226Setting pattern for the target files

.. 226Backup

... 227N:1: Transformation

.. 228Preview of the target files

7Contents

© 2002-10 Dr. Detlef Meyer-Eltz

.. 229Start the transformation

.. 229Results

... 230Report

.. 230Corrections

.. 231Roll back

.. 231Management

... 232Command line tool

.. 232Parameter

... 2346 Keyboard shortcuts

... 235Block commands

Part X Scripts 238

... 2381 Token definitions

... 238Input mask for a token

.. 239Name

.. 239Return type

.. 239Parameter declaration

.. 239Comment

.. 240Text

.. 240Semantic action

... 241Literals

.. 241Named literals

... 242Regular expressions

.. 243Single characters

.. 243Meta-characters

.. 243Special characters

.. 244Sets of characters

.. 244Character classes

.. 245Locale dependant features

... 246Collating elements

... 246Equivalence classes

... 246Collating Element Names

.. 248Wildcard

.. 248Anchors

.. 250Concatenation

.. 250Groupings

.. 250Alternatives

.. 251Repeats

.. 252Macros

.. 253boost regular expression library

... 253Predefined tokens

.. 254Identifier

.. 255Words

.. 256Numbers

.. 257Quotes

.. 257Dates

.. 258Comments

.. 259Ignorable

.. 259Line break

.. 260Binary null

.. 260Addresses

.. 260Data field

... 261Placeholder

TextTransformer8

© 2002-10 Dr. Detlef Meyer-Eltz

... 2622 Productions

... 262Input mask for a production

.. 262Name

.. 263Return type

.. 263Parameter declaration

.. 264Comment

.. 264Text

... 265Elements

... 266Concatenation

... 266Alternatives

... 267Grouping

... 268Repeats

... 269BREAK

... 270EXIT

... 271EOF

... 271ANY

.. 272Options

... 273SKIP

.. 275Options

... 277IF...ELSE...END

... 279WHILE...END

... 280Actions

.. 281Transitional action

... 282Calling parameters

... 2823 Class elements and c++ instructions

... 283Input mask for class elements

.. 283Name

.. 284Type

.. 284Parameter

.. 285Comment

.. 285Text/Initialization

... 286List of all instructions

... 292Interpreted C++ instructions

.. 292C++

.. 293Variable types

... 293bool

... 294char

... 294int

... 294unsigned int

... 294double

.. 295str

... 296Searching

.. 298Container

... 299vector

.. 301Stack

... 303map

... 306cursor

.. 307General cursor methods

... 309Function table

.. 311node / dnode

... 312node: Construction

... 313node: Information

... 316node::npos

... 316node: Neighbors

9Contents

© 2002-10 Dr. Detlef Meyer-Eltz

... 318node: Searching

... 320node: Sorting

... 320dnode specials

.. 321const

.. 321Operators

... 321Arithmetic operators

... 322Assignment operators

... 323Relational operators

... 323Equality operators

... 324Logical operators

... 324Bitwise operators

... 325Conditional operator

.. 325Control structures

... 325if, else

... 326for

... 326while

... 327do

... 327switch

.. 327Output

... 328out

... 329log

... 329Binary output

.. 330return

.. 330break

.. 330continue

.. 330throw

... 331String manipulation

.. 331stod

.. 332stoi

.. 332hstoi

.. 332stoc

.. 333dtos

.. 333itos

.. 334itohs

.. 334ctohs

.. 334ctos

.. 335to_upper_copy

.. 335to_lower_copy

.. 335trim_left_copy

.. 336trim_right_copy

.. 336trim_copy

... 337File handling

.. 337basename

.. 338extension

.. 338change_extension

.. 339append_path

.. 339current_path

.. 340exists

.. 340is_directory

.. 340file_size

.. 341find_file

.. 341load_file

.. 342path_separator

... 342Formatting instructions

TextTransformer10

© 2002-10 Dr. Detlef Meyer-Eltz

.. 343How it works

.. 343Examples

.. 344Syntax

.. 346Methods

... 346Other functions

.. 347clock_sec

.. 347time_stamp

.. 348random

... 349Parser class methods

.. 349Parser state

... 354Sub-expressions

.. 355Plugin methods

... 356Source and target

... 357Start parameters

... 358Redirection

... 358xerces DOM

... 359Indentation stack

... 361Text-scope stack

... 362Dynamic scanner

... 364Error handling

... 365Calling a production

.. 365Sub parser

.. 366Look-ahead

... 368Events

... 3694 Test scripts

... 369Name

... 370Group

... 370Comment

... 370Input

... 370Code

... 370Expected output

... 371Test output

... 371Error expected

Part XI Algorithms 373

... 3731 Scanner algorithm

... 3742 Parser algorithm

... 3753 Token sets

Part XII Grammar tests 379

... 3791 Completeness

... 3792 Reachable rules

... 3803 Derivable rules

... 3804 Non-circularity

... 3805 LL(1)-Test

... 3816 Warnings

... 3817 Nullability

... 3828 Start of several alternatives

... 3829 Start and successor of nullable structures

11Contents

© 2002-10 Dr. Detlef Meyer-Eltz

... 38410 SKIP node with SKIP neighbors

... 38411 Different SKIP followers

... 38412 Different ANY followers

... 38413 Left recursion

... 38514 Circular look-ahead

Part XIII Code generation 387

... 3871 Code frames

... 387Name of the parser class

... 388Header frame

... 390Implementation frame

... 393main-file frame

... 396Project specific frame

... 397jamfile

... 3972 Supporting code

... 398Code directory

... 398CTT_Parser

.. 399Methods

... 402CTT_ParseState

... 403CTT_Scanner

... 403CTT_Tst, CTT_TstNode

... 403CTT_Match

... 403CTT_Token

... 404CTT_Buffer

... 404CTT_Guard

... 405CTT_Mstrstr

... 406CTT_Mstrfun

... 406CTT_Node

... 406CTT_DomNode

... 407CTT_ParseStatePluginAbs

... 407CTT_ParseStatePlugin

... 407CTT_ParseStateDomPluginAbs

... 407CTT_ParseStateDomPlugin

... 407CTT_RedirectOutput

... 407CTT_Indent

... 408CTT_Xerces

... 4083 Error handling

... 4104 Compiler compatibility

... 4105 License

Part XIV TetraComponents 413

Part XV Messages 415

... 4151 Unknown symbol: "xxx"

... 4152 "X": can't derive to terminals

... 4153 Circular derivation: "X" . "Y"

... 4154 "X" is nullable

... 4155 LL(1) Error: "X" is the start of several alternatives

TextTransformer12

© 2002-10 Dr. Detlef Meyer-Eltz

... 4156 LL(1) Warning: "X" is the start and successor of nullable structures

... 4157 "X" is a SKIP node with SKIP neighbors

... 4168 Nullable structure in a repetition or option

... 4169 "X" is used circulary in a look-ahead

... 41610 Inclusion not found

... 41611 Conflict with an inclusion

... 41612 No matching next token found

... 41613 The rest of the text consists of ignored chars

... 41714 SKIP token matches at actual position

... 41715 "SKIP ANY" is not possible

... 41716 Matching but not accepted token

... 41817 Matching token not in first set

... 41818 Matching look-ahead xxx cannot start with yyy

... 41819 Unexpected symbol in ...

... 41820 Parenthesis are needed

... 41921 Unexpected method (also might be ...

... 41922 "X" expected

... 42023 Incomplete parse

... 42024 Missing closing quotation mark

... 42025 Literal tokens may not be empty

... 42026 Continuation with c++ code expected

... 42027 The type of the function xxx doesn't match the function table

... 42128 No default function is defined for function-table

... 42129 In a const parser you have to call the according method of State

... 42130 Sub-expressions (> 0) are not stored in the la-buffer

... 42131 A production cannot be used as an inclusion

... 42132 Inclusion with paramters

... 42233 Inclusions don't work with a la-buffer

... 42234 State parameter is required

... 42235 Empty alternative

... 42236 Error while parsing parameters

... 42237 Mismatch between declaration and use of parameters

... 42338 Wrong number of (interpretable) arguments

... 42339 Not const method

... 42440 Maximum stack size of "x"exceeded

... 42441 Error on parsing parameters of the parser call

... 42542 There is at least one path on which no string value is returned

... 42543 Recognized, but not accepted token

... 42644 BREAK outside of a loop

13Contents

© 2002-10 Dr. Detlef Meyer-Eltz

... 42645 Standstill

... 42646 Standstill in look ahead

... 42747 Unknown identifier : xxx

... 42948 It's not possible to convert "xxx" to "yyy"

... 42949 No return type declared

... 42950 "X" cannot be applied on "Y"

... 42951 break or continue instruction at invalid position

... 43052 forbidden transitional action

... 43053 Error output programmed from the user

... 43054 Cannot add branch

... 43055 Token error

... 43056 Matches empty string

... 43057 Token is defined as string and as token with an action

... 43158 boost::regex error

... 43159 System overlap

... 43160 Token action or member function cannot be exported

... 43161 Only code for initializations is allowd here!

... 43162 Parameters and local variables may not be used in a look-ahead production!

... 43263 Encoding cannot be written into the output window of the IDE

... 43264 An invalid or illegal XML character is specified

... 43265 TextTransformer not registered

... 43366 Internal error: ...

... 43367 No help

Part XVI References 435

... 4351 References

Part XVII Glossary 440

... 4401 First set

... 4412 ASCII/ANSI-set

... 4413 Backtracking

... 4424 Binary file

... 4425 Compiler

... 4426 Control characters

... 4427 Debug

... 4428 Deterministic

... 4429 Escape sequences

... 44410 Friedl scheme

... 44411 Interpreter

... 44412 Lexical analysis

TextTransformer14

© 2002-10 Dr. Detlef Meyer-Eltz

... 44513 LL(k)-grammar

... 44514 Numeric systems

... 44615 Parser

... 44616 Parser generator

... 44617 Parse Trees and AST's

... 44818 Syntax

... 44819 Start rule

... 44920 Text file

... 44921 Top down analysis

... 44922 Token and lexemes

... 44923 Unicode

... 45024 Line breaks

Part XVIII Naming conventions 453

Index 454

TextTransformer

Part

I

16 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

1 About this help

TextTransformer is made for many kinds of apllication and users. This help was therefore written so
that it should be comprehensible also of programming newcomers.

The examples are constructed like a tutorial and demonstrate the possibilities of the
TextTransformer. It is suggested that you experiment with these before developing your own
applications.

The introduction presents a short view on the working method of TextTransformer and explains some
basic notions.

A wizard helps to create new projects. It is suitable to play with the options of this wizard, to get a
first impression of the TextTransformer.

In this help the expression TETRA will be used sometimes as abbreviation of the
TextTransformer program.

TETRA is a program to create, test and execute rules and instructions, which transform a
source text into a target text.

The TextTransformer exists in three versions. In contrast to the free version the standard version
allows index operations, as for example, the access of sub-expressions of regular expressions and
the use of container classes. Furthermore the transfomation manager, the variable-inspector and
most wizards are provided only for the standard and professional version. Only the professional
version can generate C++ source code.

In blue font the sections of this help are marked, which only concern the professional version.

The red font is used to emphasize warnings or other important remarks.

TextTransformer

Part

II

18 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

2 Registration

The TextTransformer is sold exclusively by Internet. There is no CD and no separate manual.

The registration of the TextTransformer, i.e. the activation of the features of the standard or
professional version, can be done by the menu: Help->Registration.

For the registration of the Standard version you must transmit a user name (at least eight
characters) and your address details and the details on the method of payment. For the registration
of the Professional Version in addition a program ID (see below) is required.

Forms for the corresponding inputs are displayed in your Internet browser, if you are on line and
click the Buy Now button.

After the check of your credit card has been carried out, an e-mail which includes the registration
data (user name and key) is sent to you automatically. These must be assigned to the appropriate
fields of the dialog box shown above. But first select, whether a registration of the standard or the
professional version shall be carried out. User name and the key then have to be copied
unchanged from the e-mail into the corresponding entry fields of the dialog box.
Then the button Register will close the dialog automatically and a message appears, which
confirms the success of the registration.

Program ID for the registration of the Professional version

The program ID that is required for the registration of the Professional version is shown as soon as
you select the button Professional in the dialog box. An additional field appears with a combination

19Registration

© 2002-10 Dr. Detlef Meyer-Eltz

of numbers and letters.

This program ID is copied into the clipboard if you click the button at the right.
The program ID is specific for your hardware configuration. The registered professional version can be
executed only on the computer on which it originally was installed.

It is important to know that if you are downloading the TextTransformer to use the
Professional version on a different computer than the one on which you originally
downloaded it, you should transfer it immediately onto removable media, and not
register it on the first computer.
(For the standard version there is no such restriction. You can arbitrarily transfer it.)

Upgrade to Professional Version

If you have registered the Standard Version of the TextTransformers, in the dialog appears a button,
by which you can upgrade your license to the Professional Version, instead of the Buy Now button

.

TextTransformer

Part

III

21Most essential operation elements

© 2002-10 Dr. Detlef Meyer-Eltz

3 Most essential operation elements

It is suggested that you read the introduction and experiment with the wizard for new projects and
with the examples, before you begin to develop your own projects.

1.
Either open an existing project and an input text by the file menu or write a text directly into the
input window and on the production page

 create a new production and

 confirm.

2.
A program only can be parsed and executed, if in the selection box of the tool bar

a start rule is set and only, if the actions are activated, there will be an output.

3.
To parse a production, use the button:

This button exists as well on the tool bar, where it will parse the start rule of the project as on the
production page, where it will treat the actual production as start rule.

4.
Execution of a TextTransformer program is triggered either by:

 in the slow debug mode

with the possibility of break points and complete error messages, or by:

 fast in the execution mode.

5.
Return from the debug or the execution modus into the edit mode by

 Reset.

TextTransformer

Part

IV

23Most essential syntax elements

© 2002-10 Dr. Detlef Meyer-Eltz

4 Most essential syntax elements

Parser and Scanner

Grouping (...)

Alternative |

Option ?

Optional repeat *

Repeat +

Arguments are passed to productions or tokens inside of brackets '[' and ']', which follow the name of
the production of token; e.g. Name[iCount]

Interpreter

The syntax of the interpreter is simple c++ syntax.

Tip: Write simple code and better use two instructions than one.

C++ code is inserted into the parser description inside of special brackets:

only executable in the interpreter {- ... -}

only for the c++ export {_ ... _}

for interpreter and export {= ... =}

according to project options {{ ... }}

Frequently used instructions or expressions are:

Writing into the output out << value;

last recognized text State.str()

ignored characters before State.str(-1)

last recognized text, ignored characters before
inclusive

State.copy()

TextTransformer

Part

V

25How to begin with a new project?

© 2002-10 Dr. Detlef Meyer-Eltz

5 How to begin with a new project?

It is suggested that you read the introduction and experiment with the wizard for new projects and
with the examples, before you begin to develop your own projects.

For many programming languages and formats one can find ready grammars in the Internet. If such
a description exists, you often can translate it into the syntax of the TextTransformer quite easily. A
half automatic translator for Coco/R grammars belongs to the examples of the TextTransformer
package. In the examples: E-mail address and XML, is demonstrated, how available syntax
specifications can be converted into TextTransformer programs.
If no syntax description exists, you have to create it your own. There are some rules and
experiences which can serve as a guide at the construction of a new project.

1. Set the required project options!

E.g. it is very important already at the beginning of the development of a new project, to select the
characters, which don't have a meaning for parsing the texts. Per default the line feed and the line
break characters are amongst them. This setting must be changed, if line breaks have to be
recognized.
Another important decision is, whether all literal tokens should be tested or not. Rule of thumb: All
literals should be tested for formalized languages with defined key words at significant positions.
Only the expected literals should be tested otherwise The local options also can if necessary be
adapted respectively.

2. At first design the parser without semantic actions!

For the construction of the parser it often will be necessary or appropriate to rearrange productions
and to simplify complex productions by definition of sub-productions. If the parser already contained
a semantic code, this had to be adapted newly at each of these changes.

3. Develop top down!

Start with the most general production, the start rule that shall recognize the complete text, and
then take the start rule to pieces of sub-productions which shall recognize principal parts of the text.
According to the same principle the sub-productions then further can be refined. If e.g. a book shall
be parsed, then the start rule would be:

Book ::= SKIP // recognizes the whole text

After the first improvement:

Book ::= SKIP? Chapter+

Chapter ::= TITLE SKIP

TITLE here stands for a regular expression, which unmistakably distinguishes a chapter heading
from other text components.
Remark: Such an expression doesn't exist certainly for all books. The book is used as an example

26 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

of a text structure, which everybody knows. The book parser works only for syntactically ideal
books. (e.g. TITLE ::= \d\.[^\r\n]+ // if you take the text of this page as a "book".)

The Chapter production can further be refined now:

Chapter ::= TITLE Paragraph+

Paragraph ::= EOL+ SKIP

EOL ::= \r?\n // end of line

The advantage of this top down procedure is, that in every stage of the development the current
parser can be tested at all "books". Possible faults can so already be discovered in an early stage of
development.

Note: With the transformation manager many examples can be tested as a batch. If such a test
fails, the corresponding text can be opened with a click in the IDE.

4. Choose the kind of transformation!

There in principle are three ways how the parser can be completed to a transformation program.
They differ in what is done with the recognized text sections.

a) text sections are immediately processed and written into the output.

b) text sections are, written into variables and these are returned or passed as (reference-)
parameters to other productions, where they can be evaluated or combined to new values.

c) a parse tree is produced and the processing of the text sections are carried out after the complete
text was parsed.

The last method is the most variable since all text sections still can in principle be accessed and
since with the parsing tree a different output can be caused, depending on the used function table. If
a translator shall be developed, which shall convert one format into several output formats, then the
use of a parse tree is nearly indispensable. The development of such a translator is, however, much
more difficult than the direct processing of the source text with one of the two other methods.

If the order in which the processed text sections shall be put out is approximately identically with the
sequence in which they were recognized, the first method of direct output is recommend. If
recognized text parts must be rearranged or the processing of a part depends from a text that is
found later, the second method is recommend.

If you have decided about the way of the transformation, different wizards can help you to insert
parameters, variable declarations or tree nodes into the productions.

5. Make a copy program before writing the definite transformation code!

This rule only applies to projects at which the source text shall be modified in some significant
places. If at first a program is made, which simply copies the source text, by comparison with the
target text can be found easily, whether the output is complete.

27How to begin with a new project?

© 2002-10 Dr. Detlef Meyer-Eltz

How to begin practically

5.1 Practice

1. Create a new project

In the file menu choose the item new project. At first the wizard for new projects appears.

2. Enter names

A project name and a name have to be entered on the first page of the wizard for the start rule. In
most cases you should call both same: Book. If this name is entered for the project name to the
field, then it appears also at once in the field for the start rule and the next step is shown in the left
menu of the wizard: Project type.

3. Choose project type

You can go to the page for the project type either by selecting the button Next or by clicking on the
menu item. There are four different choices for project types on this page. The last one: "New
project from scratch" shall be chosen here. As soon as it is selected, the page is changed to the
next one Finish automatically, where the chosen names are shown again.

4. Save raw project

As soon as the Finish button is pressed, a file selection dialog appears where the folder is selected
in whom the project shall be saved.

5. Edit start rule: Book

When the project was saved, the wizard is closed automatically and you are on the main page of the
Tetra IDE. The chosen name Book is already shown on the selection box for the start rule in the
toolbar. It as well as it is already registered in the project options and it can be seen also in the
syntax tree on the right side of the IDE. If it is selected there, then the tab page Productions opens
and you see the definition of the book production: SKIP. With SKIP every text is recognized. So the
definition must be edited.

As suggested - in the theoretical part under item 3 - the definition text of the Book production is
replaced now by:

SKIP? Chapter+

At first the expression Chapter is represented in a normal font. If the Chapter production were
already defined, it would be shown in a brown boldface printing. This definition shall be made now.

6. Insert production: Chapter

At first a new rule is created with the plus button. Write for its the name Chapter, please. The
definition text shall be

TITLE SKIP

28 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

After confirmation, the expression TITLE is represented in a normal font this time. If you go back to
the Book production with the back button, you will see that Chapter is highlighted there meanwhile.
Now TITLE has to be defined. The capitalization of the word shall express that it isn't a production
but a token. However, such a capitalization isn't necessary.

7. Insert token: TITLE

Tokens have to be defined on the token tab page. The operation is analogous as on the production
page here. With the plus button a new token is produced which gets the name TITLE. A title might
be defined by

\d\.[^\r\n]+

This expression can recognize headings, which begin with a digit and a dot, followed by an arbitrary
sequence of characters up to the line ending. This isn't for certain a general syntactic definition for
titles; it only serves as an example.

8. Compile project

The project is complete now and can be compiled. Click on the button Parse start rule in the main
tool bar.. You can see the structures of the productions in the syntax tree now, too.

9. Save again

Please don't forget to save the project. You can refine the project now as suggested in the
theoretical part.

TextTransformer

Part

VI

30 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

6 Introduction

In this help the acronym TETRA will be used sometimes as abbreviation of the
TextTransformer program. TETRA transforms text; it translates a source text into a target text.

However, what this means, can be explained best by examples.
The transformation can be simple replacements of words, for example the replacement of
"TextTransformer" by "TETRA". In contrast to a normal text processing, by TETRA not only single
pairs of words but also whole lists of such pairs can be processed at a stretch.
A little bit more advanced are rearrangements of words. So mailing lists, consisting of lines with
name, address and phone number could be transformed to: phone number, name and address.
Another example is the extraction of data from a text. For example names and prices of certain
products could be extracted from a catalog and arranged to a list.
Also it is possible, to apply certain actions on the extracted data, for example a calculation. Prices
could be extracted from a bill and summed. In this case the transformation of text would be to build
a single sum from a bill. At this example you can see, that the expression "transformation of text"
should be understood in a very broad sense.

The previous examples were of quite easy nature. With some practice such transformation programs
can be written in minutes. Who isn't practiced yet so much, will need some more time, but the
time will pass very quickly, because the development of a TETRA program is a playful pleasure:
eventual errors are signalized immediately and you can try everything just easy, piece by piece.

Its whole strength the TextTransformer shows, when dealing with complex grammars, as for example
the translation of a programming language into a different.
Finally, TETRA can be used in a totally different way. Instead of analyzing texts with a predefined
structure, you can develop just such a structure. By means of TETRA new programming
languages can be created. For example the central parts of the TextTransformer are made by
TETRA itself.

6.1 How does the TextTransformer work?

Two main tasks have to be done, when a transformation program is written:

1. The analysis of the source text
2. The synthesis of the target text

A source text has to be parsed according to its syntactical structure and at the same time it will be
recreated as target text in a new form. The user has to formulate as well the syntactical rules of the
source as the instructions for the synthesis of the target text.

6.2 Analysis

The analysis of the source text is done in two steps.

The lexical analysis takes the source text to words, punctuation marks etc. More general: the

31Introduction

© 2002-10 Dr. Detlef Meyer-Eltz

lexical analysis is the recognition of the so-called tokens. Tokens, also called terminal symbols,
consist of one or several characters. Such a sequence can be considered as a pattern of characters,
which can be described generally by so-called regular expressions.
Depending on the kind of text, these tokens can denote different things. In a mathematical text
names, numbers and operators will be considered, in texts of the natural language words, groups of
words, sentences or parts of words are basically elements and in records the different fields.
The lexical analysis also will remove meaningless characters from the text, as spaces, tabs
comments etc.

The syntactical analysis evaluates in which order the token appear in the text.
This order is defined by sequences of alternatives of tokens, which repeatedly follow in the text one
after the other. For example, a text simply can be considered as a sequence of lines or as repeated
occurrences of groups of words separated by punctuation marks. Also the text can obey a grammar,
described by complex rules.
A syntactical rule is named a production or a non-terminal symbol.

6.3 Synthesis

The analysis of the text took it to its pieces: the tokens and their sequences.
The synthesis performs some semantic actions on the pieces and combines them to a new text.
The instructions for the semantic actions are embedded into the definitions of the productions.

The instructions for the synthesis stem from the programming language c++. A sub-system of c++
is integrated in TETRA as an interpreted language that means a certain set of c++ instructions can
be executed directly inside of the TETRA environment. (In contrast to this c++ normally is a
language, which must be compiled to a separated executable.) For example, by the integrated
instructions, you can chain parts of texts into a new order or replace them by other texts and much
more.

In the professional version of TETRA program code can be generated, which can be linked in
external applications and can use the possibilities of c++ without limitation.

6.4 Regular expressions

As already mentioned, the pieces to which TETRA takes the text are called token or terminal
symbols. They are identified by regular expressions. Regular expressions are well known from many
script languages or text processing programs. They extend the possibilities of finding words,
because by them not only special, single words can be found, but also words contained in a group of
words of a common pattern.

Regular expressions define by means of some simple rules patterns of characters, i.e., they
describe the order in which characters can follow each other.
Typical token defined by regular expressions are words, numbers, times, data, quotes etc.

32 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

6.5 Syntax tree

Patterns of tokens can be described by rules similar to those, which describe regular expressions.
For example a main clause consists of a sequence of words, followed by a dot, or a table consists
of the header with the names of the columns followed by a sequence of rows.

The syntactical analysis shows the context of a token inside of a grammar. This context can be
presented as a tree structure.

In this example the tokens are very simple. Each of them only is one character: "E", "m", "*", "c",
"^", and "2". In the picture the tokens or terminal symbols are the leaves of the tree, written at the
bottom. Graphical these leaves are characterized by the fact, that they only are connected by one
single line; grammatically they are indivisible (see remark).
This makes the difference to the other nodes of the tree, which represent so-called non-terminal
symbols. Non-terminal symbols can be divided into the terminal symbols. In the graphic, they are
starting points of branches.

In the TextTransformer the syntax tree of the picture would be separated into the three structures of
the non-terminal symbols and look like:

Remark: That terminal symbols are grammatical indivisible, doesn't mean, that they can't be divided

33Introduction

© 2002-10 Dr. Detlef Meyer-Eltz

into characters. In more complex tokens as used for the example, that will be the case.

6.6 Productions or non-terminal symbols

The non-terminal symbols are described by rules, which determine the order of the terminal
symbols. Such a rule is called a Production. To formulate a production, TETRA has is a script
language with a syntax similar to that of the regular expressions. While the elements of the regular
expressions are characters, a production describes the concatenation, repetition etc. of token
elements. In this regard productions are patterns of patterns.

A production has two tasks. Beneath of the just explained task:

1. to determine, what will be recognized in a text
2. to determine, what will be done with the recognized text

Point 2 denotes the synthesis mentioned above.

Corresponding to the two tasks, there are two kinds of sections inside the definition of a production,
which are separated by special brackets. In the example presented on the next page the brackets
"{{" and "}}" are used, to separate the semantic actions denoted by point 2 from the syntactical code
(point 1).

6.7 Productions as functions

A production may be considered as a specification for creating a routine that parses a part of the
input text. By creating code, this specification will result in a real routine. The routine can return a
valueand will constitute its own scope for parameters and other local components like variables and
constants. These again, can be passed to other productions, which are called like functions inside
the body of the first production. The called productions parse sub sections of the part of text, which
is parsed by the calling production.

Example

In the following example the die Outer production calls the Inner production, which returns the string,
which the Inner production has recognized.

Outer =
"a"
{{string s = }}
Inner[s]
{{out << "found a and " << s;}}

Inner =
("b" | "c")
{{ return xState.str(); }}

34 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Input: "a b"
output: found: a and b

Input: "a c"
output: found: a and c

The created code is (in essence):

(typedef std::string::const_iterator cts;)

// token ordered by symbol numbers

// --

// Name SymNo regular expression

// --

...

// a (6) "a"

// b (7) "b"

// c (8) "c"

void COuterParser::Outer(cts xtBegin, cts xtEnd, plugin_type xpPlugin /*=NULL*/)

{

 sps xState(xtBegin, xtEnd);

 // ... falls xpPlugin == NULL neues lokale Plugin, sonst xpPlugin in xState einsetzen

 if(m_apOuterScanner->GetNext(xState, false))

 {

 Outer(xState, NULL, false);

 }

}

//--

void COuterParser::Outer(sps& xState, ...)

{

 m_apT0_a_of_OuterScanner->GetNext(xState, false);

 string s =

 Inner(xState, ...);

 out << "found: a and " << s;

}

//---

std::string COuterParser::Inner(sps& xState, ...)

{

 switch (Alt0_of_Inner(xState.Sym()))

 {

 case 7: // "b"

 m_apT1_b_of_InnerScanner->GetNext(xState, true);

 break;

 case 8: // "c"

 m_apT2_c_of_InnerScanner->GetNext(xState, true);

 break;

 default :

 throw tetra::CTT_ErrorUnexpected(...);

 }

35Introduction

© 2002-10 Dr. Detlef Meyer-Eltz

 return xState.str();

}

The scanners are holding the information about the permitted token and the variable xState holds the
information about the last recognized and the expected token.

Remark: the parenthesis around "b" | "c" are necessary. Otherwise the first alternative would return
an undefined value.

6.8 Four uses of productions

It is the main task of the productions to represent the grammar of a text so that it can be parsed with
them. However, it is also possible in the TextTransformer to use productions for tasks which are
subordinated to this main task.

Altogether, there are four uses of productions in TETRA:

1. as constituents of the main parser
2. to the look-ahead in the text
3. for parsing text inclusions
4. as sub-parsers in semantic actions

6.9 Looking-ahead

The decision by which production or branching within a production the analysis of a text has to be
continued always depends on the tokens following in the text.
A parser most efficiently works if the next token already makes this decision possible. If a
look-ahead of only of a single token always suffices for analyzing the text, then the parser is called
LL(1) conform. It is an art of the developer to formulate the grammar - the set of the productions -
so that the parser gets LL (1)-conform.
The TextTransformer offers a great support at this task since it generates notes and error messages
automatically if the grammar is not LL(1). TETRA also permits, however, the look-ahead of
arbitrarily many many tokens, if this should be required. The already known productions are used
for such a look-ahead once more. A production can be applied as a trial to a text to test whether it
can parse it or not. The analysis of the text then can depending on the result of this test be
continued in a different way. (At the tentative application of productions no semantic actions are
executed.)

The look-ahead is explained again concretely at the example of a formal salutation at the beginning
of a letter Either it is

Dear Mr NAME

or

Dear Mrs NAME

36 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

To parse these short texts at first one could have the idea, to formulate the following productions
(the character "|" separates alternatives from each other and can be read as "or"):

Salutation ::= SalutationBeginning NAME

SalutationBeginning ::= "Dear" "Mr" NAME
 | "Dear "Mrs" NAME

A look-ahead of two words is required here. After the word "Dear" is recognized the following word
decides, which alternative of SalutationBeginning has to be chosen and you must go back in front of
the word "Dear" again to start with the real processing of the text.

The following productions are better:

Salutation ::= "Dear" Gender NAME
Gender :: "Mr"
 | "Mrs"

Here always the next word decides how to continue with the productions.
Astonishingly many texts can be parsed according to this LL(1) principle, if one designs the rules
correspondingly.

There nevertheless are cases a look-ahead of only one token doesn't suffice. By the TextTransformer
it is possibly to look-ahead arbitrarily far in the text in such cases. E.g. it could be necessary to
know already before parsing a sentence whether it is an interrogative sentence or not. However, the
interrogative sentence can be identified by the question mark only at the end of the sentence. This
could be managed as follows:

IF(InterrogativeSentence())

 InterrogativeSentence
ELSE

 NormalSentence
END

InterrogativeSentence :: InterrogativeSentenceWordOrder "?"
NormalSentence ::= NormalSentenceWordOrder ("." | "!")

37Introduction

© 2002-10 Dr. Detlef Meyer-Eltz

6.10 Inclusions / comments

Comments in programming languages are a typical example of what is meant here by an inclusion.
The concept "inclusion" was chosen here to describe the general structure of this example.

Comments or other inclusions can be slid into texts in arbitrary places. The syntactic structure of
the texts isn't destroyed by inclusions, even if keyword of the grammar (programming language) are
used in them.

Example:

The use of c++ comments is possible in the scripts of the TextTransformer:

Into the variable declaration:

int iCount, iEnd;

comments can be included without making the variable declaration syntactical invalid

int iCount /* int variable as counterr */, iEnd /* maximum */;

C++ comments are sections of text, which are included between the two tokens"/*"and"*/".
Comments can contain arbitrary text, and therefore the keyword "int" may occur there. However, it
isn't interpreted here as a variable type.
Comments were treated exclusively as a part of the ignored characters and recognized by complex
regular expressions as whole in older versions of the TextTransformer.
However, it is also possible that the texts of an inclusion aren't arbitrary but that they obey a
grammar of their own. E.g. there are conventions, by which C++comments are enriched by
instructions which can be extracted as a documentation of the program code.
So besides the parser for the real program code a second parser is needed for the documentation.

It is possible in the TextTransformer to insert productions in a project for this second parser and to
let them execute immediately in the change with the main parser. It is even possibly to nest
arbitrarily many different parsers in each other. These parsers can operate on sets of tokens of their
own respectively so that e.g. the token "int" only is recognized by the code parser, but not by the
comment parser.

6.11 Sub-parser

A production can be called directly from the interpreter code. It then is not part of the real grammar
of the parser in which this interpreter code is embedded. The called production is rather a start rule
for a separate parser and a new input text is passed to it explicitly.

6.12 Family concept

There is a kind of programs, which is similar to the TextTransformer: the so-called parser generators.
All of these programs need one superior production, the start rule, by which the parsing of a text
begins. A whole project then consists in exactly those productions on which the start rule depends.

38 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

In contrast to the other parser generators the set of productions and tokens of a TETRA project is
open. From the set of existing productions, each of them can be chosen as start rule. Productions
and tokens on which the actual start rule depends will be compiled automatically.

Example

A project can contain a collection of rules to translate a programming language into a different.
Ideally, such a collection would be complete. Than there would be a general start rule, which could
translate each program of the source language to the target language.
To write all of the productions, which are necessary for a complete translator, is an ambitious task
and often not really necessary. It might be more economic for an occasional translation of parts of
the source language, only to write an automated translator for certain constructs and to translate the
rest manually.
The TextTransformer is a good tool for managing such a pool of rules.

6.13 Tests

In the TextTransformer test scripts can be written, to check that the productions are working
correctly. Tests can be helpful, when you create new rules. But primarily they are used, to assert,
that the improvement of one part of project not has unexpected consequences in other parts.

A test consists in the isolated execution of single productions. As for a whole project also for a test
an input will be transformed to an output. The output will be compared with the expected result. If
they are not equivalent an error message will be produced.

TextTransformer

Part

VII

40 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7 Examples

The examples are constructed like a tutorial. It is suggested that you experiment with these before
developing your own applications.

Exchange of words
Conversion of an Atari text
Calculator
Text statistics
GrepUrls
E-mail address
Guard
Bill
XML
Java

Included in the examples are parsers, which are used by the TextTransformer itself:
The semantic code of these examples is removed (except EditProds).

TETRA productions
TETRA-EditProds
TETRA interpreter
TETRA import

Cocor import

Additional examples can be found at

http://www.texttransformer.org

There are some videos at

http://www.texttransformer.com/Videos_en.html

41Examples

© 2002-10 Dr. Detlef Meyer-Eltz

7.1 Exchange of words

By this simple example of the exchange of two words some essentials about writing and using of a
TETRA project are explained.

Problem definition:

When writing a text it sometimes happens, that inadvertently two expressions are exchanged by
mistake. That may be similar names of two persons: Marcuse and Mabuse or two foreign words:
ontological and ontic, or the names of two chemical substances
N,N-Di-(2-hydroxyethyl)-N',N'-dimethyl-3,7-diaminophenothiazoniumjodid and
N,N'-Di-(2-hydroxyethyl)-N,N'-dimethyl-3,7-diaminophenothiazoniumjodid. This exchange by mistake
shall be reversed.

Common method of correction:

If you want to correct these mistakes by the method of searching and replacing the words inside of a
normal text processing software, you had at first to replace one of the two expressions by a third
(e.g.Mabuse by Labuse), then the other expression by the first (Marcuse by Mabuse) and finally the
third by the second (Labuse by Marcuse).

TETRA program:

Inside of the TextTransformer an exchange is possible in one run. However you have to write a little
program (only one rule). This is worth the cost quickly, if you have to correct several texts. Also you
can exchange not only one pair of words but as many pairs as you want.
TETRA only needs one run for all the exchanges, because every time an arbitrary word of the list is
found it will be replaced directly by its counterpart. So the text must be processed only once from
left to right.

Two versions of the project are presented:

a) A version with only one production and
b) A version with a simplified production and some additional tokens

7.1.1 Execution of a project

To test the project, a section of a text from the philosopher Ludwig Feuerbach will be used. It exists
in sub-directory of Examples:

"\TextTransformer\Examples\Exchange\Feuerbach.txt"

In this text the words "God" and "men" shall be exchanged.
Open the text by the menu File->Open and use the line break button:

So you will have a better view of the text. The long lines are broken and the whole text is readable.

42 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The project for the exchange of words is in the same directory:

"\TextTransformer\Examples\Exchange\Exchange.ttp"

Open the project by the menu File->Open project. Now, on the right side of the user interface in the
tab Syntax tree the name of the production: Exchange appears.

Before it shall be explained, what a production is, you already can execute the program, to see, how
a texts can be transformed in the TextTransformer IDE.

Please, click on the button in the tool bar to execute the program:

A progress bar shows the course of the transformation. As the text is very short, the tool bar will
disappear very soon and you can see the result of the transformation in the output window.
If you move the mouse cursor to the separating line between the input and output window, the cursor
changes its form to
:

While pressing the mouse button, you can size the output window to the same size as the input
window. Now click into the output window and activate the line break as you did before in the input
window.

In the menu Options->synchronize windows you can synchronize the windows. If you scroll one of
them, the other will scroll too. So both window are displaying the same section on text.

The comparison of the source text and the target text shows, that the materialistic philosophy of

43Examples

© 2002-10 Dr. Detlef Meyer-Eltz

Feuerbach was transformed to a kind of reversed idealism, and this, only by exchange of the two
words: "god" and "man".

7.1.2 Production

If you click on the name Exchange in the right block of the user interface, in the left block the tab will
change automatically to the production page and the properties of the Exchange production are
displayed. The text of the production is:

The syntax and meaning of the TETRA productions is explained in the chapter scripts in detail. The
following explanation gives a first impression of them.

At first only the part of the code shall be discussed, which carries out the analysis of the text and
the part, which stands for the remodelling of the text, shall be ignored. Please, click the button
marked with the red arrow to collapse the semantic code. Then you get the following picture:

(...)+

The whole rule is included into parenthesis: (...)+. This means, that the source text that the rule
describes is a repeat (at least once) of what is described inside of the parenthesis.

'|'

Inside of the parenthesis there are three sections separated by a pipe character '|'. This symbol
separates alternatives. The whole text therefore consists of the repeat of three alternatives.

44 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Abstaining from the expression included in the double braces, these are the alternatives:

"God" | "man" | SKIP

That means, at each position of the source text there is either the word "God" or the word "man" or
the third alternative, denoted by SKIP, applies.

SKIP

By the key word SKIP TETRA is instructed to skip all the text, which is not an alternative to SKIP; in
the current case that is all the text, which not the word "God" or the word "man". Now it's quite
logical that the Exchange production covers all text. The whole text consists in "God" or "man" or
other words.

{{..}}

The parts of the rule included into the double braces of the first picture still have to be explained.
They contain the instructions, which have to be executed, as soon as the preceding alternative was
recognized.

"out <<"

The instruction "out <<" means, that the following expression shall be written into the output. If the
word "God" was recognized, the word "Man" will be written into the target text and reversed if the
word "man" was recognized, the word "god" will be written.

xState.copy()

In the case of the SKIP alternative xState.copy() will be written into the output. xState represents the
actual state of the transformation process, and xState.copy() delivers the last recognized section of
text.

7.1.3 Analysis step by step

The explanation of the rule can be demonstrated in detail, by executing the program step by step.

To do this, first click on the Tetra-Tab of the left block in the user interface.

Now you can execute the program step by step by means of the single node button:

After you have clicked the button for the first time, a tree view is opened below of the name of the
Exchange production, which shows the syntax of the production. After a second click on the button,
the tree will look like:

45Examples

© 2002-10 Dr. Detlef Meyer-Eltz

The node Exchange represents the whole production.
The node Rep0_of_Exchange represents the parenthesis "(...)+"
The node Alt0_of_Rep0_of_Exchange represents the set of alternatives.
Each alternative consist of two nodes: a node representing the text, which shall be recognized, and
a node representing the semantic action.

At each further step the yellow mark walks to the next tree node, which leads to the recognition of
the next section of source text. Every time a node, which represents a semantic action, is left, the
corresponding instructions will be executed; that means here: the target text will be extended.

The stepwise execution of a program is carried out in the so-called debug mode, and the
TextTransformer has to be set back into the normal mode. This is done with the reset button:

Thereby the output will be deleted too.

7.1.4 Using tokens

The Exchange project contains a second production: Exchange_Token.
Exchange_Token is an alternative possibility to program the exchange of words.
In this version the words, which shall be exchanged, are defined on the token page, where they can
be combined directly with actions.

On the token page a token GOD can be defined as follows:

46 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The connected action in the lower field will be executed automatically, as soon as the expression
"God" is recognized. With the analogous token for "man" the original production now is simpler:

Exchange_Token =
(
 GOD
| MAN
| SKIP

 {{out << xState.str();}}

)+

To execute the new production, you have to go to the Tetra page again and you have to choose
Exchange_Token as start rule in the box of the tool bar:

Than you can use the single node button as explained above.

The presentation of the production in the syntax tree has become now more easy too, because the
actions are not depicted any longer_

It is a matter of taste, which version of the exchange project you prefer in such a simple example as
presented here. In more complex projects, it can be advantageous, to immediately connect a token
with an action. The token then can appear in different rules, but the action remains the same.

47Examples

© 2002-10 Dr. Detlef Meyer-Eltz

7.2 Conversion of an Atari text

The example Conversion of an Atari text is similar to the previous one. However, not words, but
special characters are exchanged here.

Problem definition:

Texts, which were written on an Atari computer shall be used in a text editor under Windows. A
special problem arises if a text uses letters, which are not part of the English alphabet: e.g. the
umlauts in the German text example.

TETRA program:

You can find such a text in the subdirectory Atari of the Example directory of TETRA:
"\TextTransformer\Examples\Atari1\Test.txt". Please open it by File->Open.

After you have opened the text, its beginning looks like:

The text contains characters, which are represented by an empty square " ". On the one hand,
these are characters which define text attributes (underline, bold, italics) in the Atari word
processing. On the other hand, these are special characters like the umlauts, which aren't
represented correctly. So the text must be converted.

You can load the TETRA project by which such a conversion can be executed, by the menu:
File->Open project. The Project is in the same directory as the test text:

\TextTransformer\Examples\Atari\Atari.ttp

The tokens, productions and actions of the projekt are presented. Finally a second version of the
project is presented, which transforms the text into the RTF format.

7.2.1 Tokens

To translate not readable characters into readable characters, at first they have be found in the text.
The text elements - tokens - which the translation program has to search for, have to be defined on
the second page of the TETRA program. If you click the Tokens tab of the register with the mouse,
a list of names of the defined terminal symbols is show on the left side of the page.

48 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

If a name of the list is selected, then the definition of the corresponding symbol appears in the text
window. With an exception of one definition all definitions of the Atari project are similar to each
other: a backslash '\' followed by an 'x' and two numbers. If e.g. the symbol ue is selected, then the
following expression appears in the text window: \x81. This expression is a number in a hexadecimal
notation, which is assigned to the character by the ANSI-set. Instead of this expression also empty
square " " could have been written which occurs in a place of the text, which shall be replaced by a
'ü'. The token text windows then would look the same, however, for all umlauts.

The expression: \x81 can be found easily, if you go back to the editor on the TETRA working page.
There you can place the text cursor before the unknown character and click the right mouse button.
Now a popup menu appears, where you can select: Show hexadecimal character.

A dialog appears, which shows the hexadecimal expression. The expression is copied into the
clipboard automatically and it can be inserted into the definition of a symbol.

One of the symbol definitions is much more complicated than the others:

49Examples

© 2002-10 Dr. Detlef Meyer-Eltz

normal_text =
[^\x11\x12\x15\x16\x17\x18\x81\x84\x94\x99\x9E\x8E\x9A\x9C]+

This expression defines the text sections, with no special characters and no text attributes. Inside
of the brackets there is a negation symbol '̂ '. This symbol is followed by a list of all hexadecimal
expressions, which are used for the other token definitions. The square brackets are used to define
a set of characters, here: the set of all characters, which are no special characters and no text
attribute; e.g. a letter of the alphabet or a punctuation mark. The plus sign following the square
bracket indicates that at least one character of the set has to occur, but also a sequence of such
characters with arbitrary length is allowed.
normal_text normal_text also includes line breaks, tabulators and blanks. These characters per
default are ignored in TETRA projects. For the Atari project this standard setting was changed. In the
menu Options->Project options all ignorable characters are disabled.

7.2.2 Productions

While the Exchange example only used one production, the Atari project consists of three. It would
have been possible to use only one production here too, it then would be quite extensive, though.
For the following explanations at first the text inside of the brackets "{ ="and "=}" shall be ignored.
(see Actions).

The rule special_char consists of the alternative symbols of the special characters.

paragraph | ae | Ae | oe | Oe | ue | UE | sz

The alternative relation is expressed by the character '|'.
The rule special_char matches the source text at positions where a special character can be found.

The production textattribute consists of the alternative symbols for the characters by which the Atari
text attributes are defined.

 bold_begin
| bold_end
| italic_begin
| italic_end
| underline_begin
| underline_end

50 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The production textattribute matches the source text at positions where a character can be found,
by which the Atari text attributes are defined.

Finally the start production: Atari.

(
 special_char
| textattribute
| normal_text
)+

Perhaps who has studied the first example attentively, will have noticed the structural similarity
between the normal_text token of this example and the SKIP node of the Exchange example. The
normal_text token was actually defined here only for didactic purposes and the production could
have been formulated also analogously to the Exchange example

(
 special_char
| textattribute
| SKIP
)+

The normal_text token describes all text, which doesn't contain any text attribute or special
character and the SKIP node of the Exchange example described all text, which doesn't contain the
words "God" or "Man".

7.2.3 Actions

Like in the first example a semantic action is executed after each recognized text section
(character), which writes some text into the output.

The text, which is recognized by the normal_text (SKIP) token, simply will be copied:

{{ out << xState.str(); }}

Special characters will be translated into readable characters, e.g:

| ue {{ out << "ü"; }}

For the text attributes however, there are no semantic actions defined. So these attributes simply
are ignored. Every word processing program has its own way to code these attributes in its text
documents. As an example a conversion into the RTF format is discussed below.

What shall be made with the recognized sections of text, is written in the productions inside of the
pair of brackets "{=" and =}". Here the so-called semantic actions are defined. In the tree view they
are represented by nodes, the names which of begin with "Sem"; e.g.
Sem0_of_Alt0_of_Rep0_of_Atari .

The instructions for the semantic actions are a subset of the programming language c++. For the
Atari project only one instruction is needed: the shifting of a text into the output.

51Examples

© 2002-10 Dr. Detlef Meyer-Eltz

For example, the production special_char contains the line:

| ue {= out << "ü"; =}

This means: as soon as the symbol ue is recognized, execute the action

out << "ü";

that means append the text "ü" at the target text. The semantic actions, which are executed after
the recognition of the other tokens, are similar.

For the text attributes however, there are no semantic actions defined. So these attributes simply
are ignored. Every word processing program has its own way to code these attributes in its text
documents. As an example a conversion into the RTF format is discussed below.

If you now execute the program, the part of text shown at the beginning now looks:

The text attribute characters are removed and an "ü" replaced the empty square " ".

7.2.4 Conversion into RTF

Until now, the characters, which represent the Atari text attributes: underline, bold and italic, simply
were ignored, because plain texts cannot contain such attributes. An example for a document,
which can contain such attributes, is an RTF-file, which uses the Rich Text Format: RTF.
The project

...\Tetra\Examples\Atari\Atari2Rtf.ttp

demonstrates, how the Atari text can be transformed into the Rich Text Format. The relevant parts of
the RTF specification are immediately used here, without explaining this specification in detail. A
good introduction is "RTF Pocket Guide" of Sean M. Burke.

http://www.oreilly.com/catalog/rtfpg/

The important first chapter of the book as a PDF file can be downloaded there. The original Rich text
specification can be found at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnrtfspec/html/rtfspec.asp

52 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

According to RTF specification, parts of text with special attributes are enclosed into bracket "{" and
"}" and at the beginning of the enclosed text the attribute is written:

italic: \i
bold: \b
underline: \ul

So the token actions for e.g. italic become to:

italic_begin: out << "{\\i ";

italic_end: out << "} ";

In RTF the umlauts have to be represented as a backslash followed by an apostroph and the
hexadecimal code of the character. So the token action e.g. of ae becomes:

ae: out << "\\'e4";

Line breaks, which shall be shown in the text-processing program, cannot be written directly into
RTF-files. They have to be coded by "\line" or "\par". So an additional token has to be defined, which
recognizes line breaks:

Name: EOL
Text: \r?\n
Action: out << endl << "\\line ";

(By endl a line break is written into the RTF document to make a logical partition into the RTF
source.)

The whole RTF file must be enclosed into the brackets "{" and "}" and the first bracket must be
followed by a header, which specifies the RTF version, the fonts used and the font size. So the begin
of a RTF file looks like:

{\rtf1\ansi\deff0 {\fonttbl{\f0 Courier New;}}\f0\fs20

To write this header, we will use the page for class elements of the TextTransformer for the first time.
There you can variables and functions, which then can be used inside of the whole project. For the
Atari project three functions are defined:

RtfBegin:

out << "{\\rtf1" // RTF, version 1

 << "\\ansi" // ANSI character set
 << "\\deff0 "; // default font #0

RtfFont:

out << "{\\fonttbl" // font table

 << "{\\f0 Courier New;}" // font #0
 << "}"; // font table end
out << "\\f0" // use font #0

 << "\\fs20"; // font size = 20/2 = 10 points

53Examples

© 2002-10 Dr. Detlef Meyer-Eltz

RtfEnd:

out << "}";

RtfBegin and RtfFont could have been combined into a single function too or even written directly
into the text of the Atari production. But by the division into these functions, the logical structure of
the whole project becomes clearer.

The Atari production now is:

{{
RtfBegin();
RtfFont();

}}
(
 special_char
| textattribute
| SKIP {= out << xState.str(); =}

)+
{{
RtfEnd();

}}

After you have transformed a text, you have to save the output as an RTF-file. That means, the
extension of the file must be "rtf". Now this file can be opened into a word processing program - e.g.
WordPad -, which is able to display the RTF format. There you can see for example Benjamin now
correctly written in italic

54 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.3 Calculator

You should know the most essential operation elements of TETRA.

Problem definition:

Arithmetical problems like "(3.2 + 8.9 - 4.6) * 5.6" shall be calculated.

TETRA Program:

This is a classical application of a parser. The numbers, operators and parenthesis have to be
extracted from the input to calculate the result. The project consists of several tokens and five
productions, which will be explained on the next pages.

This project again exists in two versions:

a) The first version demonstrates the use of parameter references and

\TextTransformer\Examples\Calculator\Calculator1.tpp

b) A second uses return values

\TextTransformer\Examples\Calculator\Calculator2.tpp

7.3.1 Tokens

The tokens for the operators and the parenthesis are defined directly inside of the productions.

"+", "-", "*","/","(", ")"

A complex token for the recognition of numbers is defined as a regular expression on the token
page:

number = \d+(\.\d*)?|\.\d+

"\d" a single digit
"\d+" a repeat of digits, at least one
"\." the dot (without backslash '\' the dot has a special meaning inside of a regular expression).
"\d*" a repeat of digits, or no digit
"?" an optional occurrence of the content of the preceding parenthesis
"|" an alternative

So a number is defined either as a sequence of digits, optional followed by a dot followed by null or
more digits (e.g: "123" or "123." or "123.45"). Or a number begins with a dot followed by a sequence
of digits (e.g.: ".45")

55Examples

© 2002-10 Dr. Detlef Meyer-Eltz

7.3.2 Production: Calculator1

The start rule for the Calculator1 program is:

{{double d;}}

Expression[d]

{{out << d << "\n";}}

In this example the actions are included into the double braces {{...}}. For such actions special
project options are valid. These options determine, whether the actions are interpretable inside of the
TextTransformer or not. For this project the default value is maintained, that means: they are
interpretable.

The action:

double d;

declares a variable of the type double, which shall take the result of the calculation. Variables of this
type can contain numbers with fractional digits.

The action:

out << d << "\n";

already is know from the previous examples. The value of the variable followed by a line break will be
written into the output.

Between the just explained two actions the production Expression is executed.
Inside of this production, the result is calculated. By means of the bracket "[d]" in

Expression[d]

the variable d is passed to the Expression production, where it can get its value.

56 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.3.3 Production: Expression

The production: Expression has a parameter:

Parameter: double& xd

This is the interface, where the variable, defined in the Calculator1 production, is put into the
Expression production. Inside of the Expression production it has the new name xd. double again is
the type of the variable. The "&" characterizes the variable as a reference, that means, that the
value, which may be changed inside of the Expression production will accessible afterwards outside
in the calling production (Calculator1). Without the "&" the variable would keep its value inside of the
Calculator1 production, even if the value of xd inside of the Expression variable had changed.

Leaving out the actions, the rule simplifies to:

Term
(
"+" Term
|
"-" Term
)*

An expression is a term, to which an arbitrary number of other terms can be added or subtracted.

The instruction:

double d;

declares (as above) a new variable of the type double, which shall take the value of the term.
The result of the first term will be assigned to the reference variable xd:

57Examples

© 2002-10 Dr. Detlef Meyer-Eltz

xd = d;

The values of the following terms will be added or subtracted:

xd += d; respectively xd -= d;

These expressions are a shorter notation for:

xd = xd + d; respectively xd = xd - d;

7.3.4 Productions: Term and Factor

The Term-Production is constructed analogously to the Expression production; multiplication and
division take the places of the addition and subtraction:

{{double d;}}

Factor[d]
{{xd = d;}}
(
"*" Factor[d]
{{xd *= d;}}
|"/" Factor[d]
{{
if(d == 0)

 throw CTT_Error("Division by null");

xd /= d;
}}
)*

If the denominator is null, the program is stopped by a call of:

throw CTT_Error("Division by null");

The text "Division by null" then will be shown in the log window..

The production Factor is:

{{
bool bPlus = true;

double d;

}}
(
"-"
{{bPlus = false;}}
)?
(
Number[d]
|
"(" Expression[d] ")"

58 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

)
{{
if(bPlus)

 xd = d;
 else
 xd = -d;
}}

It can be shown without actions by clicking on the collapse code button:

("-")?
(Number | "(" Expression ")")

Parenthesis followed by a question mark characterizes the included expression as optional, i.e., it
may occur in the text or not.
So a Factor is an optional minus sign followed by either a number or a bracket.
Here the parser becomes reflexive. The Expression production had called the Term production,
which called the Factor production. Inside the Factor production the Expression production can be
called again. This reflexivity mirrors the possible nesting of parenthesis inside of arithmetic
problems, e.g. "3 + ((3.2 + 8.9 - 4.6) * 5.6)"

The minus sign is optional. If it exists or not in the text, will be memorized in a boolean variable.
Variables of the type bool can have the value true or false. The variable bPlus is declared at the
beginning of the Factor production and set to the value true:

bool bPlus = true;

If the minus sign is found at the actual text position, this value will be set to false. After the
evaluation of the Number production or of a bracket, the result will be negated or not, depending on
the value of bPlus. For this are the instructions:

if(bPlus)

 xd = d;
 else

 xd = -d;

The structure

if (<condition>)
 <instruction1>;
 else
 <instruction2>;

means, that if the condition "condition" is fulfilled, that means, it has the value true, the instruction
"instruction1" will be executed otherwise "instruction2".

59Examples

© 2002-10 Dr. Detlef Meyer-Eltz

7.3.5 Production: Number

The Number production only consists of the terminal symbol number (::= "\d+(\.\d*)?|\.\d+", see
above) and an action, which translates the text, matched by the symbol, into a number:

number
{{ xd = stod(xState.str()); }}

This translation is made by a special function stod. stod can be read as an abbreviation of "string to
double". A string is passed to the function and it returns a double-value. To memorize: xState.str()
returns the text of the last recognized token. So stod makes for example the value 123.45 out of the
text "123.45".

7.3.6 Return values

The intermediate results of the calculator till now were delivered from reference variables from the
invoked productions. Reference variables have the advantage, that they can be used in arbitrary
number. In the calculator example, there always are only single intermediate results.

The calculator example using return values, is in the directory:

\TextTransformer\Examples\Calculator2

The start rule now is shortened to:

{{out << }} Expression

{{out << endl;}}

The instruction for the output in the first line is incomplete according to the pure syntax of c++.
Inside of the TextTransformer this notation is allowed, if immediately after the shift operator and the
closing braces of the semantic action a call to a production follows. The called production must
return a value - see below -, which can be written into the output.

The finishing action is:

out << endl;

endl is another notation for "\n", that means for a line break.

The Expression production in Calculator2 has no parameters but the return type: double

60 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

A production (or token) with a return type must return a value of this type. This happens in the last
line:

{{return e;}}

The double variable e is declared at the begin of the production. Its value gets the variable from the
Term production in three lines, which again are shortened c++ instructions:

{{e = }} Term
{{e += }} Term
{{e -= }} Term

The Term- and the Factor production are rewritten in the same manner as the Expression
production, so that they use a return type instead of reference variables.

In the Number production the declaration of a temporary variable can be renounced, by the fact, that
the return value of the stod function is passed on directly.

number
{{ return stod(xState.str()); }}

61Examples

© 2002-10 Dr. Detlef Meyer-Eltz

7.4 Text statistics

You should know the most essential operation elements of TETRA.

Problem definition:

The number of lines, characters, word and sentences of a text shall be counted.

TETRA Program:

The project is in:

\TextTransformer\Examples\TextStats

This project demonstrates the use of class variables and member functions. Beneath its pure
linguistic possibilities of application, the program is of practical use, if you have to fulfill some
constraints for texts, e.g. when registering a shareware program at a distributor.

7.4.1 Class members

In the previous examples locale variables were used, which are declared inside of an action and
can be passed to other productions or tokens as a parameter. In this project class variables are
used. The declaration of a class or member variable is made on a special page of the TETRA user
interface. Such variables can be accessed immediately inside of each action of all productions and
tokens (and member function see below). The value of a member variable can be changed in one
action and immediately is in disposal of other parts of the program.
In the actual project for example there is an integer member variable m_iChars, which stores the
number of recognized characters. In each token action this variable will be augmented by the
number of characters, which is recognized by the token.

The declaration of m_iChars is done on the element page.

To declare a variable, you have to enable the according check box in the toolbar. Otherwise
m_iChars would be interpreted as the name of a member function.
The type of the variable is set to int in the Type field.

62 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The text field now is entitled: Init. For variables this field may remain empty, but it also can be used,
to initialize the variable. The initialization is done every time a new text transformation starts.
Here m_iChars gets the value 0. This is the default value, which the variable would have obtained too
without explicit initialization. But to initialize the variable is a better programming style. If code for a
parser class is exported the lack of an initialization can lead to errors, because in c++ integer
variables don't get an initial value automatically.

Other member variables to count lines, words etc. are declared in the same manner as m_iChars.

A special case is m_mAbbr. This variable has the type mstrstr and is initialized by a number of
expressions, which are abbreviations, if they are followed by a dot.

m_mAbbr["am"] = "";
m_mAbbr["Am"] = "";
m_mAbbr["usw"] = "";
m_mAbbr["etc"] = "";

...

This list is needed, when counting sentences to distinguish dots, which are marking the end of a
sentence and dots, which belong to an abbreviation. Because the list by no means is complete, the
counting of sentences will remain uncertain.
Each of the elements of the list is assigned an empty string. These values aren't needed. In this
project only the property of the map is used, that searching for a key is very quick, because the
keys are in sorted order automatically.

Further there is a member function PrintResult:

out << "Text statistics:\n";

out << m_iLines << "\tlines\n";

out << m_iChars << "\tcharacters\n";

out << m_iWords << "\twords\n";

out << m_iNumbers << "\tnumbers\n";

out << m_iSentences << "\tsentences\n"

It prints the formatted result of the counting at the end of the program.

7.4.2 Token

In the project options all ignorable characters are deactivated. So the set of token must recognize all
parts of a text, linefeeds and spaces included.

So a text consists of

WORD words
NUMBER numbers
ABBREVIATION abbreviations
CONTINUATION sequences of dots like "..."
LINEFEED linefeeds

63Examples

© 2002-10 Dr. Detlef Meyer-Eltz

SENTENCE_END ends of sentences (dot, exclamation and question mark)
SPECIAL_CHAR the rest of characters

In the actions of the tokens the counter are actualized. For example the WORD action:

m_iWords++;
m_iChars += xState.length();

Here the counter for words is augmented by one and the counter for characters is augmented by the
number of characters, of which the word consists.

A little bit more complicated is the action of the token ABBREVIATION: (\w+)\.

if(xState.length() > 2 &&

 !m_mAbbr.findKey(xState.str(1)))
 m_iSentences++;

m_iWords++;
m_iChars += xState.length();

If the recognized text consists of a single letter followed by a dot or if the text preceding the dot is
found in the list of abbreviations, the recognized text is interpreted as an abbreviation. Otherwise the
dot marks the end of a sentence and the sentence counter is incremented.

7.4.3 Productions

The start rule of the project is TextStat. TextStat calls in a loop the production Text, which consists
of the alternative tokens. Both productions are very simple and there is nothing new to explain.

There is an additional production CountChars. CountChars offers a very simple possibility to count
only the characters of a text.

64 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.5 GrepUrls

You should know the most essential operation elements of TETRA.

Problem definition:

In html files all links shall be found and listed, which refer into the web.

TETRA Program:

The project is in:

\TextTransformer\Examples\GrepUrls

This project demonstrates the use of the TextTransformers as a GREP tool. GREP (Global Regular
Expression Print) is in the Unix world a well-known program, used to look for text patterns in files.
By means of the transformation manger the TextTransformer can handle such tasks too. This
example also demonstrates how the found information can be stored in containers and finally
formatted before printing.

7.5.1 Productions

If you look at the text of an html page, which normally is show in the browser, the following for
example is a link to the pages of the TextTransformer:

If the text enclosed into quotes - the URL - begins with "http://www.", the link refers to an external
web page. Exactly that is, what shall be found here. Two simple productions fulfill the purpose :

GrepUrls ::=

(
 Url
| SKIP
)*

Url ::=

"<a href=\"http://www."
 SKIP
"\""

A html page consists of the desired URL's and other text. The URL is introduced by "<a
href=\"http://www." and extends up to the next quote mark.

The case-sensitivity is deactivated in the project options, as HTML is case insensitive. So tags like

"<A HREF=\"http://www."

65Examples

© 2002-10 Dr. Detlef Meyer-Eltz

are found too.

7.5.2 Member variables and methods

Now some variables and methods shall be presented, which are defined on the element page.
The positions of the URL's in the texts shall be collected in a member variable of the type mstrstr:

mstrstr m_mUrl

The key shall be the found URL itself, and the value will be constructed out of the name of the actual
file and the according line number. These can be obtained from methods of the parser:

SourceName() name of the actual file
xState.Line() line number

A variable of the type format shall help, to combine the names and the numbers into one string:

format m_fPosition

By the command:

m_fPosition.parse(" Page: %|1$|%|50t|Line: %|2$|");

m_fPosition is initialized with the formatting string " Page: %|1$|%|50t|Line: %|2$|".
"%|1$|" represents the position of the first argument,%|2$| represents the second argument and by
%|50t| the preceding part of text is padded with spaces to a length of 50 characters. If e.g the file
name is "D:\C_biblio\boost\index.htm" and the line number is 52, and both are passed to the format
object by means of the %-operator, this object returns:

" Page: D:\C_biblio\boost\index.htm Line: 52"

To avoid very long file names, they shall be expressed in a shorter form with relative paths. For this a
special method is defined in the project, which transforms the absolute paths, which are obtained
by SourceName() to relative paths:

str GetRelPath()

{
 return ".." + SourceName().substr(SourceRoot().length());

}

This function consists in only one line. What happens here becomes clear, when it is separated into
several steps:

str sDir = SourceRoot();

unsigned int pos = sRoot.length();

str sAbsFilename = SourceName();

str sPart = sAbsFilename.substr(pos);

str sRelFilename = ".." + sPart;

66 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The resulting relative file name begins with "..", followed by the part of the absolute file name, which
follows on the string, which designates the source directory. For "D:\C_biblio\boost\index.htm" and
the source directory "D:\C_biblio\boost" this results in:

..\index.htm

A further method defined on the element page is AddPosition, which is called with the parameters of
an URL xsUrl and the position xsWhere:

{{
if(m_mUrl.findKey(xsUrl))

{
 m_mUrl[xsUrl] += "\n" + xsWhere;
}
else

 m_mUrl[xsUrl] = xsWhere;
}}

This method takes into account, that there may be several positions for the same URL. If the URL
hasn't been found yet the position will be set as value of the URL key in the else-branch. If the URL
has been found before, the new position text is simply appended to the old value.

Before the program ends, m_mUrl will be printed by the function PrintAll. Hereby all internet
addresses will appear in alphabetical order automatically:

m_mUrl.reset();
while(m_mUrl.gotoNext())

{
 out << m_mUrl.key() << endl;

 out << m_mUrl.value() << endl << endl;

}

7.5.3 Put together

The complete code of the Url production is:

"<a href=\"http://www."
SKIP

{{
m_fPosition % GetRelPath() % xState.Line();
AddPosition(xState.str(), m_fPosition.str());
}}

After the text of the URL was recognized by SKIP, it is passed to the AddPosition class method,
together with the information about the position, where the address was found.

67Examples

© 2002-10 Dr. Detlef Meyer-Eltz

And finally the complete GrepUrls production:

(
 Url
| SKIP

)*
{{
if (IsLastFile())

 PrintAll();
}}

An important point still has to be added. The program shall print the sorted list of the Internet
addresses, which were found in all files. But the sorting is only possible after all files were
processed. Because of this, the PrintAll function is executed only, if this condition is fulfilled.
Whether the condition is fulfilled, can be obtained from the method IsLastFile of the parse state
class. IsLastFile only returns true, if no further file will follow.

7.5.4 Search in whole directory

As usual you can load a html file into the input window of the TextTransformer, to process it. But
now it shall be demonstrated, how to work with the files of a whole directory. In our case, these
would be all documents of a web site.

To do this the transformation manager is invoked. Most comfortably this is done by the button:

If the project isn't compiled yet, it will compile now automatically, before the transformation manager
dialog opens. How to work with the transformation manager is explained in detail in an own chapter
of this help. Here only the most important steps to make a management are presented briefly.

You also can find the ready management in:

C:\Program Files\TextTransformer.113b\Examples\GrepUrls\GrepUrls.ttm

If you intend in future, too, to work on HTML pages, it is advisable to define a filter just now for this
file type. This filter then can be used again and again at the choice of source files in the
TextTransformer.

First the folder with the source files has to be chosen. For this example some of the html files from
the web site of boost were copied into the UrlGrep directory:

By the button

you can open a dialog to chose the target directory:

68 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

After the choice was confirmed, a new row is inserted in the table of the source files/folders. The
recursively box can be activated now in this row to search the files of the sub-folders too. If, as
recommended above, the filter was defined for HTML files, this can be selected in the choice box of
the column file name or filter now. However, the filter "*.htm; *.html" can be written also directly to
the field.

On the Transformation-Options page of the transformation manager you have to set now, that a N:1
transformation is planned. That means, that all results of the transformations of the source files shall
be written into a single target file.

By the button

then a dialog is opened, by which you can navigate to the desired target folder. Then you can either
select an existing file a s target or input a new filename.

69Examples

© 2002-10 Dr. Detlef Meyer-Eltz

A preview is shown on the next page of the transformation manager now, where you can see in the
different rows of a table, which source files can contribute to the file to be produced.

Now you can start the search for the addresses:

By a double click on an arbitrary row in the table on the reult page, the transformation manager will
be closed and the resulting text is shown in the output window of the IDE:

70 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.6 BinaryCheck

You should know the most essential operation elements of TETRA.

Problem definition:

It shall be tested, whether a file includes binary data.

TETRA Program:

The project is in:

\TextTransformer\Examples\GrepUrls

The example demonstrates the rather simplest parser for binary files and uses a look-ahead
production.

The project can be used for other projects as preprocessor which guarantees that the source file isn't
binary.

7.6.1 Look-ahead

The project consists of only two productions. One of them, IsBinary, is extremely simple:

SKIP? NULL

It can parse a string only successfully when it ends with a binary null.

This production is used for the look-ahead within the production BinaryCheck:

IF(!IsBinary())

 SKIP? {{ out << xState.str(); }}

END

The difference of the use as a look-ahead compared with a normal call of a production is indicated
syntactically by the appended parenthesis "()" within the IF brackets.
The source file is processed from the current position on -- here the start of the file -- as long as
either the production is finished successfully or till a fault appears. IsBinary is successful exactly in
the case, that there is a null character in the file.

You can see this in the debugger. As the project was opened the file BinaryTest.pdf should have
been loaded into the viewer too. In the hexadecimal mode of the viewer one can see the null
characters. If you step into the look-ahead with

and press the button several times, finally the following picture arises, in which the found null

71Examples

© 2002-10 Dr. Detlef Meyer-Eltz

character is highlighted:

The file is regarded here as a text file if there isn't any null character. (The file could actually
nevertheless be designed for a binary use.) If it is a text file, SKIP? jumps to the end of the file and
the complete text then is written into the output.
So the project can be used for other projects as preprocessor which guarantees that the source file
isn't binary.

In addition the size of the file is checked at the beginning of BinaryCheck. Binary files often are are
very big, because they may contain graphical data or even voice recordings and films. As a limiting
value 1000000 bytes are chosen here.

{{

int iMaxSize = 1000000;

if(file_size(SourceName()) > iMaxSize)

 throw CTT_Error("file size > " + itos(iMaxSize));

}}

Text files seldom achieve this size. Whether even bigger files shall be allowed depends on the kind
of the files. You also should take into account that the source files are loaded completely into the
working memory for parsing.

7.6.2 Use as preprocessor

One TextTransformer project can be used for a second project as a preprocessor. I.e. the second
project takes the target text the first as a source text. BinaryCheck would be a suitable
preprocessor for projects which shall be applied to all texts of a folder notwithstanding their special
file extension. For text files only BinaryCheck delivers the source text, at binary files BinaryCheck
fails and doesn't deliver any text.

The source file has to be opened in the binary mode. Otherwise it would not be guaranteed that
BinaryCheck works. If binary files are opened in the text mode, they are read incompletely in most
cases.
The binary mode can be set in the project options on the encoding page:

72 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Since TextTransformer 1.5.5 the binary mode is predefined for new projects.

BinaryCheck can be selected in the project options of another project as preprocessor now. You can
see a part of the result of a test with TextStats in the transformation-manager below:

You can see that the transformation of mini_ws.exe has failed because of his size and unins000.dat
was identified as a binary file. The text file readme.txt, however, was processed correctly.

7.7 E-mail address

You should know the most essential operation elements of TETRA.

Problem definition:

An e-mail address shall be analyzed according to the complex RFC 822 standard.
This standard not only allows simple addresses like:

dme@TextTransformer.de

but also constructs like:

Detlef Meyer-Eltz <dme@TextTransformer.de (Parsergenerator) >

TETRA Program:

The project is in:

\TextTransformer\Examples\Mailbox

73Examples

© 2002-10 Dr. Detlef Meyer-Eltz

This project demonstrates how a TextTransformer program can be created from an existing syntax
specification. It will be shown too, how hidden LL(1) conflicts can be solved.

There is a complete MIME parser for e-mails at

http://www.texttransformer.org

7.7.1 Syntax specification

Following syntax specification can be found in the book: J.E.F. Friedl: Reguläre Ausdrücke, O'Reilly,
1998.

Element Description

1 mailbox addr-spez | phrase route-addr

2 addr-spec local-part @ domain

3 phrase (word)+

4 route-addr < (route)? addr-spez >

5 local-part word (. word)*

6 domain sub-domain (. sub-domain)*

7 word atom | quoted-string

8 route @ domain (, @ domain)* :

9 sub-domain domain-ref | domain-literal

10 atom (a character except specials,
space or ctl)+

11 quoted-string " (qtext | quoted-pair)* "

12 domain-ref atom

13 domain-literal (dtext | quoted-pair)*

14 char An ASCII character (octal
000-177)

15 ctl An ASCII control character
(octal 000-037)

16 space Space (ASCII 040)

17 CR Carriage Return (ASCII 015)

18 specials One of the characters
()<>@,;:\\"\.\[\]

19 qtext A char except *, \ or CR

20 dtext A char except [,], \ or CR

21 quoted -pair \ char

22 comment ((ctext | quoted-pair | comment
)*)

23 ctext A char except '(', ')', '\' or CR

From this specification Friedl constructs a single regular expression consisting in 4724 characters.
The following reconstruction of this grammar in the TextTransformer has approximately the length of

74 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

specification itself.

7.7.2 Productions and token

Fortunately the syntax of the specification is very similar to the syntax of the TextTransformer. The
elements can be transformed easily into productions and tokens. Because hyphens are not allowed
in script names of the TextTransformer, they are transformed to underscores. Single characters are
enclosed in double quotes. Elements, which consist in single characters or character classes,
become tokens. Their names are written in upper case to separate them more clearly from the
productions.

Produktion Definition

1 mailbox addr-spez | phrase route_addr

2 addr_spec local_part "@" domain

3 phrase (word)+

4 route_addr < (route)? addr_spez >

5 local_part word ("." word)*

6 domain sub_domain ("." sub_domain)*

7 word ATOM | quoted_string

8 route "@" domain ("," "@" domain)* :

9 sub_domain domain_ref | domain_literal

11 quoted_string "\"" (QTEXT | QUOTED_PAIR)*
"\""

12 domain_ref ATOM

13 domain_literal (DTEXT | QUOTED_PAIR)*

Token Definition

10 ATOM [^()<>@,;:\\"\.\[\]\x{00}-\x{20}\x{7
f}]+

14 CHAR [\x00-\x7F]

17 CR \r

18 SPECIALS [()<>@,;:\\"\.\[\]]

19 QTEXT [^*\\\r\x80-\xFF]

20 DTEXT [^\[\]\\\r\x80-\xFF]

21 QUOTED_PAIR \\[\x00-\x7F]

23 CTEXT [^()\\\r\x80-\xFF]

The comment production is set in the project options as an inclusion. So, in front of every new token
is tested automatically, whether there might be an included comment. Such comments can be
nested unlike the use of regular expressions to the comment recognition.

The complete project is in:

75Examples

© 2002-10 Dr. Detlef Meyer-Eltz

\TextTransformer\Examples\Mailbox\mailbox1.ttp

7.7.3 Detecting a conflict

So far no problems occurred and the project seems to be ready. But if you select the start rule
mailbox and parse it two errors are shown:

mailbox: LL(1) Error: "\"" is the start of several alternatives
mailbox: LL(1) Error: "ATOM" is the start of several alternatives

If such a LL(1)-conflict exists, the actual text don't suffices for the parser to decide, which rule
should be applied next.
The TextTransformer - in contrast to some other related tools - helps to discover such errors. But to
remove them, you need some understanding of the grammar, you are developing and some power of
deduction.

In the mailbox production:

addr_spez | phrase route_addr

the alternatives are beginning with addr_spez and phrase. If you select addr_spez in the navigation
tree at the right side of the screen and click the right mouse button, the first set of this production
can be shown:

If you do the same with the phrase production, you will see the same First set.
If you look at the definitions of these productions, the cause of the conflict still isn't clear:

addr_spez ::= local_part "@" domain

phrase ::= word+

But if you go down another step, the conflict becomes obvious:

local_part ::= word ("." word)*

word ::= ATOM | quoted_string

Indirectly as well addr_spez as phrase are beginning with word.

76 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.7.4 Solving the conflict

To solve the conflict, word must be factored out.
For phrase this is easy. The rule will be redefined as:

phrase = word*

and at all positions, where phrase is used in the grammar, phrase is replaced by:

word phrase

The mailbox production just is the only occurrence of phrase; so it becomes to:

mailbox ::= addr_spez | word phrase route_addr

Analogously is dealt with local_part. The production is redefined to

local_part ::= ("." word)*

and all places, where local_part exists in the grammar are replaced by:

word local_part

So addr_spez becomes to:

addr_spez ::= word local_part "@" domain

Finally word is extracted from addr_spez too, whereby this production regains it's old form (but with a
new defined local_part):

addr_spez ::= local_part "@" domain

Here you must pay attention, because addr_spez is also used in route_addr.

route_addr ::= "<" (route)? word addr_spez ">"

And finally

mailbox ::= word addr_spez | word phrase route_addr

Now the factoring out of word can be completed:

mailbox ::= word (addr_spez | phrase route_addr)

If you compile this rule now, there is no conflict any more.

The corrected project is:

77Examples

© 2002-10 Dr. Detlef Meyer-Eltz

\TextTransformer\Examples\Mailbox\mailbox2.ttp

78 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.8 Guard

You should know the most essential operation elements of TETRA.

This example shall demonstrate the use of sub-expression in regular expressions.
The access of sub-expressions will be possible in the future only in the standard and professional
version of the TextTransformer.

Problem definition:

Into a c++ source file at the entering and exit positions of methods - i.e. after the opening brace of
the function body and before the closing brace - additional instructions shall be inserted, which can
be used for debugging or profiling purposes. The name of the class and the name of the function
shall be passed to the inserted code.
For example, if there is defined a method:

void CClass::Name (int xi)
{
 ...
}

this shall be transformed to:

void CClass::Name (int xi)
{
 CGuard GUARD("CClass", "Name");
 ...
 GUARD.stop();
}

For example the class CGuard can block certain resources in its constructor or initiate a time
measurement and leave the resources in the destructor or stop the time respectively.
Another possibility would be the insertion of a try catch block

void CClass::Name (int xi)
{
 try
 {
 ...
 }
 catch(...)
 {
 throw CException("CClass::Name");
 }
}

79Examples

© 2002-10 Dr. Detlef Meyer-Eltz

TETRA Program:

The example Guard is in:

\TextTransformer\Examples\Guard\guard.ttp

The program is for demonstration only. It is not guaranteed, that it can transform every c++ source
file. But it will transform the source files TETRA creates. So two parsers generated by the
TextTransformers are used as examples for the input.

\TextTransformer\Examples\Guard\calculatorparser.cpp
\TextTransformer\Examples\Guard\guardparser.cpp

7.8.1 Startrule: guard

The start rule of the program has the name of the project: guard. It shall be able, to process a
complete c++ source file, produced by TETRA:

(
 SKIP {{ out << xState.copy(); }}

| constructor
| destructor
| member_function
| global_declaration {{ out << xState.lp_copy(); }}

| LINE_COMMENT {{ out << xState.copy(); }}

| PREPROCESSED {{ out << xState.copy(); }}

| USING {{ out << xState.copy(); }}

)+

The names of the alternative productions, which can be called inside of the loop, denote the
structures, which shall be recognized by the productions. So the c++ source consists of
constructors, destructors member functions, comments, lines, which are processed by the
preprocessor, using directives and an undefined rest, which will be recognized by the SKIP symbol.
The constructors, destructors and member functions shall be instrumented by "guards". The other
parts of the source code shall be copied without change.

7.8.2 Copying source text

The method for copying the text which was recognized by the last token is already known.
The spaces in front of the text shall be included in this copy. I.e. the text of the end of the second to
the last token is copied until the beginning of the next expected token:

{{ out << xState.copy(); }}

This command is an abbreviated notation for:

{{ out << xState.str(-1) << xState.str(); }}

80 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

where the ignored text is accessed by xState.str(-1) and the recognized text is accessed by xState
.str() By means of a parameter certain sections of the input text, relatively to the last recognized
section, can be accessed. The parameter "-1" has the special meaning, that it is related to the
ignorable characters, which were skipped, when reading the input. xState.str(-1) returns the text
between the end of the previous recognized token and the beginning of the last recognized token.
In the "Exchange" examples, there were no ignorable characters. There only were the sections of
text recognized by the SKIP symbol and the replaced parts of text.
In the project options of the present example the line break, carriage return, white space and tab are
set ignorable (this is by default).
By the call of xState.copy() after each recognized token is made sure, that the source text is copied
to the output completely, the ignorable characters included.

An analogous method for copying the complete text which was recognized by a production is new
here:

{{ out << xState.lp_copy(); }}

The "lp" of "lp_copy" is for "last production".

7.8.3 Tokens

Besides some token directly defined inside of the productions and the STRING token, in this
example there are two groups of token. The first consist of:

LINE_COMMENT //[^\r\n]*
PREPROCESSED #[^\r\n]*
USING using [^\r\n]*

While they begin differently, they all end with [^\r\n]*. The last expression describes an arbitrary
repeat of characters, which are not line endings. So the group of token describe sections of text,
beginning with "//" or "#'" or "using" and extending to the end of the line. A c++ programmer
recognizes immediately, that line comments, preprocessor directives and using directives are
described.

The tokens of the second group consist in:

DECLARATOR
DESTRUCTOR

They are beginning with an expression similar to:

(((\w+::)*\w+)::)?(\w+)

This expression may appear unnecessarily complicated at first. The simple expression:

(\w+::)*\w+

also would recognize texts like:

81Examples

© 2002-10 Dr. Detlef Meyer-Eltz

Name
Class::Name
Class::Subclass::Name
etc.

that are names and class methods.
But the complicated form of the expression allows the access of sub-expressions. Each pair of
parenthesis matches a section of the text, matched by the expression as a whole. This section can
be accessed in the interpreter. Which section of text is related to which parenthesis can be
displayed by a tool integrated in the TextTransformer: menu: Help->Regex test.

From the lower table you can see, that the sub-expression with the index 2 matches the scope, and
the sub-expression with the index 4 the name of a class method. This is used in the guard project,
to write these strings into different member variables:

{{
m_sScope = xState.str(2);

m_sName = xState.str(4);

}}

These variables are defined on the element page of the IDE. They are used in the functions
print_at_enter and print_at_exit, described later.

The complete definitions are:

DESTRUCTOR ::= (((\w+::)*\w+)::)(~\w+)

DECLARATOR ::=
(((\w+::)*\w+)::)(\w+) \// scope(s) and name, e.g.: CSub::CClass::Func
\s* \// optional spaces
\([^)]*\) // parameter, e.g..: (int xi)

82 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Notice, that complex expressions can be written and commented into different lines.

Although the tokens are quite similar, TETRA can decide which token matches the text best:

CguardParser::~CguardParser()

will be recognized as DESTRUCTOR and

CguardParser::SetIgnoreScanner()

will be recognized as DECLARATOR.

TETRA uses an algorithm, by which the longest match will be preferred.
By this you can avoid limitations that the top down analysis of TETRA would have otherwise.

7.8.4 Productions: block, outer_block

The outer_block production describes the body of a function.
The code of a c++ function can be extended over many lines and contain complicated nested
structures. For the aim of the current project this is irrelevant. It is important only, to find the
insertion positions.
The idea is, that for every closing brace there is a corresponding opening brace. So a block can be
described as:

"{"

(
 block
| SKIP

)*
"}"

Inside of the pair of braces, there is a sequence of code and sub-blocks. The only difference from the
body of a function to a block is, that it's an outer block, not included in a different. The positions after
it's opening and before its closing brace are the insertion points, we are looking for. Here the rules
print_at_enter and print_at_exit are called, which are used, to write the desired guard functions
into the output:

"{"

{{ print_at_enter(xState); }}

(
 block {{ out << xState.lp_copy(); }}

| SKIP {{ out << xState.copy(); }}

)*
"}"

{{ print_at_exit(xState); }}

Attention:
The option for the testing of all literal tokens must be switched off, as otherwise a token which is

83Examples

© 2002-10 Dr. Detlef Meyer-Eltz

needed only in other productions, can be recognized here instead of a SKIP recognition.

The functions print_at_enter and print_at_exit are defined on the element page:

print_at_enter ::=
{{
 out << xState.copy() // {

 << "\n CGuard G(\""
 << m_sScope
 << "\",\""
 << m_sName
 << "\");\n";
}}

Here the variables m_sScope and m_sName are used for the construction of the guard.

print_at_exit ::=
{{
 out << "\n G.stop();\n}";

 m_sName.clear();
 m_sScope.clear();
}}

Here the variables m_sScope and m_sName are cleared.

7.8.5 Improvement: '{' and '}' in strings

A complication arises, if there are quoted braces, e.g. "{" or "[{}]". These characters would be
interpreted wrongly as opening or closing braces. The alternatives inside of a block therefore have to
be extended by strings:

STRING "([^"]|\\")*"

The block production and accordingly the outer_block production now look as follows:

"{"

{{ print_at_enter(xState); }}

(
 block {{ out << xState.lp_copy(); }}

| STRING {{ out << xState.copy(); }}

| SKIP {{ out << xState.copy(); }}

)*
"}"

{{ print_at_exit(xState); }}

By means of this improvement also the code can be parsed, which is produced from the guard
project.

84 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.9 Bill

You should know the most essential operation elements of TETRA.

In this project sub-expressions of regular expressions are used. This will be possible in the future
only in the standard and professional version of the TextTransformer.

Problem definition:

The sum of the positions of a bill shall be calculated. The amounts of the bill use a comma (German
localization) to separate the fractional digits. There is nothing really new inside of the project, but it
demonstrates a further kind of applications of the TextTransformer.

TETRA Program:

The project is at:

\TextTransformer\Examples\Bill

This simple project uses actions immediately combined with tokens, where the texts of amounts are
converted into the according numbers.

7.9.1 Production

The only production of this project is constructed according the meanwhile well know scheme of a
loop containing a SKIP symbol.

{{double sum = 0.0;}}

(
 Amount[sum]
|Amount_[sum]
|SKIP

)+
{{out << sum << "\n";}}

The variable of the type double is passed to the token Amount and Amount_, where the value of the
respectively recognized amount will be added.
The whole sum is printed at the end of the program.

85Examples

© 2002-10 Dr. Detlef Meyer-Eltz

7.9.2 Tokens

Amounts can have fractional digits as in the following examples:

23,8
1,35
365,-

Amount_

For amounts, where the fractional digits are replace by a hyphen, a special token must be defined,
because a hyphen cannot be converted into a number directly.

Name: Amount_
Parameter: double& xSum

Text: (\d+),\s?-
Action: xSum += stod(xState.str(1));

The token is defined as a sequence of digits followed by a comma and a hyphen. Optionally a space
can precede the hyphen

The digits before the comma only determine the value of the token. Because of the parenthesis
around "\d+" they can be accessed by xState.str(1). The return value of this expression is passed
to "stod" immediately, which converts the string containing the digits into a double value. This is
added to the sum in xSum.

Amount

Normally an amount contains fractional digits. These are recognized by the token Amount:

Name: Amount
Parameter: double& xSum

Text: (\d+),(\d\d?)
Action: xSum += stod(xState.str(1) + "." + xState.str(2));

The comma can be followed either by one ore by two digits. The function can't convert expressions
containing a comma (used in Germany). So temporarily the text presentation of the number is
converted into a text, which can be converted by stod.

86 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.10 XML

You should know the most essential operation elements of TETRA.

Problem definition:

A parser for XML documents shall be build.

XML (eXtensible Markup Language) is a widespread standard for a formal language, which
describes structured data and their formatting. So XML enables an exchange of these data
between different applications and over the WEB.

TETRA Program:

The project is in the directory:

\TextTransformer\Examples\XML

ISO_XML.ttp is a first version of the project which is narrowly the wording of the XML standard.

XML.ttp is the revised version.

By this project the construction and evaluation of parse trees is demonstrated

7.10.1 ISO-XML

On this page a few hints will follow, how the TextTransformer XML parser derives form the standard
specification of XML. Who isn't interested at these details can continue to the next page.

The XML standard is described in detail at

http://www.xml.com/axml/testaxml.htm

To specify XML an Extended Backus-Naur Form (EBNF) notation is used, which again is
standardized (see: http://www.cl.cam.ac.uk/~mgk25/iso-ebnf.html).

The standardized EBNF notation (ISO-EBNF) is fortunately is similar to that of the
TextTransformers, but isn't conceived for practical use. ISO-EBNF at first is a very elementary
description, without a distinction between tokens and productions. Secondly it is not taken into
consideration, whether the grammar is deterministic recognizable, especially, the grammar don't
conforms to the LL(1) condition.
To transform the XML grammar three steps are necessary:

1. an import project (quick and dirty) similar to the project for the cocor import, by which the
ISO-EBNF-XML rules can be imported as TextTransformer productions.
2. all productions, which only are describing character sets, are transformed to tokens (see
remarks below).
3. LL(1) conflicts are solved, similar as described for the parser of email addresses

87Examples

© 2002-10 Dr. Detlef Meyer-Eltz

A further problem is, that an XML documents in principle supports Unicode, which the
TextTransformer at the moment still doesn't. (The option to create parser code on basis of wide
characters is in work.). But the first 128 characters of the ASCII-Code and of UTF-8 coded Unicode
are identical. So the Tetra XML parser will read most XML documents in spite of simplified token
definitions.

Some further remarks concerning the transformation of ISO-EBNF:

In ISO-EBNF there is an operator without counterpart in the syntax of Tetra:

A - B matches any string that matches A but does not match B

A translation of this operator is simple, if A and B are characters or character sets. Then A - B can
be combined into one set of characters.
If A and B are sequences of characters, B can either be a permitted alternative of A - B or an
occurrence of B in the input is an error.

Example:
ISO-EBNF: CData ::= (Char* - (Char* ']]>' Char*))

CDSect ::= CDStart CData CDEnd
CDEnd ::= ']]>'

Tetra: CData ::= (Char)*
CDSect ::= CDStart CData CDEnd
CDEnd ::= ']]>'

ISO-EBNF: PITarget ::= Name - (('X' | 'x') ('M' | 'm') ('L' | 'l'))
Tetra: Name | XML EXIT
Tetra: XML ::= [Xx][Mm][Ll]

Frequently ISO-EBNF defines character sets as sequences of alternative characters. As far as
possible these should be combined to a common set by '[' and ']'. This will accelerate the scanning
of a text very much.

Example:
ISO-EBNF: S ::= (#x20 | #x9 | #xD | #xA)+
Tetra: S ::= [\t\r\n]+

The character set S of the example just given even can be deleted from the project. S is just the set
of ignorable characters. This as such is not specified from ISO-EBNF. Each position of the
grammar, where S can or must occur is specified explicitly. So the grammar becomes quite
confused an in addition many LL(1) conflicts arise.

Example:
XMLDecl ::= '<?xml' VersionInfo EncodingDecl? SDDecl? S? '?>'
EncodingDecl ::= S 'encoding' ...
SDDecl ::= S 'standalone' Eq ...

After VersionInfo is recognized, there are three possibilities to continue with S. If however S is
defined as ignorable, the rule is LL(1) conform. 'encoding' | 'standalone' | '?>'
follows directly on VersionInfo.
If S is defined as ignorable, concatenations of characters, where S may not be inserted, should be

88 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

combined into one token.

Example:
ISO-EBNF: EntityRef ::= "&" Name ";"
Tetra: EntityRef ::= &{Name};
where {Name} is a macro for the token name..

One problem remains. There are some spaces required at some positions of the
ISO-EBNF-specification. You could define special tokens ending with a space. But the elegance
won by the introduction of the ignorable characters then partially would be lost again. As the
XML-parser example is not thought for verification of XML conformity, but to read and process XML
documents, this point isn't really a problem.

7.10.2 XML document

The start rule for the XML parser is: document. After you have parsed the start rule as usual by

not all names in the syntax tree are preceded by a square to open the structure of the production.

The reason is, that the XML grammar consists of two overlapping parts:

· the part for the real document and

· the part for a DTD (document type definition), which is written in an external file and defines tags
and attributes for the document

Many XML documents don't need external DTD's and here only the first part shall be examined. The
other rules have remained for interested user in the project.

At first glance both the grammar and the document appear quite confusing.
The TextTransformer project can help, to make them clearer. The structure can be shown in the
variable-inspector. For this a node breakpoint is set on an action at the end of the start rule.

89Examples

© 2002-10 Dr. Detlef Meyer-Eltz

Now you can execute the program up to the breakpoint

and open the variable inspector.

Now choose to view the local variables:

and double click on the value side on one of the nDoc-lines.

The result is a tree view of the XML document.

90 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.10.3 Tree generation

nDoc, which just has been shown, is declared in the document production:

{{node nDoc("document");}}

node is a structure, which is characterized by a label (here: "document") and an str-value. In addition
nodes have the special property, that they can be combined to trees. Such combinations with other
nodes happen in the productions, which are passed while the parsing is done. First nDoc is passed
to the production element:

element[nDoc]

There another node with the label: "element" is declared:

{{node nElem("element"); }}

which is passed to the content production:

content[nElem]

After the content production has been processed nElem is added to xNode (the nDoc passed from
document) as a child.

xNode.addChildLast(nElem);

In the same manner meanwhile child nodes are added to the node nElem itself, while the content
production was processed. So the whole tree is generated, which then can be shown in the variable
inspector.

An alternative inside of the content production is CharData. The token CharData builds a leaf of the
tree. Here a node object is created too, but in contrast to the other nodes this node gets a value.

7.10.4 Tree evaluation

To transform the structure of a document into a tree at first, instead of transforming it directly into the
desired form, has the advantage that an access on the data is possible now in arbitrary order and
repeatedly. The output of the data can be organized now very systematically and to write the same
data in different formats, e.g. Html and Rtf, can be done by similar procedures.

In this exercise example the XML document shall simply be issued in the form of simple text.

The procedures for the output of the tree data are assembled into a common container.

mstrfun m_PrintText;

The mstrfun is a function table: mstrfun contains member functions, which will be applied on nodes,
the label which of is the key of the function in the table.

The table is initialized as follows:

91Examples

© 2002-10 Dr. Detlef Meyer-Eltz

{{
m_PrintText.add("", DontPrint);
m_PrintText.add("document", DocText);
m_PrintText.add("element", ElementText);
m_PrintText.add("content", ContentText);
m_PrintText.add("Attributes", AttributesText);

}}

That means, for a node with the label "document" the function with the name "DocText" shall be
executed; for a node with the label "element" the function with the name "ElementText" shall be
executed ... In the first instruction a default function is added to the table, which shall be executed
for all nodes with a label not contained as key in the table.

The functions DocText, ElementText, CharDataText and DontPrint all are defined on the pagefor
class elements. The function DocText has to be called for the root of the tree:

{{
node pos = xNode.firstChild();

while(pos != node::npos)

{
 m_PrintText.visit(pos);
 pos = pos.nextSibling();
}

}}

Here for all child nodes of the root m_PrintText.visit(xState, pos) is called.
The visit method of a function table is the cardinal point of the whole tree evaluation. This method
redirects the node argument pos to the function, which matches the label of the node. You can read
the visit-function in this example as an abbreviation of:

if(xNode.label() == "document")

{
 DocText(xNode);
}
else

if(xNode.label() == "element")

{
 ElementText(xNode);
}
else

if(xNode.label() == "CharData")

{
 CharDataText(xNode);
}
else

{
 DontPrint(xNode);
}

The function ElementText is constructed as DocText, with the difference, that the value of the node
is issued:

out << indent << xNode.value() << endl;

92 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

before the sub nodes are visited. So, beginning at the root node all nodes are passed systematically
up to the leaf nodes. There the function CharDataText outputs its value.

7.10.5 Character references

Inside of an XML-element:

<text> ... </text>

the characters:

< > " ' & $

may not be used.So the have to be coded either as a name entity or as a decimal entity:

Character Name entitiy Decimal entity

< < <

> > >

& & &

" " "

' &apos '

The mstrstr class variable m_EntityRefs with the values of the first and second column is used to
decode the named entities. Insde of the Reference production m_EntityRefs helps to translate the
named entities into the corresponding characters.
The according decimal entities are treated in the action for the token:

CharRef ::= &#(\d+);|&#x([0-9a-fA-F]+);

Special character, which don't belong to the first 128 characters of the ASCII set, often have to be
coded too.
Whether and how this is necessary depends on the encoding attribute in XMLDecl. A complete XML
parser should be able to access a lot of tables. It is presupposed here for the demonstration, that we
are using the standard font for Western Europe, Latin America (ISO 8859-1) . The characters then
can be translated according to the numbering of the ANSI table.
The regular expression CharRef either recognizes a character in a decimal coding and delivers the
corresponding decimal number as the 1. sub-expression or it recognizes a hexa decimal in the 2.
sub-expression.

{{
if(xState.length(1))

 return ctos(xState.itg(1));

 else

 if(xState.length(2))

 return ctos(hstoi(xState.str(2)));

 else

 {

93Examples

© 2002-10 Dr. Detlef Meyer-Eltz

 throw CTT_Error("unknown char reference");

 return str(); // formal return type

 }
}}

7.10.6 Comments and processing instructions

There still is a number of flaws in ISO_XML.ttp which shall be removed now in the transition to
XML.ttp.

· The superfluous productions and tokens are removed

· Cryptic abbreviations such as "PI" are replaced by more meaningful names: ProcInstr (=
Processing Instructions)

· Comments and processing instructions are dealt with as a part of the ignored characters or as
inclusions.

The last point is for didactic purposes. It would be in other grammars of a greater use than for XML,
where these inclusions may happen only in places specified exactly.

Comments and processing instructions have a special role: they can be included in many places in
the document without changing the data, which are transported by the XML dorcument to an
apllication; they are containing additional informations.
The comments are meant for the human reader and can be ignored by the application.

The regular expression for the comments can be combined with the other ignorable characters into a
common expression

(\s|<!--([^-]|-+[^->]|->)*-+->)+

Processing instructions contain information for external applications - e.g. complete php scripts can
be embedded here - and can be put as an inclusion production.

The new expression and the inclusion production can be put in the global project options. (
ProcInstr then must be removed in the local options of itself). The parser then tolerates XML
documents, though, where e.g. a comment occurs inside of a tag.
If such an occurrence shall cause a fault, the productions must be changed so, that their local
options can be modified so, that exactly the permissible occurrences of comments and processing
instructions are parsed. Whether there are characters to exclude or whether an inclusion follows,
always is checked with the determination of the next token. So the local options of a production are
effective as soon as within the production a new token is looked up. Since e.g. content can start
with comment, the token, which is the last token before a comment in the XML syntax, must be the
first token of a production, which checks for comments.
Therefore the additional production element_content is defined and analogously the additional
production doctypedecl_core. The local options for the following productions are adapted so that
comments and processing instructions are recognized in them.

content ::= (element | CharData | "]]>" EXIT | Reference | CDSect)*
element_content ::= content ETag

94 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

element_end ::= "/>" | ">" element_content

doctypedecl_core ::= "[" (markupdecl | PEReference)*

prolog ::= XMLDecl? doctypedecl?

Please notize that comments and processing instructions are also recognized in and after prolog
production since the successors of production calls are checked explicitly too.
The element production also is changed a little now. However, no local options are put in it.

element ::= "<" Name Attribute* element_end

7.10.7 Insert client data

A real application for the evaluation of the XML tree is the transportation of data from customer
demands in an insert instruction of the database language SQL. The texts Client1.txt -- Client5.txt
are examples for these demands. These texts aren't complete XML documents. After an introducing
text, the customer data follow in an in an incomplete XML form.

The start rule Clients jumps by SKIP directly to the beginning of the XML part:

SKIP

"XML-Format:"

element[nDoc]

The already known element production is called then. The construction of a SQL instruction is finally
carried out in the function: PrintSQLInsert. By

out << "INSERT INTO ̀ tt_address` (`uid`, ...

the table and the fields, which shall be filled with values, are specified. The values are then selected
from the tree in the order in which they are used. A function table isn't necessary for this simple tree.
E.g.:

pos = xNode.findNextValue("EMAIL"); // email
out << pos.firstChild().value() << "\", \"";

So an insert instruction is got, by which the values can be inserted into a database. E.g.:

95Examples

© 2002-10 Dr. Detlef Meyer-Eltz

INSERT INTO ̀ tt_address` (`uid`, ̀ pid`, ̀ tstamp`, ̀ hidden`, ̀ name`, ̀ title`,
`email`, ̀ phone`, ̀ mobile`, ̀ www`, ̀ address`, ̀ company`, ̀ city`, ̀ zip`,
`country`, ̀ image`, ̀ fax`, ̀ deleted`, ̀ description`, ̀ module_sys_dmail_category`,
`module_sys_dmail_html`) VALUES("103", "43", "1087224349", "0", " Santa
Clause", "", "sc@gift.org", "333 333", "", "", "", "", "North Pole", "",
"Greenland", "", "", "", "", "", "1");

By a N:1-transformation in the transformation manager the insert instructions of all five example files
can be written into a single text file, so that all data sets then can be inserted into the database at
once.

96 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.11 Unit_dependence

You should know the most essential operation elements of TETRA.

Problem definition:

Texts in different files frequently depend on each other. Programming languages are a typical
example of it. Here the dependence is indicated by so-called Include directives. In this project shall
be demonstrated, how to use these directives to access the presupposed texts. A list of all the files
a Pascal source text directly and indirectly depends on shall be produced. To get this list, it is
necessary also to parse all presupposed texts.

TETRA Program:

The project is in the directory:

\TextTransformer\Examples\Unit_dependence

In this project some of the commands are used for the path and file treatment and it is shown how
texts are loaded to process them in sub-parsers.

7.11.1 Productions

In the programming language Pascal the presupposed Pascal-Units are listed behind the keyword
uses. E.g.:

uses

 Windows, Classes, SysUtils, Dialogs;

unit ::=

SKIP?

(

uses_clause

SKIP

)?

uses_clause ::=

"uses"

unit_name ("," unit_name)*

";"

unit_name ::=

IDENT

97Examples

© 2002-10 Dr. Detlef Meyer-Eltz

The code is skipped with SKIP until the keyword uses is found and then the list of the included Units
is parsed and until the end the text is skipped again.

7.11.2 Containers and parameters

At first the program must be told, in which directories the units have to be to looked up. So a Vector
container is defined on the page for the class elements

vstr m_vIncludeDirs

The user has to add the according directories to this vector, before he starts the program. E.G.

m_vIncludeDirs.push_back("C:\\Programme\\Borland\\BDS\\4.0\\source\\Win32");

The found files must be noticed someplace. So a mstrstr container is defined:

mstrstr m_mUnitPaths

To every name of a unit as a key the accompanying path as value can be stored in this map. Then
later can be found out easily whether a unit already was searched, when it appears again in another
unit.

if(!m_mUnitPaths.containsKey(sInclude)

...

The case that the path isn't found also must be noticed to not look for it once more. Therefore there
is a second map:

mstrnode m_mNotFoundUnits

Mstrnode is chosen here as a container type. Two strings which could be of interest can be stored
to the node value at once: the unit, in which the not found unit was listed and a level parameter,
which tells how many files must be opened to come to the unit from the original source file.

To attain these two information, the productions mentioned above must be provided with
corresponding parameters.

int xiLevel, const str& xsLookedUpWhere

The first unit production is then called with the current values in the start rule:

unit_dependence ::=

{{

str sWhereFound = basename(SourceName());

}}

unit[0, sWhereFound]

98 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.11.3 Include files

Everything is prepared for the decisive step now. If the name of a unit was found and it wasn't
searched for the corresponding file yet, by the function find_file the unit is lloked up in the include
directories.

 vstr::cursor cr = m_vIncludeDirs.getCursor();

 while(cr.gotoNext())

 {

 str sPath;

 if(!is_directory(cr.value()))

 throw CTT_Error(cr.value() + " is not a directory");

 if(find_file(cr.value(), change_extension(sInclude, ".pas"), sPath))

 {

...

With change_extension the pas-extension is appended at the name, as for Pascal files usual. As a
precaution at first with is_directory is checked whether the directory is available on your computer. If
you haven't modified the directory list (see above) or cannot because no Pascal is installed
presumably, then the program is stopped in this place.

If the search was successful, then the reference variable sPath contains the wanted path. By means
of load_file the file is loaded into the string buf now. It is the whole point now that the unit production
like a normal function can be called to parse the new text. It serves as an "sub-parser" with that:

 unit(buf, ++xiLevel, sInclude);

While the unit production has only two parameters in the main parser, it still gets the additional text
parameter as sub-parser for the call in first place. In the sub-parser for further included units now is
searched just the same as before in the main parser.

7.12 Java

You should know the most essential operation elements of TETRA.

Problem definition:

The programming language Java 1.4 shall be parsed.

TETRA Program:

The project is an adaptation of a Coco/R project:

http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/Java/JavaGrammar.html

The TextTransformer Java.ttp project is in the directory:

99Examples

© 2002-10 Dr. Detlef Meyer-Eltz

\TextTransformer\Examples\Java

In this project look-ahead productions are used and some special variants of looking ahead are
explained.
The use of the tree wizard and of the function table wizard is demonstrated step by step. First the
code for the creation of a parse tree is generated and then a simple transformation program (copying
program) will be made.

7.12.1 Coco/R adaptation

The Coco/R adaptation was carried out automatically by means of a TextTransformer program,
similarly as described for the older Coco/R version. The IF constructs of Coco/R, however, aren't
equivalent to those of the TextTransformer and because of their rare use the overhead for the
development of an automatic translation for them isn't worthwhile. Because of this defect the
transformation program isn't at the disposal for download. On enquiry, however, you can get it free of
charge.

7.12.2 Simple look-ahead production

The Java parser isn't LL (1) conform. The decision on the alternative to be chosen depends on a
look-ahead of more than a single token. The IF and the WHILE construct of the TextTransformer
allows such a foresight if in the respective condition a production is invoked for the look-ahead.

For example, if an identifier is recognized as next token in the statement production, then it isn't
clear at first whether this identifier represents a label or an expression. It represents a label if a colon
follows it.
So the progress is made dependent on the production isLabel

isLabel ::= ident ":"

isLabel can parse the following text exactly, if a colon follows the identifier. Altogether, the

grammar alternatives are therefore tied into the following IF construct:

IF(isLabel())

ident ":" Statement
ELSE

StatementExpression ";"
END

7.12.3 Negative look ahead

In the production ArrayInitializer a WHILE loop is called:

WHILE(commaAndNoRBrace())

"," VariableInitializer

100 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

END

where

commaAndNoRBrace ::= "," ("}" EXIT)?

This means, the loop is executed as long, as a comma is following but no closing curly bracket
follows the comma. If no comma follows, then commaAndNoRBrace cannot parse the current text. If
a comma is following and a closing curly bracket '}' follows the comma, the look-ahead production
commaAndNoRBrace also returns false. In this case this is forced by EXIT.

7.12.4 Complex look ahead

In the block statement production the same production is called for a look-ahead, which shall be
executed in the success case:

IF(LocalVariableDeclaration())

 LocalVariableDeclaration ";"
ELSE

(
 ClassOrInterfaceDeclaration
 | Statement
)
END

Attention: depending on the fact whether the testing of all literal tokens is activated in the project
options or not, the call of LocalVariableDeclaration for a look-ahead can have different results. For
example, if the token return - one of the alternatives of Statement - follows, it will be recognized as
an identifier ident, if not all literal tokens are tested, but only the first set of LocalVariableDeclaration.
So e.g. "return true;" would be interpreted as a local variable declaration, what surely is wrong.

Remark:
Indirectly further look-ahead parsers can be invoked while testing, whether LocalVariableDeclaration
matches the actual text or not.

7.12.5 Debugging a look-ahead

You can see what happens in detail when a look-ahead is tested, if you step into the look-ahead
with the debugger. First you can put a breakpoint on the word "System" in the sixth line of the
example text.

101Examples

© 2002-10 Dr. Detlef Meyer-Eltz

The project then can be run up to this point. After another three single steps the "IF" is marked in
the production "BlockStatement".

Now can step into the look-ahead. After a click on the corresponding button the debugger changes
to the production "LocalVariableDeclaration" and a '1' is shown in the little field right next to the
button.

This means that the debugger is in the first level of a look-ahead now. This is indicated by a '1' with a
gray background in front of the name of the production at the top of the stack in the window for the
stack too.

The debugger can be executed just the same as used for the main parser now within the look-ahead.
Behind the word "println", however, the parser cannot continue: no following token is recognized. The
look-ahead has failed and is left. The debugger again is in the production "BlockStatement" now but
in the ELSE-branch of the IF-structure.

The field for the indication of the level of the look-ahead is empty, i.e. the debugger shows the
progress in the main parser again.

102 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.12.6 Parse-Tree

The Java parser is a quite large project and a lot of work can be expected, to make a complete
transformation program from it. The wizards of the TextTransformer can help greatly here.
As an example, at first the code for the generation of a parse tree shall be inserted in the project by
the tree wizard. With the function table wizard then functions can be created by which the parse tree
can be evaluated.

It is frequently recommendable to create a transformation program at first that simply copies the
source files. With such a program the parser and the parse tree can be tested well: the program
works correctly if the transformed files are identical with the source files. At the copy program then
simple modifications can be made, the results of which can also be verified easily.

Who don't like to reproduce the following steps in detail can load the ready result made by the tree
wizard also directly:

...\TextTransformer\Examples\Java\JavaTree.ttp

If you call the tree wizard in the HELP menu, then a choice appears for the manner, how the tree
shall be created. You can leave this option.

Next a choice appears for the node type and an entry field for the node name at first. node is elected
as type and n is selected as name here:

Below of the name field you can already see, how the node parameter in the parameter field and the
node declaration in the text of the production will look like.

103Examples

© 2002-10 Dr. Detlef Meyer-Eltz

You leave the presetting on the next page of the wizard:

Then choose the complete option on the next page:

Three options can be chosen for the treatment of the literal tokens on the next page of the assistant.

For the copy program the undermost point must be selected. The semantic action IgLit which takes
care that both a node for the ignored characters and a node for the recognized text are added to the
tree, is then inserted after every occurrence of a literal token in the project.

The IgLit function then will be inserted on the element page..It looks like:

Name: IgLit // Ignorierter Text und Literal

104 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Parameter: node& xnNode, const str& xs
Text:
{{
node n("IgLit");
xnNode.addChildLast(n);
n.add("IGNORED", xState.str(-1));
n.add(xs, xState.str());

}}

A sub-node with the label "Iglit" is added to the tree node xnNode and this sub-node gets the nodes
for the ignored text and the text recognized by the token.

On the next page activate the check box: Pass parameters to all calls.

Then you can go to the last page and click on the Finish button.

After the results are shown you can close the Tree wizard by the Cancel button.

You can examine a generated tree after execution of the program with the start rule CompilationUnit,
as demonstrated for the XML example in the variable inspector:

105Examples

© 2002-10 Dr. Detlef Meyer-Eltz

Remark: At the end of the start rule CompilationUnit explicitely the symbol EOF is set. So the
wizard insertes an action for this symbol too:

EOF {{IgLit(n, "Literal");}}

In this last action the ignored text will be inserted in the tree, which follows on the last symbol of the
Java grammar:

the comment: "// JavaParser"

7.12.7 Function-Table

By the function table wizard you now can insert a frame for evaluating the parse tree.

Who don't like to reproduce the following steps in detail can load the ready result made by the
function table wizard also directly:

...\TextTransformer\Examples\Java\JavaCopy.ttp

If you study the parse tree in the variable inspector, you will recognize, that it consists of branches
with the names of productions and there is a node for every token with the label: IgLit. A function
table shall be produced, with functions for the treatment of the nodes of all labels.
The IgLit nodes are primarily important for the copy program since the complete source text is
available in the two sub-nodes. All the production nodes can be treated uniform: they serve as
inter-stations for the iteration to the IgLit nodes.
So only two functions are needed, altogether:

Default function for the treatment of the production nodes
IgLit function for the treatment of the IgLit nodes

On the Start page of the function table wizard select: Create new table. So you come to the second
page. The fields of this page should be filled as depicted:

On the next page select : Function for a single label

106 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

On the next page write the label: IgLit

"package" {{IgLit(n, "Literal");}}

On the next page write the function name: CopyIgLit and for the name of the default function:
CopyDefault.

As default function choose iteration on the next page.

This function is for the iteration to the IgLit-nodes.
On the next page choose value and change the text to:

{{
node pos = xnNode.firstChild();
out << pos.value();
pos = pos.nextSibling();
out << pos.value();
}}

This function writes both parts of text of an IgLit-node.

107Examples

© 2002-10 Dr. Detlef Meyer-Eltz

Now you will come to the last page and click on the Finish button.

By Cancel you can close the function table wizard now.
On the element page you can see, that a function table and two functions are inserted.

The copy project nearly is ready now. Unfortunately, there is a flaw. On the token page the tree
wizard had inserted code for the addition of the token strings only and nor for the ignored characters.
So you have to change the actions on the token page manually to:

{{IgLit(xn, "LITERAL");}}

The last thing you have to do is to call the evaluation of the tree. Change

"/* Breakpoint */"

in the action at the end of CompilationUnit to:

m_ftCopy.visit(n);

If you execute this project the java source code will be copied into the output window.

108 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

7.13 C-typedef

You should know the most essential operation elements of TETRA.

Problem definition:

New names can be defined as an abbreviation of more complex expressions within a text
sometimes. Such names shall be inserted during parsing as additional tokens.
Type definitions in programming languages are a typical example of such abbreviations. In this
TETRA project this is demonstrated for the language C. For better clarity the rules of C were reduced
verry much The complete C grammar is available soon at

http://www.texttransformer.org

TETRA Program:

The project is in the directory:

\TextTransformer\Examples\Typedef

The use of dynamic scanners with placeholder tokens and text scopes is demonstrated in this
example.

7.13.1 Typedef

A type definition is started in C with the keyword typedef. For example:

typedef const char* cpchar;

cpchar can be used instead of "const char*" in the C code after this definition.
The simplified production type_definition for parsing the definition is:

"typedef"

declaration_specifiers? "*"*

ID

{{ AddToken(xState.str(), "TYPE", ScopeStr()); }}

";"

The second line contains the rule for the expression, which has to be abbreviated. ID in the third line
recognizes the name of the definition.
With the following semantic action the found name is added to the dynamic token "TYPE" as an
additional alternative now. TYPE is defined on the token page as:

TYPE ::= {DYNAMIC}

TYPE is used in the type_specifier production:

 "void"

| "char"

| "short"

109Examples

© 2002-10 Dr. Detlef Meyer-Eltz

| "int"

| "long"

| "float"

| "double"

| "signed"

| "unsigned"

| TYPE

So:

cpchar p;

p is correctly recognized as a declaration of a variable with the user defined type cpchar.

7.13.2 Scopes

The third parameter in the call:

{{ AddToken(xState.str(), "TYPE", ScopeStr()); }}

wasn't explained yet. The area within which the additional token is recognized can be limited with
this parameter. It is an optional parameter. If this optional parameter is left out, the definition applies
to all following code. If the third parameter is passed, however, the definition is then valid only for
time time as an area is defined with the corresponding scope name. Such a scope is defined at the
very beginning of the start rule translation_unit and it is removed at the end:

{{

PushScope("external");

}}

external_declaration*

{{

PopScope();

}}

Likewise happens in the compound_statement: These scopes are numbered, to be able to generate
unique names for them. Scope names are managed with a stack. The command PushScope puts
an additional scope on the already available stack of scopes and PopScope removes the topmost
scope. A dynamic tokens is recognized as long, as the scope, for which it has been defined is still
in the stack.
The type pchar is defined in the following example within the first compound_statement.

 if(xi > 0)

 {

 typedef char* pchar;

 pchar p;

 }

 else

 {

 pchar p; // error

 }

110 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

This definition isn't, however, valid in the second compound_statement any more so that its use
leads to a fault. This is exactly the mechanism of type definitions in C.

7.14 TETRA productions

You should know the most essential operation elements of TETRA.

In the directory

"\TextTransformer\Examples\Productions"

is the project for the TETRA script language. All actions are removed.

7.15 TETRA-EditProds

You should know the most essential operation elements of TETRA.

The project in the directory

"\TextTransformer\Examples\EditProds"

is an example for a parser, which can be used for different purposes, by producing at first a parse
tree. The project EditProds can edit TETRA productions in two manners, which are nearly opposed
to each other:

1. insert tree nodes into productions
2. delete semantic actions form productions

7.16 TETRA interpreter

You should know the most essential operation elements of TETRA.

In the directory

"\TextTransformer\Examples\Interpreter"

is the project for the TETRA interpreter. All actions are removed.

The parser for the interpreter is based on a grammar, which you can find at:

http://www.antlr.org/grammars/cpp

/*

111Examples

© 2002-10 Dr. Detlef Meyer-Eltz

 * PUBLIC DOMAIN PCCTS-BASED C++ GRAMMAR (cplusplus.g, stat.g, expr.g)
 *
 * Authors: Sumana Srinivasan, NeXT Inc.; sumana_srinivasan@next.com
 * Terence Parr, Parr Research Corporation; parrt@parr-research.com
 * Russell Quong, Purdue University; quong@ecn.purdue.edu
 *
 * VERSION 1.2
 *
 * SOFTWARE RIGHTS
 *
 * This file is a part of the ANTLR-based C++ grammar and is free
 * software. We do not reserve any LEGAL rights to its use or
 * distribution, but you may NOT claim ownership or authorship of this
 * grammar or support code. An individual or company may otherwise do
 * whatever they wish with the grammar distributed herewith including the
 * incorporation of the grammar or the output generated by ANTLR into
 * commerical software. You may redistribute in source or binary form
 * without payment of royalties to us as long as this header remains
 * in all source distributions.
 *
 * We encourage users to develop parsers/tools using this grammar.
 * In return, we ask that credit is given to us for developing this
 * grammar. By "credit", we mean that if you incorporate our grammar or
 * the generated code into one of your programs (commercial product,
 * research project, or otherwise) that you acknowledge this fact in the
 * documentation, research report, etc.... In addition, you should say nice
 * things about us at every opportunity.
 *
 * As long as these guidelines are kept, we expect to continue enhancing
 * this grammar. Feel free to send us enhancements, fixes, bug reports,
 * suggestions, or general words of encouragement at parrt@parr-research.com.
 *
 * NeXT Computer Inc.
 * 900 Chesapeake Dr.
 * Redwood City, CA 94555
 * 12/02/1994
 *
 * Restructured for public consumption by Terence Parr late February, 1995.
 *
 * DISCLAIMER: we make no guarantees that this grammar works, makes sense,
 * or can be used to do anything useful.
 */

7.17 TETRA import

You should know the most essential operation elements of TETRA.

In the directory

"\TextTransformer\Examples\ImExport"

112 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

is the project for the TETRA Import of ASCII text files, which were previously exported from the
TextTransformer. All actions are removed.

The format for the exported files is provisional and probably will be replaced by a XML format.

7.18 TETRA-Management

In the directory

"\TextTransformer\Examples\Management"

is the project, which is used to parse a management.

113Examples

© 2002-10 Dr. Detlef Meyer-Eltz

7.19 Cocor import

You should know the most essential operation elements of TETRA.

This example is for advanced users of the TextTransformer and the compiler compiler Coco.

The TextTransformer was inspired by the compiler compiler Coco/R and is related to it in many
respects. The productions of a Coco/R compiler description can be translated into the syntax of the
TextTransformer essentially without problems.
This is the task of the project in the directory:

"\TextTransformer\Examples\CC2TT_17"

An example source is the script Cr_17.atg
(originally: Cr.atg. The 17 is the version number of Coco/R. The Java project is an adaption of a
newer Coco/R project.) In this script the syntax of the Coco/R compiler description language itself is
defined.

To parse the script, the TextTransformer has to adapt definitions of the script:

the same ignorable characters must be defined
the same tokens must be recognized
the productions must be parsed in the same manner

7.19.1 Ignorable characters

In Coco/R the ignorable characters and comments are defined separately. (The space character is
always ignored.)Additional there are pragmas to control the compiler, which may occur at arbitrary
positions inside of the source. In the script Cr_17.atg this is written in the lines:

IGNORE tab + eol + lf
PRAGMAS
 Options = "$" {letter}.
COMMENTS
 FROM "/*" TO "*/" NESTED

In the TextTransformer the ignorable characters, comments and pragmas are combined to one
expression and set in the project options:

IGNORE: [\r\n\t]
PRAGMA = \$[[:alpha:]]*
COMMENT = /*([^*]|*+[^*/])**+/

results in a new IGNORE:

114 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

IGNORE =
 ([\r\n\t]| \

{PRAGMA}|{COMMENT})+

Remark: Nested comments cannot be defined in the TextTransformer.

7.19.2 Tokens

An automated translation of the token specification of Coco/R into the regular expressions of the
TextTransformers in principle should be feasible.
But this is not, what shall be done here, because this would mean a considerable effort, in particular,
because of the different manner in which character sets are defined. Furthermore the definitions of
token are only a little part of a translating project.
The token definitions of the Coco/R compiler description shall be translated here directly.

In Coco/R at first the used character sets are defined and then used by an EBNF-definition of the
token. In the TextTransformer this two step procedure could be applied too, but normally the token
are defined together with its character sets. Hereby several predefined character sets can be used,
which don't exist in Coco/R.

The according lines from Cr_17.atg are:

CHARACTERS
 letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_" .
 digit = "0123456789" .
 cntl = CHR(0)..CHR(31).
 tab = CHR(9) .
 eol = CHR(13).
 lf = CHR(10) .
 back = CHR(92) .
 noQuote1 = ANY - '"' - cntl - back .
 noQuote2 = ANY - "'" - cntl - back .
 graphic = ANY - cntl .

TOKENS
 ident = letter {letter | digit} .
 str = '"' {noQuote1 | back graphic } '"'
 | "'" {noQuote2 | back graphic } "'" .
 badstring = '"' {noQuote1 | back graphic } (eol | lf)
 | "'" {noQuote2 | back graphic } (eol | lf) .
 number = digit {digit} .

In the TextTransformer these character sets can be expressed as follows:

noQuote1 = [^\"[:cntrl:]\\]
noQuote2 = [^'[:cntrl:]\\]
graphic = [^[:cntrl:]]

Thus the tokens are:

115Examples

© 2002-10 Dr. Detlef Meyer-Eltz

IDENT :: = [[:alpha:]_]\w*
STRING ::= \"([^\"[:cntrl:]\\]|\\[^[:cntrl:]])*\" \
 |'([^'[:cntrl:]\\]|\\[^[:cntrl:]])*'
BADSTRING ::= \"([^\"[:cntrl:]\\]|\\[^[:cntrl:]])*(\r|\n) \
 |'([^'[:cntrl:]\\]|\\[^[:cntrl:]])*(\r|\n)
NUMBER ::= \d+

7.19.3 Productions

Coco/R uses the EBNF syntax and some special symbols to define productions. EBNF means
"Enhanced Backus-Naur-Form". This syntax in essence accomplishes the same as the regular
expressions of the TextTransformer. Instead for example of the bracketing of a repeat "(...)*" a pair of
braces "{...}" is used. Analog other bracketing has to be exchanged:

Coco/R TETRA

[...] (...)?

{...} (...)*

(.) {_ ... _}

<...> [...]

The ANY symbol of Coco/R can be replaced provisional by the SKIP symbol. But the correctness of
this replacement can't be guaranteed automatically. It must be checked for each single case.
For the WEAK and the SYNC symbol of Coco/R, there is no corresponding symbol in the
TextTransformer. They can be omitted, because they don't have a meaning for the parsing directly,
but only for the treatment of parser errors.

7.19.4 Post processing

If a transformation of a Coco/R scripts is performed, the result can be saved as a file with the
extension "ttr". Such a file can be imported into the TextTransformer.
The token have to be translated directly - as just explained - and added to the project on the token
page manually.
In the automatic transformation, there might be some incorrect translations.

1.: You have to check, if all empty alternatives are followed by a semantic action.

2.: The simple replacement of the ANY symbols by the SKIP symbol might be incorrect. The
according positions have to be checked.

In the Cr_17.atg project following corrections have to be done:

· (ANY)* can be replaced simply by SKIP

· { ANY | badstring } must be replaced by (SKIP | string | badstring)*. Otherwise a text including a

116 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

quotation would be taken into a piece before the closing quotation mark and a piece after the
closing quotation mark, that means into: SKIP badstring.

7.19.5 Semantic actions

The semantic actions are included into the brackets {_ and _} as not interpretable code in the
transformed text, because it has not to be assumed, that these actions are interpretable.
You can remove the actions totally. To do so, you have to disable the code inside of double braces
"{{...}}" for the interpreter in the productions Attribs and SemText. This can be done in the local
options of these productions. Then the interpreter will not write the code for the semantic actions
into the target text. Only the code for the pure parser is generated.

Remark:

For the production SemText the local options are already activated, as the testing of all literal tokens
has to be turned off. This is necessary as in principle SemText is:

SemText ::= "(." SKIP ".)"

If for example the literal token "(" would follow the opening bracket "(." in the text, it would be
recognized as next token, because literal tokens have a proference before the tokens of a SKIP
recognition. If however, the scanner only tests the tokens, which may actually occur according to
the actual grammar rule, all other tokens of the project are no problem for the recognition of SemText
.

TextTransformer

Part

VIII

118 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

8 How to ...

Notes to special advanced topics and uncommon concepts are made here.

Load data
Structure data
Write into additional target files

8.1 Load data

External data are needed in a project now and then. Single parameters can be submitted as a start
parameter. It is, however, also possible to read larger amounts of data from an external file.

In the following example a list of surnames shall be used to decide whether a name recognized with
a token NAME is a first name or not. This can be done with the following code if the first names are
stored as keys in the map m_mFirstNames.

NAME

{{

 if(m_mFirstNames.findKey(to_upper_copy(xState.str())))

 xsVorname = xState.str();

 else

 xsNachname = xState.str();

}}

To feed the first names into the map, at first a file is loaded with the names into a string buf which
then is parsed with the production ReadFirstNames.

{{

str buf;

if(!load_file(buf, "FirstNames.txt"))

 throw CTT_Error("\"FirstNames.txt\" konnte nicht geladen werden");

ReadFirstNames(buf);

}}

The production ReadFirstNames is called as sub-parser within the semantic action here. The list
could look like:

AARON

ACHIM

ADALBERT

ADALIA

ADAM

ADELBERT

ADELE

...

It is very simple to parse it:

(

 SKIP {{ m_mFirstNames[trim_right_copy(xState.str())] = ""; }}

119How to ...

© 2002-10 Dr. Detlef Meyer-Eltz

 EOL

)*

8.2 Structure data

Neither one's own classes nor structures can be defined in the TextTransformer interpreter. If this is
really required, you have to do it in the external code or in the part of code, which is exportable only.
For most purposes, however, node/dnode is completely sufficient as a structure substitute. E.g. the
typical data of an employee existing as strings can be stored in a node like that:.

 node n(sFirstName, sLastName);

 n.setAttrib("street", sStreet);

 n.setAttrib("address", sAddress);

 n.setAttrib("bithday", sBirthday);

 n.setAttrib("salary", sSalary);

Several of such data sets can be managed as a sub-nodes in a tree and e.g. several of nodes or
trees can be collected in a mstrnode class element too.

8.3 Write into additional target files

In principle, the TextTransformer is orientated at the model, that a source file is transformed into a
destination file. No more files can be opened for writing at the same time in the TextTransformer
interpreter. If you have to write more than one target file - e.g. a second file with logging information -
you have to redirect the output and finally to reset it to the original file.

{{

RedirectOutput(append_path(TargetRoot(), xsPfad));

out << sLoginfo << endl;

ResetOutput();

}}

TextTransformer

Part

IX

121User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9 User interface

After the start of the TextTransformer following screen appears:

The arrangement of the windows is determined by the layout "EditDefault". You can easily
customize the layout to your own screen and your own needs with the mouse.

Below of the main menu and the tool bar, there are two blocks of windows, each with several tabs.

The left block contains tabbed windows for different tasks, for example the creation of TETRA rules
(productions) and their execution. The source text to be processed is loaded into the big window on
the active tab page. Later, the result of a transformation of this text appears in the target window
lying beneath.

The right block consists in some windows for the navigation between the TETRA rules.

9.1 Tool bar

No matter, which window is active, the menu and the tool bar remain reachable. But the content of
these components can change. Menu items can be added, removed or de/activated.

Some actions triggered by the menu are of general nature, but the others refer to the actual
windows. For example, to save a project is a general action, but to save a text refers to the activated

122 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

editor.

You can move the groups of buttons with the mouse and you even can undock and close such a
group.

A closed group can be shown again, if you right click on the toolbar and select the according group.

The positions of the groups are saved together with the docking window layout.

9.2 Main menu

The main menu items are:

File
Edit
Search
Project
Start
Code generation
Options
Windows
Help

9.2.1 Menu: File

In the file menu texts and projects can be opened and saved.

123User interface

© 2002-10 Dr. Detlef Meyer-Eltz

The upper half of the menu items comprises the actions, which concern texts, and the lower half
concerns the whole project.

Items, concerning texts, always refer to the current editor field! For example, if the source text
window were active (the blinking cursor is in this window), the text would be opened into this window
or saved from it. To save a text from the output window, this window must be active. There are other
editors in the script repositories and on the editor page.

New

The current text will be deleted.

Open...

If a source file is opened, it is shown in the viewer. In other cases the text is loaded into the current
editor window.

UNIX line breaks are completed automatically to Windows line breaks.

An unusual feature is the selection box Encoding:

Here are three possibilities:

ANSI: the opened text is interpreted as a simple Windows text, i.e. as ANSI coded. Every byte of
the file is represented in the editor as a single character of the ANSI font.

UTF-8 (ANSI): the opened text is interpreted as UTF-8 coded. TETRA cannot really process all

124 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

UTF8 encoded texts but only such that can be transformed into an ANSI coded text. Even in this
mode characters are shown wrongly in the editor, if they don't belong to the ANSI set.

auto: an XML file is interpreted as UTF-8 coded, if UTF-8 inside is indicated as a coding. All other
texts are interpreted as a simple Windows text.

Reopen

A text, which already was opened by the TextTransformer, can be loaded again into the current
window. Hereby the text is always opened in ANSI mode (see above).

Save

To save the text of the current editor field.

Save as...

To save the text of the current editor field with a new name.
You can choose different encodings as when opening a text (see above).

New project

You can create a new project either from scratch or you can start with the wizard for the creation of
a new project.

Open project

Opens an existing project.

Reopen project

To open a project, that already had been opened in the TextTransformer. A copy of the current
version of the project is made automatically, with the same name and the additional extension "bak".

Save project

To save the current project.

Save project as ...

To save the current project with a new name.

Make a backup of the project

A sub-directory will be created in the directory of the project and the actual project file will be copied
into it. If the project uses own frame files, they will be copied too. The names of the sub-directories
will be composed of the word "Backup" and a number of three digits. The number of a new directory

125User interface

© 2002-10 Dr. Detlef Meyer-Eltz

will be greater by one than the greatest number in the names of the other backup directories.

Import/Export

TextTransformer projects are usually written and read again with the functions mentioned above in a
binary format. With the functions for the export or import, however, projects also can be written and
read in a text form.

Exit

To exit the TextTransformer.

9.2.2 Menu: Edit

In the edit menu the usual items to cut, copy etc. of text are listed.

The actions always refer to the current editor field!

Undo and Redo

The functions: Undo and Redo are working in two manners:

· If the script is in the editing mode, the individual editing actions are undone or done again.

· If the script isn't in the editing mode the complete state of a script is restored which it had before
changes were accepted. This is possible within one session only.

By the menu item

Clear semantic code on all pages

you can remove all actions assigned to tokens and all semantic code in the productions at once. All
class elements are removed too.

126 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

By means of the item

Copy text to output window

or the button

sections of text can be copied to the output window without transformation. At first the section of
text must be marked and then the text is appended to the output.

9.2.3 Menu: Search

In the search menu are the usual items for finding and replacing text.

The actions
Find
Find Next
Replace
Goto line ...
always refer to the current editor field!

Searching/Replacing in scripts

The kinds of scripts, in which expressions shall be looked up or replaced, can be set at the bottom
of the dialog. If several script types are selected, the search is carried out forward in the sequence:
tokens, productions, elements and tests. In all fields of the scripts is searched. If you don't begin
with the new button, the search starts in the current script at the current position and is then
continued in the scripts with the alphabetically following names.

127User interface

© 2002-10 Dr. Detlef Meyer-Eltz

If a list of the search results shall be prepared, it is then published in a special window: Search. You
can navigate to the corresponding position by selecting the entries there.

9.2.4 Menu: Project

The menu Project only is shown if the input mask for a script is visible too. The functions for the
management and compiling of scripts are summarized here

128 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

New
Accept
Cancel
Delete
Collapse semantic code
Clear semantic code from script
Clear semantic code in all scripts
Copy script . to copy a script into the clipboard
Paste script : to insert a script from the clipboard
Comment . for each script a comment can be entered
Local options
Parse isolated
Parse interdependent
Parse all
Import
Export

9.2.5 Menu: Start

The functions for debugging and executing projects are summarized in the menu Start

Actions
Parse start rule

129User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Next token
Back to the last token
Single node
Single step back
Into the look-ahead
Out of the look-ahead
Whole branch
Start
Execute
Transformation of file groups
Reset
Examine variable
Toggle text breakpoint
Clear text breakpoints
Mark recognized/expected token
Goto current position
Show last message

9.2.6 Menu: Code generation

The menu contains functions for the support of the Delphi developers, which are using the
TetraComponents and functions for the manipulation of the code frames and for the generation of
c++ code with the professional version of the TextTransformer.

C++ code generation

Edit header frame opens an editor with the frame for the header of the c++ parser class

Edit source opens an editor with the frame for the implementation of the c++ parser class

Edit main-file frame opens an editor with the frame for a main file or another file, where the parser
is called.

Generate c++ code starts the generation of the c++ code for a parser class.

Delphi support

Edit component frame opens an editor with the frame for the Delphi support.

130 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Generate component code creates a Pascal unit, which can be included into a Delphi application,
which uses the TetraComponents

9.2.7 Menu: Options

(Re-)Creating user data

The menu Options consists of three groups of options

1. Options of the user interface
2. Environment options
3. Project options

There also are local options for single productions.

9.2.7.1 User data

There are some settings and data which can be modified by individual users without changing the
corresponding data for other users. E.g. the layouts, the environment options but also the project
examples are part of these data.

At the installation of the TextTransformer the original user data are written into the program folder of
the TextTransformer:

C:\Program files\TextTransformer\data\TextTransformer

When TextTransformer is started for the first time the dialog for the creation of the user data is called
automatically to prepare a copy of the data in a folder that can be chosen freely by the user, as far
as it is accessible to the user. It is possible to restore the folder later or to create it newly in another
place.

131User interface

© 2002-10 Dr. Detlef Meyer-Eltz

You can start the copying of the data with the button Create TextTransformer folder. In the case of
success the Ok button is activated and the Cancel button is deactivated.

An existing Settings folder from a previous installation isn't overwritten. The layouts of the last
installation can explicitly imported into the user directory by the menu.

If the folder for the TextTransformer data has been created successfully, it has the following
structure:

TextTransformer

\Backup

\Examples

\Frames

\Log

\Projects

\Settings

\Target

9.2.7.2 Options of the user interface

The settings of the user interface are concerning

the way of transformations and
the editing of projects
the view in the debugger
the layouts in the edit mode and debug mode

132 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.7.2.1 Transformation

1. STARTPOSITION:

If a new transformation is started, it will begin either principally at the beginning of the input text or, if
necessary a dialog is shown, where you can choose a start position.

If the source text just was opened, the text cursor is in the upper left edge of the input window. At
first this is therefore the only position at which a transformation can start. As soon as the cursor has
moved, might be by the keyboard or the mouse or might be by an interrupted transformation, there
are several possibilities to start a new transformation. One of these possibilities can be chosen in
the following box:

Only the possible options are activated, the others are grayed. If only the first option is possible, the
box will not be displayed.

Transform the whole text
Transform the marked section of text
Transform the text beginning at the last start position again
Transform the text beginning at the position of the last recognized token
Transform the text beginning at the actual cursor position

Transforming the whole text

If you have just loaded the text from the hard disk, the cursor is at the beginning of the text and
when you start the transformation, the whole text will be processed.

Transforming the marked section of text

If a section of the text is marked, when you start the transformation, only this section will be
processed.

Transforming the text beginning at the last start position again

If the cursor is not at the beginning of the text, when you start the transformation you can chose to

133User interface

© 2002-10 Dr. Detlef Meyer-Eltz

begin again at the position, where you started the last time. This is useful for the repeated testing of
a certain production at a certain part of text.

Transforming the text beginning at the position of the last recognized token

This is another option of the dialog above, which allows the interactive transformation of a text. The
transformation can be done section by section. After you have processed one section, you must
reset and choose a new start rule. Now you can continue at the last token.

Transforming the text beginning at the actual cursor position

This option of the dialog above is also useful for an interactive transformation. After an interrupt of the
transformation and a reset, you can choose a new start rule and continue at the position of the
mouse cursor. If you have not moved the mouse after the stop, the transformation will be continued
at the end of the last recognized token.

2. OUTPUT:

After a transformation was executed, the result of the transformation is in the output window. If you
immediately push the reset button after the transformation, then a dialog box appears, which offers
deleting of the output text.
If the output window isn't empty at the beginning of a new transformation, then there are three
options for TETRA to behave:

1. Deleting output text without demand
2. Appending the new output text at the old ones
3. Displaying a selection dialog

9.2.7.2.2 Editing

Accept changes in scripts automatically

If a script is in the editing mode, i.e., if it is new or was just changed, then the changes must be
accepted before other actions can be executed, e.g. before another script is changed to or before
the project is compiled. If the option Accept changes in scripts automatically is activated, the
changes of a script are accepted automatically.

9.2.7.2.3 View

1. SYNTAX TREE:

Here you can determine, if - after compilation of a production - the names of all nodes are displayed
in the syntax tree or, if only the names of the terminal, SKIP and non-terminal nodes (respectively
their branches) are displayed. In the last case the syntactical structure is to be seen clearer. The
names of repeats and alternatives only are important if you want to see the relationship to produced
c++ code.

134 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

 non/terminal names only

all names

2. MARKED TOKEN:

If a transformation is executed step by step, the current position is marked by a token in the input
text. Depending on setting this is

the token recognized last, or
the next expected token

A default setting, which is active at the start of the TextTransformer can be set here. However, this
value can always be changed during debugging by the button:

show recognized token

show expected token

9.2.7.2.4 Layouts

If TextTransformer changes between editing and debug mode, the layout is changed automatically
too. If you don't change the according options, the default layouts are used respectively. On the
Layouts page of the options dialog for the user interface you can choose other layouts.

135User interface

© 2002-10 Dr. Detlef Meyer-Eltz

All layouts, which are stored in the Settings folder of the DATA FOLDER, are listed in the selection
boxes on the right. You can choose one of them as well for the edit mode as another for the debug
mode.

If the box Auto-save layouts is checked, a changed layout will be saved automatically if the mode of
the program is changed or if it is closed.

9.2.7.3 Environment options

On the first register page of the environment options a tree is presented. The nodes of the tree show
the sections of the Ini-file tetra.ini, which exists in the same directory as the TextTransformer
program: tetra.exe.

CONFIG
EXTENSIONS
FRAMES
PATH

On the second register page you can change the set of filters for the files, which can be opened by
the TextTransformer.

9.2.7.3.1 CONFIG

Here you can choose the language of the of the user interface, by setting

English for English (default)
German for German

136 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.7.3.2 EXTENSIONS

Here you can choose the extension for the files, which are created from the TextTransformer

Key Meaning Default value
Cpp_Header_Extension extension of the created header files h
Cpp_Source_Extension extension of the created source files cpp
ComponentSupport_Extension extension of the file, created for the

component support
pas

9.2.7.3.3 FRAMES

Here you can choose the names of the default frame files. These files are used for the generation of
code or for the component support.

Key Meaning Default value
Cpp_ParserHeader Frame for Header-files ttparser_h.frm
Cpp_ParserSource Frame for sourcecode-files ttparser_c.frm
ComponentSupport Frame for the component support file enums_pas.frm

Note: For each project, you also can create individual frame files, which are stored in the according
project directories.

9.2.7.3.4 PATH

The TextTransformer program is installed into the PROGRAM FOLDER. When you start the program
for the first time you are asked, to select a DATA FOLDER for the user data.

Here you can choose different paths:

Frames default "DATA FOLDER\Frames"

Directory for the default frames for code generation

Projects default "DATA FOLDER\Projects"

The project directory is the root directory of all your different TextTransformer projects.

Backup, default: "DATA FOLDER\Backup"

Into the backup directory the group of files is copied, which shall be saved before they are
transformed. This directory can be modified temporarily.

137User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Target, default "DATA FOLDER\Target"

The target directory is set at first as the target for the transformation of groups of files. This directory
can be modified temporarily.

9.2.7.3.5 File filter

On the second register page of the environment options and in the dialog for the transformation of
groups of files you can change the set of filters for the files, which can be opened by the
TextTransformer.

In the box all types of files are listed, which you can choose at the moment, either to open a file into
the input window or to filter a group of files for transformation. Each item can be deleted or changed.

To add a new filter, you first have to click on the New button. Now you can write the description and
the filter itself into the according fields. It is possible, to list several masks into a single filter. To do
this, you have to separate the single masks by semicolons. For example:

Description: Pascal files
Filter: *.PAS;*.DPK;*.DPR

If a mask was added, deleted or changed and you finish the dialog by Ok, the whole list is saved, so
that you can use it in the next session with the TextTransformers again.

9.2.7.4 Project options

The project options are valid for the actual project.
They are stored together with the project automatically. But you also can save and load them
individually as ASCII file. For this the dialog of the project options has its own menu. Project option
files have the extension: tto.

The options are place on several register pages:

Names and Directories
Parser/Scanner
Inclusions
Encoding
Warnings/Errors
Code generation

138 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.7.4.1 Names and Directories

On the first page of the project options names and directories can be selected. Directories are
calculated relatively to the project.

Start rule
Test file
Frame path

9.2.7.4.1.1 Start rule

A start rule can be selected from the list of all productions, which is set, when you open the project.

If no start rule is selcted here, the production with the same name as the project will be set as start
rule. If there is no such production, no start rule will be set.

9.2.7.4.1.2 Test file

It is possible to select a file which is loaded into the source text window when opening a project.
This is primarily desirable as long as the project is under the development.

9.2.7.4.1.3 Preprocessor

Source files can be preprocessed while they are loaded. The preprocessor is another instance of the
TETRA interpreter, which executes a TETRA project. This project can be set here.

Another preprocessor project also can be set in the preprocessor project. So a whole batch of
pre-processing can be executed.

139User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.7.4.1.4 Frame path

Here you can set the paths, where the frame files are stored, which are used for the creation of
code.

Default frames are in the FRAMES directory.

enums_pas.frm is the default frame for the component support
ttparser_h.frm is the default frame for the c++ header
ttparser_c.frm is the default frame for the c++ code

These standard frames can be modified individually for each project. It is recommended to save the
modified frames together with the project into a common directory.

9.2.7.4.2 Parser/Scanner

The following options can be set as project options for parsers and scanner.

Ignorable characters
Case sensitivitiy
Word bounds
Parameter and {{..}}
Global scanner
No failure alternative to SKIP
No failure alternative to ANY

9.2.7.4.2.1 Ignorable characters

Usually spaces within the source text of a program are irrelevant, and when, the TextTransformer
looks for the start of a token, it will simply ignore them. Other separators like tabs, line ends, and
form feeds may also be declared irrelevant.

Example:

A Production for the sum of two terms can be easy written as:

140 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Sum = Term "+" Term

This rule not only shall recognize a text like:

"23+4"

but also

"23 + 4" and " 23 + 4" etc.

The spaces between the numbers and the plus operator are irrelevant and should be skipped. If the
space were not set as irrelevant, additional token for the gap between the terms and the operator
had to be defined. For example:

Space = "[\n\r\t]*" (linefeeds line breaks, tabs and spaces).

The production above had to be reformulated:

Sum = Term Space "+" Space Term

Depending on the activation of the check box Regex, the ignorable characters will be defined as a
list of characters or as a regular expression.

Definition of the ignorable characters as a list of characters

Spaces, linefeeds, line breaks and tabs are set as ignorable characters per default. They can be
removed or added to the list of ignorable characters simply by clicking the accordant check box.

Manually other character can be added too.

Definition of the ignorable characters as a regular Expression

In spite of a list, you can define the ignorable characters also by means of a regular expression. To
do so, the box Regex must be activated. The text of the edit field now will be interpreted as a
regular expression.
For example the expression "\s*" could be set. Then all characters of the character set \s would be
skipped. That's about the same as a character list, where all check boxes are activated. An example

141User interface

© 2002-10 Dr. Detlef Meyer-Eltz

that makes more sense is:

(\s|//[^\r\n]*)*

By means of this expression not only the spaces will be skipped, but also line comments.

You also can set the name of an already defined token into the edit field. Now this token defines
the ignorable characters.
If the check box regex is activated and the text in the edit field only consists of literal characters, the
text will be interpreted as the name of a token.

Remark: A regular expression, that defines the ignorable characters, will automatically be included
into parenthesis and preceded by the anchor "\\A", to assert, that the skipped section always will
begins at the actual text position.

Remark: When you use a list of ignorable characters, it is possible to access the skipped
characters, which follow on a SKIP node, by xState.str(-1). If you use a regular expression, this is
not possible.

9.2.7.4.2.2 Case sensitive

If the option CaseSensitive is activated upper case letters are distinct from lower case letters.

9.2.7.4.2.3 Word bounds

This option only applies to the recognition of literal tokens, but not on regular expressions.
If the word bounds option is activated, a token will be recognized only, if it begins or ends with a
word bound. A word bound mostly is the transition of an alphanumerical character or the underscore
and a character which doesn't belong to this class \w. Exactly a word bound is defined by three
cases:

The character adjacent to the token is not member of \w
The exterior character of the token doesn't belong to \w
The token is situated at the begin or the end of the input

Example:

In the text:

"sindbad the seaman",

following expressions have two word bounds: "sindbad", "the" and "seaman".
Only one word bound is in: "bad", sea" and "man".

At this example you can see, that it is possible to analyze the internal structure of single literal
words, if you deactivate the word bounds.

Normally it is recommended to activate word bounds, because otherwise there is a great danger of

142 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

wrong recognitions. For example: if word bounds are deactivated and the token "end" is defined, the
beginning of the name of a variable in the following line is wrong recognized:

 endVar := 10;
end

9.2.7.4.2.4 Parameter and {{...}}

Here you can determine, if not bracketed text of the parameter field or the field for actions, which
accompany token, is interpretable or exportable or both, that means, if it will be executed internally
or copied to the generated code. The same option determines the treatment of actions, which are
included into double braces.

9.2.7.4.2.5 Global scanner

On the page Parser/Scanner of the project options three check boxes exists, by which you can
make some fine-tuning of the scanning process.

It is recommended, to leave the default settings, with activated global scanner for literals. If you don't
have special reasons to change the scanning process, you can leave the default settings and you
don't have to read the following explanations.

The buffering of the look-ahead tokens can accelerate the execution of a project if makes heavy use
of look-ahead's. This isn't the case mostly.

The other options in this box control of the sets of token which are tested respectively in the current
position of the grammar. The speed of the parser and the error probability are influenced by these
sets. Larger token sets slow down the parser and increase the probability that a token is found that
doesn't match to the grammar. The latter may be wanted in certain cases, e.g. inside of a
look-ahead.
If no global scanners are used, then only the tokens are looked for, which just can follow in
accordance with the grammar. If however global scanners are used, then all literals can be tested
always or they are tetsted only,if a at least one literal can follow according to the grammar. Similar
for the regular expression: either all are testet always or all are tested, if at least one can follow.

Note: Internally there is a third Scanner, which can be global or local. It's the scanner for ignorable
characters. Whether this scanner is local or global is determined by the setting of ignorable
characters in the local options.

143User interface

© 2002-10 Dr. Detlef Meyer-Eltz

This once again with some more details:

There are three steps of evaluating the next token corresponding to the three kinds of scanners.
Beginning at the actual position in the input has to be evaluated

1. whether ignorable characters are following, and then
2. whether a literal token is following or,
3. whether a token defined by a regular expression is following

These three tests can either be done by a single global scanner, or by local scanners. The use of
one global scanner is the traditional method, applied by all parser generators hitherto. The use of
local scanners is based on the idea, to test only those candidates for the next token, which are part
of the actual alternatives. For example: to test the following structure it is necessary to decide,
whether an a or a b token exists at the actual position

(a | b) c d

A local scanner will test exactly this. A traditional global scanner in contrast will test all token of a
grammar, that means at least a, b, c and d token. The result will be the same for both types of
scanner. The difference lies in the speed and the expense. When using local scanners the speed
will be higher, but a bigger amount of storage is needed.

The result of the text analysis also can be influenced by the choice of global or local scanners. By
use of a global scanner the probability of conflicts between different token is greater than by use of
local scanners, where only a little set of tokens compete with each other. This is the reason why
there is the additional possibility to limit testing on the currently expected tokens even if a global
scanner for literals is used.

Example:

Text: "int int"
Produktion: "int" ID
Token ID: \w+

If all literal tokens are always tested, the second occurrence of "int" isn't recognized as an ID. The
literal token "int" is rather recognized once more. So the text cannot be parsed. This is desired if the
text e.g. is C++ code. A variable may not have the name of a variable type.

Text: "Sir Sir"
Produktion: "Sir" NAME
Token NAME: \w+

Look into the phone book and you will find the name "Sir". So the salutation "Sir Sir" is definitely
correct. It only is recognized if you don't test on all literal tokens.

Rule of thumb:
All literals should be tested for formalized languages with defined key words at significant positions.
Only the expected literals should be tested otherwise The local options also can be adapted
respectively, if necessary.

Conflicts, which can result from the use of a global scanner, can be the cause of error messages

144 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

like

Matching but not accepted token: ...

At the description of this message an example is presented.

A further example of the effects of the scanner options is given at the explanations for the look-ahead
production.

By buffering of the look-ahead tokens parsing can be accelerated if look-ahead productions are used.
If at first a look-ahead is tested in a production, then the tokens found are put on a stack and read
from there again if the initial production is further executed.

Example:

Prod1 ::= IF(Prod2()) "a" "b" ...

Prod2 ::= "a" "b"

If Prod2 has been tested, the tokens "a" and "b" are already anylsed from the text.

This method can work only, if some restrictions of the otherwise existing possibilities are accepted.
E.g. the following then doesn't work any more:

Prod1 ::= IF(Prod2()) ID+ ...

Prod2 ::= "a" "b"

It can be recommended often, to use ANY instead of SKIP. A sequence of tokens recognized with
ANY+ in a look-ahead is reproduced correctly as a sequence of the specific tokens which were
subsumed under ANY when reading the stack.

In the semantic actions sub-expressions cannot be accessed from the tokens fetched from the
stack. Inclusions cannot be used in combination with the look-ahead buffer.

9.2.7.4.3 Start parameters

The parameters which are provided to the IDE for the functions ConfigParam and ExtraParam can
be entered here in two fields. When the project is executed via the transformation manager, in the
command line tool or as generated code the parameters set here are ignored and the parameters of
the appropriate surroundings are used instead.

145User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.7.4.4 Inclusions (comments)

Here you can select a production from a box, which shall be used for parsing inclusions - mostly
comments. If this production is put in the global project options, then it is valid for all productions of
the project, i.e. also for the chosen production itself; so e.g. nested comments are parsed correctly.

Example:

CppComment ::= "/*" (NUMBER | ID | "." | "-")* "*/"

If CppComment is set in the project options for parsing inclusions, the following comment is also
parsed:

/* 1. level /* 2. level */ 1. level */

Unfortunately, the following production doesn't work if comments are nested:

CppComment ::= "/*" (SKIP | STRING)* "*/"
// ! this definition isn't appropriate for nested comments

The Text, recognized by SKIP were:

1. level /* 2. level

So the beginning of the inner comment would be skipped and the end of the inner comment then
interpreted as the end of the complete inclusion.

If the nesting isn't wished, then in the local options of CppComment the empty field can be set for
the inclusions. As well for any other production the inclusions can be adjusted individually.

9.2.7.4.5 Encoding

For the settings of this register page some restrictions have to be taken into account. The settings
cannot be reproduced completely in the debug mode and the functions to write UTF-8 encoded
output, only are implemented in the transformation manager of the TextTransformer and in command
line tool and are not part of the code accompanying the Professional Version of the TextTransformer.

For the source text and the target text you can adjust the encoding independently:

ANSI-Text
UTF-8

You cannot use RedirectOutput, if UTF-8 options is set. By this option RedirectOutput is performed
already.

Further you can adjust for the input file and the destination file, in which mode they are opened:

Text mode
Binary mode

146 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

If files are read and written in the binary mode, then there is no difference of their data in the
working memory and on the hard disk. In the text mode,however, conversions are made under
Windows for the treatment of the line breaks. So, e.g. a single linefeed characters '\n' is combined
with a carriage return character '\r' to"\r\n" when the file is written..

Example:

After execution of the statement:

out << '\n'; or out << endl;

"\r\n" is written in the output text.

In the binary mode such a transformation isn't carried out. A Windows line break then must be
written explicitly by:

out << "\r\n " or out << '\r' << endl;

The editor - in contrast to the viewer - is not able to represent line breaks with simple linefeed
characters.(However, both types of line breaks can be recognized by the EOL token.)

9.2.7.4.6 xerces DOM

The options which have to be set for a standalone XML document are in the upper half of the dialog
page. Such a document doesn't depend on a DTD.

The shown options produce a document, this looks as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<root>

...

</root>

Root label

Here the root tag is defined. In the example it is called "root".

Default label

147User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Each tag of an XML document must have a name. This name is the label of a dnode. To keep the
analogy to the construction possibilities of node's, dnode's can be used without explicitly defined
labels. Such dnode then gets internally the default label assigned automatically.

dnode dn("". "text");

then appears with the default label above as:

<empty>text</empty>

Before a parser is called in the generated c++ code, the default label has to be set. CTT_DomNode
has a static method for this purpose.

dnode::SetDefaultLabel(L"default_label");

Encoding:

Xerces supports many encodings for the output of the XML documents, which are discussed below.
However, only the ANSI character set (Windows 1252) is represented correctly in the working
surface of the TextTransformer. ANSI or a different 8 bit encoding should therefore be used in the
developmental stage of a project. Otherwise the text appears in the output window:

Encoding cannot be written into the output window of the IDE

If a project is executed by the transformation manager, the command line tool or the Delphi
components, there isn't any restriction for the encoding.

Here some remarks copied from

http://xerces.apache.org/xerces-c/faq-parse.html

concerning the different supported encodings

ASCII

ISO-8859-1 (aka Latin1)

For UNIX systems in countries speaking Western European languages, the encoding will usually be
iso-8859-1

Windows-1252

The default character set on Windows systems is windows-1252 (ANSI), not iso-8859-1. While
Xerces-C++ does recognize this Windows encoding, it is a poor choice for portable XML data
because it is not widely recognized by other XML processing tools.

UTF-8

148 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

UTF-8 - like UTF-16 - covers the full Unicode character set, which includes all of the characters from
all major national, international and industry character sets. This encoding - like UTF-16 - is more
widely supported by XML processors than any others
Efficient. utf-8 has the smaller storage requirements for documents that are primarily composed of
characters from the Latin alphabet.

UTF-16 (Big/Small Endian)

UTF-16 - like UTF-8 - covers the full Unicode character set, which includes all of the characters from
all major national, international and industry character sets. This encoding - like UTF-8 - is more
widely supported by XML processors than any others

UCS4 (Big/Small Endian)

EBCDIC code pages IBM037, IBM1047 and IBM1140 encodings
(Extended Binary Coded Decimals Interchange Code)

IBM1140
IBM037
IBM1047

When creating EBCDIC encoded XML data, the preferred encoding is IBM1140. The IBM037
encoding, and its alternate name, ebcdic-cp-us, is almost the same as IBM1140, but it lacks the
Euro symbol.

Write byte-order-mark (BOM)

At some encodings a byte order mark (BOM) can be set at the beginning of a file.the mark tells in
which order the bytes must be evaluated, if single characters consist in several bytes, like in
UTF-16.

The BOM is written at the beginning of the resultant XML stream, if the output encoding is one of the
following:

· UTF-16

· UTF-16LE

· UTF-16BE

· UCS-4

· UCS-4LE

· UCS-4BE

Such a mark also can optionally be used in UTF-8 to indicate the file as UTF-8 encoded. However, it
isn't possible to set a BOM for UTF-8 per option automatically, since xerces doesn't support this.
However, the BOM can be written by the following code in the program:

out << char(0xEF) << char(0xBB) << char(0xBF);

WriteDocument();

If a UTF-8 encoded file is read as an ANSI file, this mark appears as: ï»¿.

149User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Encoding Bytes
UTF-8 EF BB BF
UTF-16 Big Endian FE FF
UTF-16 Little Endian FF FE

Pretty-print

This formats the output by adding a newline carriage return and indented whitespace to produce
a pretty-printed, human-readable form.

If this option is set and the document shall be written with a WriteDocument without parameters, it is
required for some encodings - e.g. for UTF-16 - to set the option for a binary output too.

Write DOM-declaration

The line in the example above::

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

is the declaration of the document. If it shall not be written or be formulated explicitly in the program
- for UTF-8 only -, then the checkbox can be deactivated.

9.2.7.4.6.1 DTD

The options which have to be set for an XML document, which depends on a DTD (document type
definition) are in the lower half of the dialog page.

150 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The shown options produce a document, this looks as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE test SYSTEM "data.dtd">

<root>

...

</root>

With the DTD "data.dtd" is checked, whether the document is valid. However, this examination will
be done when the document is reloaded in a validating XML processor and is not carried out in the
TextTransformer.

If a public DTD shall be used, the corresponding radio button has to be selected and the lower field
for the reserve ID is activated. A reserve ID is required.

9.2.7.4.7 Warnings/Errors

The creation of warnings can be suppressed or activated.
This concerns the warnings:

node is nullable
node is start and successor of nullable structures
xState parameter for member functions
System overlap

Stack maximum

9.2.7.4.7.1 Stack maximum

The first value refers to the stack of the productions of the main parser.
By this value the internal stack will be limited. This limitation is a protection against infinite loops,
which can appear in case of left recursions. The default value 100 normally suffices.

Remark: the internal stack is greater than the shown stack, because the internal stack contains in
addition branches to sub-rules.

The second value refers to the stack of the productions of a look-ahead. The limitation of this stack
is important to avoid a crash of the system at possible circular calls.

9.2.7.4.8 Code generation

These options only are interesting for user of the professional version.

const

151User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Wide-Character-Regex
Only copy all code
Characters and increment of indentation
Plugin type
Template parameter for plugin character type

9.2.7.4.8.1 const

const

The activation of this option only makes sense, if you want to produce c++-code with the
professional version of the TextTransformer. In the interpreted applications of the standard version the
option implies unnecessary restrictions of your programming possibilities.

If the const-option is activated, all functions (productions, token actions and interpreter functions) of
the created parser become const functions.

Example:

void CCalcParser::Expression(double xd) const;

this assures, that these functions will not change the data of the parser class. This is important e.g.,
if you are writing a multi threaded application.

If the const-option is activated, all operations are forbidden, which will change the state of the parser
class. This includes operations, which will change the position of the cursor of an mstrstr class
variable (findKey, gotoNext etc.). But it is possible, to use mstrstr-references as class variables
instead. Also the source and target directories and the indentation stack only can be used as
according references. The frame for the class must be adapted accordingly.

9.2.7.4.8.2 Use wide characters

If the wide-character option is activated, parser classes are created, which can process texts, which
are using character sets with more than the 256 ASCII characters (Unicode). A single character then
is represented by two bytes in the memory instead of only one. Instead of char, std::string and
boost::regex the according data types: wchar_t, std::wstring and boost::wregex are used.

When this option is used, the parser class in the generated code is derived from:

CTT_Parser<wchar_t>

All texts and string functions of the parser systems then are based on the wchar_t type.

However, the "diagnostic" system isn't changed by the wchar_t template parameter : Error texts still
are strings from chars and Meta functions like ProductionName still return std::string. If the
diagnostic system and the parsing system are mixed, it can happen that the generated C++ code
doesn't compile because of incompatible string operations.

152 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.7.4.8.3 Only copy all code

If this option is set, the parts of the code in the semantic actions, which are written into a generated
c++ parser, simply are copied.
The option normally isn't set. The interpretable parts then are reconstructed from the parsed form
and there will be a new formatting and a transformation of some constructs. In this case the
exportable parts also are changed.
Such transformations are necessary for

· member function calls, which need an additional xState parameter

· Abbreviated notations, which are only valid in the interpreter, are replaced: out -> xState.out();
indent -> xState.indent(), format -> boost::format.

· insertions (by add) of member functions into function tables. Here the second string parameter -
the name of the function - is translated to a pointer of the member function.

· If a wide character parser is generated, some additional replacements are done: "Hi" -> L"Hi";
format -> boost::wformat;

9.2.7.4.8.4 Characters and increment of indentation

Indentations in the generated parser code can be alternatively made by blanks ws or by tabulators
tab. The number of these characters, which are inserted at the respective positions, determines
degree of the the indentation.

9.2.7.4.8.5 Operating system

For the Windows operating system the generated code files can be written with "\r\n" line breaks
and for Unix systems with "\n" line breaks.

Note: this option has no influence on the behavior of the parser.

9.2.7.4.8.6 Plugin type

You can define a plugin for a parser. The plugin can be initialized outside of the parser and accessed
as well inside the parser as outside after the parsing has finished. For example you can store the
results of the parsing inside of the plugin.
By the plugin dynamic data can be used even in a const parser for multithreading applications.
The pointer to the plugin type is set into the class for the parse state. Per default this is

CTT_ParseStatePlugin

If dnodes are used in the project, you have to chose

153User interface

© 2002-10 Dr. Detlef Meyer-Eltz

CTT_ParseStateDomPlugin

In this case the Xerces library has to be linked to the produced code.

If this type needs a template parameter for the character type, this can be set by the next option.

If no such pointer is passed to an interface-method, a local instance of the plugin will be created
automatically. CTT_ParseStatePlugin contains all data, which are necessary for the plugin-methods.

User defined plugins have to be derived from CTT_ParseStatePlugin or from
CTT_ParseStatePluginAbs.

The pointer to the plugin-type is a template parameter for the parse state class and is also written as
a typedef into the parser class. So the complete type of the plugin in known inside of the parser and
data and functions of the plugin can be accessed without a typecast.

9.2.7.4.8.7 Template parameter for plugin character type

If this option is set, the template parameter "< char_type >" will be added to the plugin type in the
generated code. If for example the default plugin type is set:

CTT_ParseStatePlugin

this will be completed in the generated code to:

CTT_ParseStatePlugin< char_type >

9.2.7.4.9 Version information

On the page with the title Version you can save information to the version of your project.

154 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.7.5 Local options

The project options, which are valid for all productions at first, can be overwritten for single
productions. A menu item Local options exists in the main menu Project, which is shown only, if
you are on the production page.

9.2.7.5.1 Local options

The project options, which at first are valid for all productions, can be overwritten for single
productions. A menu item Local options exists in the main menu Project, which is shown only, if
you are on the production page. The local settings of a production don't have an effect on the
operation of the productions called in it.

Before you can set the different items, the local options must be activated on the first page of the
local options dialog. If local options are activated, which overwrite a project option, this will be show
in the syntax tree after compiling by a red hook:

Remark: There also exist local options, which don't overwrite project options.

In the local options the option for the use of the global scanner is moderated

Global scanner for Literals, if possible
Global scanner for Regex, if possible

Activation of the global scanner will have an effect only, if the CaseSensitive option in the project and
the local options are the same. Local deactivation of the global scanner is possible every time.

If options for the scanner are changed locally, then this change has an effect as soon as within the
production a new token will be looked up. This happens as soon as a token is accepted in the
production or, if the last token of a production called in the production is accepted. In the last case
the successor of the called production is flooked up in the calling production.

Example:

Prod1 ::= Prod2 "c"
Prod2 ::= "a" "b"

If in Prod1 the blank is locally set to be ignored, but not in Prod2 and if in both the word separation is
deactivated, the first row of texts is parsed correctly and the second isn't parsed. Whether the third
text is parsed depends on the previous production.

1: "ab c", "abc" abc ", ab c "
2: "a bc"
3. " abc"

Remark: The ignored characters are accumulated by all tests. If no successor of a token is found
in the actual rule, the successor of the rule itself will be looked up. But the look up will start after the
characters already ignored.

155User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Besides the items described at the project options, here exists one more option:

Create interface

This option can be set also directly from the tool bar of the production page

If this option is activated, a special scanner will be created, which can make a test of all those
tokens, which are contained in the first set of the rule.
If there are several compiled productions, for which interfaces are created, you can interactively
change between them while transforming one text. After such a change, the interface scanner tests,
whether the new start rule matches the actual text.

Remark:
If the productions are compiled by Parse all scripts, this has the effect as if there were set the
interface option for every production.

Normally a parser is called by the interface to its start rule. But it is possible also to call other
productions directly, if the according interface method is created.
For example the TextTransformer itself parses the parameter of a production by a sub rule of the
production parser.

9.2.8 Menu: Windows

A lot of information is represented in in the TextTransformer, distributed over a variety of docking
windows. Depending on the actual working step and the kind of the project a certain part of it is
needed. The optimal order of the windows depends on the technical equipment (e.g. the screen
resolution) and the individual preferences of the user. Therefore there is the possibility to make and
store special window layouts, to have them at the disposal again, when required.

For the basic situations of editing and debugging projects there are prefabricated default layouts

EditDefault.ds
DebugDefault.ds

If TextTransformer changes between editing and debug mode, the layout is changed automatically
too. On the Layouts page of the options dialog for the user interface you can choose other layouts
for the two modes of the program.

The menu items in detail are:

Window list
Customize layout
Save layout
Restore default edit layout
Restore default debug layout
Windows

156 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

A video, that demonstrates th adaption of a layout, is at

http://www.texttransformer.com/Videos_en.html

9.2.8.1 Docking Windows

You can customize panel layouts in TextTransformer and create custom docking schemes. This
feature is especially convenient for smaller display resolutions, since it allows you to display
several panels simultaneously.

The relative size of the windows mostly can be changed with the mouse. If the mouse is positioned
over the borderline of the two blocks the mouse pointer changes its form to

While pressing the left mouse button you can drag the line to the new position, where it remains, if
you let off the button.

To undock a panel, simply double-click or drag the panel’s caption. This will turn the panel into
a normal, floating window. You can quickly dock a floating panel back to its previous location
by double-clicking the panel caption. If you want to change the panel location, drag it to the
desired place. When you are dragging the undocked panel over another panel, TextTransformer
will show the docking zone selector, which lets you specify where the panel will be docked if
you release it:

To dock a panel to the left, top, right or bottom edge of the the lower panel, move the mouse

cursor to the , , or icon within the Selector and then release the mouse button.

157User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Once a floating panel has been docked onto another panel, it still has a caption bar, with a name
at the left and buttons at the right, and the previous contents likewise have a caption bar on top
of their section of the page. Any section can again be turned into a floating window by dragging
the caption.

If you select the icon in the docking zone selector, the floating panel and the lower panel will
be docked at the same spot. In this case, the panels will be organized as tabbed pages (tabbed
panels are simply panels docked not inside one another, but at the same spot). You can dock
more than two panels to the same spot. To undock a tabbed panel, just drag or double-click its
caption.

Note that when you are dragging a float panel over a tabbed one, besides the docking zone
selector in the center of the tabbed panel Automated Build Studio will also show docking zone
selectors along the edges of the tabbed page.

These selectors let you dock the floating panel relative to the whole tabbed spot. Using the
central selector you will dock the floating panel to the the tabbed panel that is currently in front of
the other tabbed pages.

If you select this variant, then the tabbed page will hold two panels.

A docked panel can be auto-hidden. Auto-hide means a panel can be minimized along one of

158 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

the sides of the docking site, so only the panel’s caption remains visible. For instance, on the
following figure the "yyyyyy" panel is auto-hidden:

To hide a panel, click the button in the panel’s caption.
To view an auto-hidden panel, move the mouse cursor to the panel caption or click the caption
and the panel will pop up.
To show a hidden panel, simply click the button in the panel caption.

Right-clicking a tab shows the context menu with the following items:

Rename Calls the Panel Caption dialog where you can rename the tab.
Help The Help item is displayed if the tabbed page contains one panel only. It calls the help
topic with the panel description. If the tabbed page holds several panels, the Help item is hidden.

9.2.8.1.1 Caption Dialog

The Panel Caption dialog is used to change the caption of a panel or a tabbed page (if several
panels are docked to the same spot, they are displayed as tabbed pages). To call this dialog,
right-click the caption of the desired docked panel or tabbed page and select Rename from the
context menu. To call the Panel Caption dialog for an undocked panel, right-click its caption and
select Docking | Rename from the resulting context menu.

159User interface

© 2002-10 Dr. Detlef Meyer-Eltz

See also
Docking Windows

9.2.8.2 Window list

You can navigate by the window list fast to windows which are hidden or closed currently. The
window list exists in two kinds:

1. as a dialog which can be called also with the button in the tool bar.

2. as an item of the Windows menu, which can be accessed very quickly.

160 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

If you click on an item in the list, the according window will be shown.

The windows are:

Code frame
Element
Element list
Errors
Expected
Find
Header frame
Log
Production
Source
Stack
Syntax tree (= production list)
Target
Test
Test list
Token
Token list

9.2.8.3 Customize layout

The dialog for customizing the layout is available only in the professional version and only with
English labels. With the dialog e.g. moving groups of panels is made easier as additional common
captions can be displayed . The additional elements only apply to the current session and aren't
stored.

161User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.8.4 Save Layout

The current layout can be saved by the item Save Layout in the Windows menu or by the button
in the toolbar..

At first a dialog appears, where you can enter a name for the layout. The name of the current layout
is set as default name.

If you confirm, the layout will be saved into the Folder DATA FOLDER\Settings with the extension ".
ds" appended to the name.

All layouts in DATA FOLDER\Settings are shown in the selection box in the toolbar on the left side
of the save button_

If you select one of the items in this box, the according layout is loaded and the windows are
arranged accordingly.

162 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.8.5 Restore default layout

At the installation of TextTransformer the layouts EditDefault.ds and DebugDefault.ds are written
into DATA FOLDER\Settings. These layouts are made for a screen resolution of 800 x 600 pixels
and should be adapted to the technical conditions and to the needs of the user. To be able to
experiment with these layouts safely there is a safety copy in programPROGRAM FOLDER\bin. By
the two items of the main menu Windows :

Restoring default editing layout
Restoring default Debug layout

the safety copies can be copied back automatically into the Settings folder.

9.2.9 Menu: Help

By the menu Help you can call this help and the Registration dialog. In addition two tools and some
wizards can be accessed:

Regex Test
Character class calculator
ASCII table

The help for single instructions can be obtained directly by selecting the according word and
pressing F1.

163User interface

© 2002-10 Dr. Detlef Meyer-Eltz

A help to error messages can be obtained directly by selecting the according line in the error list and
pressing F1.

9.2.9.1 Feedback

If you have problems, comments or ideas, your feedback is welcome. Please don't hesitate to send
a mail to

 dme@texttransformer.com

It is recommended to use this frame for your mail, because it contains important information about
the your version of the TextTransformer and the system you are using. Please write your remarks
into the following lines and then copy the whole text into your e-mail program.

Your feedback only will be used for an improvement of the TextTransformer. Your information will not
be passed on a third party and you will not receive unwanted advertising mails. This feedback will be
answered adequately.

9.2.9.2 Wizards

Some wizards make the work with TextTransformer simpler. Refraining from the wizard for new
projects, they can be called by the Help menu.

New project wizard
Creating a production from an example text
Parameter-Wizard
Tree-Wizard
Function-Table-Wizard

The wizards offer a number of options on every of their pages, which are explained on the upper edge
of the page. Depending on the selection made, further pages can become obtainable, to which can
be gone with the Next button.

The operations of wizards cannot be undone! Please save your project before using the
wizard and reload the project, if an error occurred.

The use of the Tree wizard and of the function table wizard is described in detail for the Java parser

9.2.9.2.1 New project wizard

When creating a new project a wizard appears, which helps to make some basic settings,
depending on planned project type. This wizard even can create complete projects for small tasks,
which can occur in your daily work.

164 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The following project types can be chosen:

Multiple replacement
Multiple replacements of words
Multiple replacements of characters

Rewriting lines
CSV-wizard
Creating a line parser from an example text

Header/Chapters/Footer

New project from scratch

The example texts and projects used on the following pages can be found in the directory:

..\TextTransformer\Examples\Wizards

9.2.9.2.1.1 Multiple replacements of words

By the TextTransformer projects can be made which work similarly as the search-and-replace
function in word processing programs. But with the TextTransformer a lot of files can be processed
at once and many substitutions can be carried out at the same time in each of these files. The
wizard described here supports the construction of such projects.

To this you simply have to input the list of searching and replace expressions into a table.
The input of the values into the table works just like at the tables of other wizards.

If you have entered all word pairs and have operated the confirming button by which the editing mode
is exited, you get the text of a production displayed on the next page of the wizard. This production
suffices for the whole word substitution project.

(
 "Hello" {{ out << xState.str(-1) << "Hallo";}}
 | "World" {{ out << xState.str(-1) << "Welt";}}
 | WORD {{ out << xState.copy(); }}
| PUNCT {{ out << xState.copy(); }}

)*

165User interface

© 2002-10 Dr. Detlef Meyer-Eltz

WORD ::= [^[:space:][:punct:]]+
PUNCT ::= [[:punct:]]+

If you now finish the wizard, the project is ready for application.

The substitution list can be stored and afterwards reloaded. Frequently, it will be easier to carry out
modifications and complements directly in the created project, however.

In the directory:

..\TextTransformer\Examples\Wizards

there are two lists of titles of films in English and in German, which you can use for experiments

Film_en_ge.txt und Film_ge_en.txt

9.2.9.2.1.2 Multiple replacement of strings

The multiple replacement of strings is quite similar to the multiple replacement of words. The
difference is, that parts of words or other text sections also can be replaced in a project for multiple
replacement of strings. But the number of possible substitutions is limited here. (A number below
hundred should not make any problems.)

Example of a created production:

(
 "Ha" {{ out << xState.str(-1) << "He";}}
 | "elt" {{ out << xState.str(-1) << "orld";}}
 | SKIP {{ out << xState.copy(); }}
)*

The word bound option is dactivated here.

9.2.9.2.1.3 Multiple replacements of characters

By the character substitution wizard you can create projects, which replace a number of letters by
other characters or literals. E.g. this can be necessary for the conversion of text files, which were
written on another operating system.

A character substitution project is very similar to a word replacement project. However, you don't
have to write the substitution list, since there is only a restricted set of characters. You simply can
select for a character in the table another one from a list. Characters, for which no replacement is
chosen, will be copied unchanged into the target text. Instead of selecting a replacement character
in the right box, it is possible too, to write a literal replacement expression directly into the according
field of the table. By this, the table is set into the edit mode.

Select a character in the table first. As soon, as you select a character from the right box, the text
in the actual row of the table will be overwritten.

166 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The content of the column: "Replace by ...", can be saved and reloaded later.

If in all rows of the table the desired assignements of characters are set and you have operated the
confirming button by which the editing mood is exited, you get the text of a production displayed on
the next page of the wizard. This production suffices for the whole character substitution project. For
example the production for the conversion of an Atari text looks like:

(
 " " {{ out << xState.str(-1) << "";}}
 | " " {{ out << xState.str(-1) << "";}}
 | " " {{ out << xState.str(-1) << "";}}
 | " " {{ out << xState.str(-1) << "";}}
 | " " {{ out << xState.str(-1) << "";}}
 | " " {{ out << xState.str(-1) << "";}}
 | " " {{ out << xState.str(-1) << "ü";}}
 | "„" {{ out << xState.str(-1) << "ä";}}
 | "Ž" {{ out << xState.str(-1) << "Ä";}}
 | """ {{ out << xState.str(-1) << "ö";}}
 | "™" {{ out << xState.str(-1) << "Ö";}}
 | "š" {{ out << xState.str(-1) << "Ü";}}
 | "œ" {{ out << xState.str(-1) << "§";}}
 | "ž" {{ out << xState.str(-1) << "ß";}}
 | SKIP {{ out << xState.copy(); }}
)*

If you now finish the wizard, the project is ready for application.

In the directory:

..\TextTransformer\Examples\Wizards

there are two lists of characters:

ANSI2DOS.txt und DOS2ANSI.txt

by which you can create projects for the conversion between the ANSI character set and the DOS
character set.

167User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.9.2.1.4 CSV-wizard

With the abbreviation CSV (Character Separated Values) files are named whose lines consist of
data, which are separated by commas or other separators from each other. Many database
applications can read and write such files.

The wizard described here, allows extracting the individual data. You then can change them or
arrange them differently. It is assumed that the separator doesn't occur within the data. If this
shouldn't be the case at your CSV file, then you can use the wizard, which generates a line parser
from an example text.

It's possible not only to define a comma as a line separator, but any arbitrary other character too. It
is also possibly to define a set of separators, but two fields always will be separated by only one of
them. If more than a character separates the columns, you can define the separator also as a literal
expression.

After the number of columns was set, you can go to the next page of the wizard, where you can
choose the kind of actions you want to be generated. On the next page then you can see the text of
a production, which is generated from the settings.

For writing a simple comma separated text of two columns in string variables the production is:

{{
str sCol1, sCol2;
}}

(
SKIP {{sCol1 = xState.str(); }}
","
SKIP {{sCol2 = xState.str(); }}
EOL
)

{{
// out << Here you can output the columns in the desired form.
}}

E.g. the comment in the second to the last line could be replaced now by:

out << sCol2 << "," << sCol1 << endl;

168 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

An output text would be created, in which the columns of the source text would be exchanged.

A video, which demonstrates this wizard, is at:

http://www.texttransformer.com/Videos_en.html

9.2.9.2.1.5 Creating a line parser from an example text

If a file consists of lines which all have the same structure - e.g. a log file -, you can create a
complete parser for this file with the wizard described here.

At first you have to copy a typical line into the edit field above the table. Then you have to enter the
definitions of the tokens into the table, by which the line shall be analyzed. This input is very simple
for literal expressions. There is the menu item in the pop-up menu, which appears after clicking with
the right mouse button: Insert the select text as a literal token. With this function a text that was
selected with the mouse in the edit field can be inserted directly as a token into the table.
Otherwise the input of the values into the table works just like at the tables of other wizards.

If you choose the direct output for the actions on the next page of the wizard, you will get the
following Chapter production, after you have finished the wizard:

INT {{out << xState.copy(); }}
":" {{out << xState.copy(); }}
INT {{out << xState.copy(); }}
":" {{out << xState.copy(); }}
INT {{out << xState.copy(); }}
INT {{out << xState.copy(); }}
"." {{out << xState.copy(); }}
INT {{out << xState.copy(); }}
"." {{out << xState.copy(); }}
INT {{out << xState.copy(); }}
"-" {{out << xState.copy(); }}
"error" {{out << xState.copy(); }}
":" {{out << xState.copy(); }}
SKIP {{out << xState.copy(); }}
EOL

This production consists of the tokens of the table in the order as they are retrieved from the

169User interface

© 2002-10 Dr. Detlef Meyer-Eltz

example text. Text parts that aren't recognized by the tokens of the table will be recognized with the
SKIP token.

9.2.9.2.1.6 Header/Chapters/Footer

A frequent general structure of texts is the subdivision in a header, some chapters and footer. For
example in a book, the contents would be the header and the index would be the footer. The wizard
described here generates a frame for such a structure. For each: the header, the chapters and the
footer, a production will be created, which are called from the start rule.
At first only the SKIP symbol is used in the header and the footer production. The exact structure
of these parts must be written by hand.

It is possible for the chapter production to define some tokens succeeding one another in the wizard
already.

The input of the values into the table works just like at the tables of other wizards.

If the token by which the chapter production starts is specified obviously so, that it cannot occur in
the header part, then executable parsers can already be created with the frame created by the
wizard.

Example

To process the keywords in a HTML file, you can "travel" across significant expressions in the file up
to search position.

The shortened beginning of the file:

C:\TextTransformer\Examples\Assistenten\textkonverter.html

looks like:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<HTML>
<HEAD>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
 <meta name="GENERATOR" content="TextTransformer">

 <META NAME="keywords" CONTENT="Text Konverter">
</HEAD>
...

If a sequence of tokens is defined as presented in the picture:

170 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

the text will be skipped by the Header production to the expression "<Head>", then the expression
"\"keywords\"" is searched, then "CONTENT" and "=" and finally the searched string will be found.
The Footer production will skip the rest of the text.

If you choose the direct output for the actions on the next page of the wizard, you will get the
following Chapter production, after you have finished the wizard:

"<HEAD>" {{out << xState.copy(); }}
(SKIP {{out << xState.copy(); }})?
"CONTENT" {{out << xState.copy(); }}
"=" {{out << xState.copy(); }}
STRING {{out << xState.copy(); }}

Here you easily can change the action, which is combined with the STRING token according to your
plans.

9.2.9.2.1.7 Actions

For the parsers created by the wizard, actions can be generated automatically, which consist in
copying the recognized text mostly. These actions then can be modified with little effort, so that the
output text gets the desired form.

Direct output

For every token an action is created, which writes the recognized text section together with the
ignored characters directly in the output. E.g.:

Token1 {{ out << xState.copy();}}
Token2 {{ out << xState.copy();}}

The direct output is the most efficient way to process the text and therefore should be chosen if
possible. The order of the text sections stays with it unchanged, though.

Writing into string variables

For every token an action is created, which writes the recognized text section together with the

171User interface

© 2002-10 Dr. Detlef Meyer-Eltz

ignored characters into string variables. E.g.:

Token1 {{ s1 = xState.copy();}}
Token2 {{ s2 = xState.copy();}}

The recognized text sections are duplicated here, and then can be written in an arbitrary order,
however. E.g.:

out << s2 << s1;

Creating a parse tree

For every token an action is created, which writes the recognized text section together with the
ignored characters into node variables. E.g.:

Token1 {{ nRule.add("Token1", xState.copy());}}
Token2 {{ nRule.add("Token2", xState.copy());}}

A parse tree allows versatile and multiple further processing of its nodes. It, however, isn't trivial, to
write correct routines for this processing.

Creating a DOM

With this option a parse-tree is produced like above, but from dnode's instead of from node's. A XML
document finally is written in the output.

No actions

Is then advisable to write the code for the actions by hand if only a small portion of the recognized
text shall be put out or if the above methods shall be combined with each other.

9.2.9.2.2 Creating a production from an example text

By this wizard you can create a linear production from an example text. The production will consist
of a simple sequence of tokens, which arises from the order in which the tokens are found in the
text.

This wizard is very similar to the wizard, which creates a line parser from an example text.

There are two differences:

1. The example text must not be a line. If you select a part of the source text in the input window
before opening the wizard, this part will be taken as example automatically.

2. Tokens, already defined in the actual project, will be inserted into the table of the tokens used to
analyze the example text. You can delete the tokens from the table, which shall not be tested.

172 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.9.2.3 Parameter-Wizard

The parameter wizard simplifies the creation of a uniform parameter or a uniform variable declaration
for several scripts.

Short explanations of the offered options are presented on the individual pages of the wizard.
Therefore here only briefly is outlined, what can be achieved with the wizard as a result for all
productions and tokens at the example of a single production. The production:

A () ::= _a (A | B)

The production can be equipped with a parameter xParam of the type type and a local declaration of
such a parameter variable.

A (type& xParam) ::=

{{

type Param;

}}

_a[Param]

(

 A[Param]

 | B[Param]

)

If the option for the creation of declarations isn't set, you get:

A (type& xParam) ::=

_a[xParam]

(

 A[xParam]

 | B[xParam]

)

If e.g. xParam is of the type str, these scaffoldings then can be completed easily so that the
reference variable xParam contains the desired target text after passing through the complete
parser. For the named literal _a the addition could look like::

_a(str& xParam) ::=

{{

 xParam += xState.copy();

}}

If for all tokens corresponding actions were defined, then xParam would include a copy of the source
text after processing the parser.

The automatic generation of the code - in the example "[xParam]" - to pass the parameter to the
called productions and tokens is only possible if the option: "for all productions and tokens" is
chosen.

The tree wizard works quite similarly as the parameter wizard for the special type node.

173User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.9.2.4 Tree-Wizard

The tree wizard simplifies the creation of tree nodes for several scripts. In contrast to the parameter
wizard, the tree wizard can create code too, which inserts the node parameters into a whole tree.
For complete projects this wizard also can insert actions for the creation of nodes for the pure literal
tokens and the wizard can pass the nodes as calling parameters to the called productions and
tokens.
All this is useful for the generation of parse trees and their evaluation by function tables. For the
latter there is an extra wizard. In the help for the function table wizard there are some additional
explanations of the background for the work with parse trees.

If you choose the option, to create nodes inside of productions, for the example of a single
production:

A () ::= (_a | "b") (A | B)

the result, that is produced, if the option "for all productions and tokens" is chosen, looks like:

A (node& xn) ::=

{{

node n("A");

xn.addChildLast(n);

}}

(

 _a[n]

 | "b" {{n.add("LITERAL", State.str());}}

)

(

 A[n]

 | B[n]

)

The automatic generation of the code - in the example "[n]" - to pass the node to the called
productions and tokens is only possible if the option: "for all productions and tokens"or "complete"
is chosen.

9.2.9.2.4.1 Tree type

If you call the tree wizard in the HELP menu, then a choice appears for the manner, how the tree
shall be created.

The operation of this wizard is explained in detail in the Java example.It is the advantage of this
option that by changes of the inserted code, the tree creation can be controlled easily. So e.g.
specifically certain elements can be ignored.

174 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

It is the advantage of the tree creation by the events however that the tree generation is
independently carried out from the code of the productions.

There are three kinds of trees which can be generated:

On the one hand, they are different by the number of elements represented in them and on the other
hand by the time of the creation. The tree with a minimal number of branches is produced from a
help container after the last production called from the start production is left. The other trees are
produced during the the parsing process and can already be used then.

There is a video, which demonstrates this kind of tree:

http://www.texttransformer.com/Videos_en.html

9.2.9.2.5 Function-Table-Wizard

The function table wizard exists in a small version and in an extended version. The small
Quick-Wizard for the extension of an existing function table with single functions appears, if you
click with the right mouse button on the name of a function table in the list of the class elements.
The extended wizard, which is described below, can be invoked either from the quick wizard or as
an item of the help menu.

By means of the function table wizard new tables can be created and existing tables can be
extended, whereby it is possible to create whole groups of correspondences of labels and function
names at once. In cooperation with the tree wizard it is even possible to insert code for the
generation of a complete parse tree for a complete project in all productions automatically. This
possibility should be executed only once for a project since a repeat leads to name conflicts.

The names of the created functions and the name of the function table are derived from a
base-name:

If the beginning "m_ft" of the name for the function table is changed afterwards. the wizard wiil not
work correctly with this table any more.

175User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Background:

One of the paradigms for transformation programs to create in a first step a parse tree which then
can be used in various ways for the generation of output. Tree nodes in the parse tree represent
productions and tokens.
The function table wizard is supporting a recommendable scheme to design such trees in the
TextTransformer. In accordance with this scheme the names of the respective productions or tokens
are used as labels of the nodes.
Special tables can be created in the TextTransformer: the function tables, which assign functions to
the labels of the nodes. This relation is thus indirectly at the same time a relation of functions to the
productions or tokens. Each of these functions serves for the processing of the accompanying node
and with that for the processing of the production or the token.

Different tokens or productions frequently are treated in the same way. E.g. many of the texts
recognized by tokens have to be output again unchanged. Different tokens or productions can
therefore be processed with the same function. If a special token requires, however, a special
treatment, then a special function is written for its node.

Example:

Name of the script Label of the node Function

normal1 normal1 Handle_Default

normal2 normal2 Handle_Default

special1a special1a Handle_special1

special1b special1b Handle_special1

special2 special2 Handle_special2

The inititialization of the function table m_ft looks like:

m_ft.add("", "Handle_Default");
m_ft.add("special1a", "Handle_special1");
m_ft.add("special1b", "Handle_special1");
m_ft.add("special2", "Handle_special2");

The corresponding nodes must be created and added to the complete parse tree in the scripts. A
reference on the last node of the parse tree is submitted to the script as a parameter:

Parameter:
node& xNode

Text:
node n("normal1");
xNode.addChildLast(n);

or

Parameter:
node& xNode

Text:
node n("special2");

176 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

xNode.addChildLast(n);

Accordingly for the other scripts.
When a script is called, an additional parameter has to be passed now:

normal1[n]
special2[n]

9.2.9.2.5.1 Quick wizard for function tables

The function table wizard makes the extension of a function table with new functions easier. The
wizard appears if you click with the right mouse button on the name of a function table in the list of
the class elements.

Write the label of the node type and the name of the function, which shall handle this type, in the
upper two fields. Then, by the Insert button an additional entry for the function table is created:

m_ftExpr.add("chars", "Handle_chars");

and at the same time a new function is created, which has the same parameters as defined for the
function table and a return type, which corresponds to the type of the function table.
In the combo box Kind, you first can chose a frame type for the new function.
If e.g. the actual function table is of the type str_mstrfun with a node parameter, with the iterator
frame the following function will be inserted on the element page:

Name: Handle_chars
Type: str
Parameter: const node& xnNode
Text:

{{
str s;
node pos = xnNode.firstChild();
while(pos != node::npos)
{
 s += m_ftExpr.visit(xState, pos);

177User interface

© 2002-10 Dr. Detlef Meyer-Eltz

 pos = pos.nextSibling();
}

return s;
}}

For the Kind value the following text is created:

{{
 return xnNode.value();
}}

For the Kind empty the brackets are created only.
The function frame then can be modified by hand.

A simple method to construct a solid linkage of:

1. a function table
2. an according function
3. the nodes, which represent the production (the text recognized by the production)

is, to name the label by the name of the production. That's why the wizard contains a list of the
names of the productions as choice for the label.
If the check box Insert tree nodes in production is activated, in front of the parameters of the
production is put an additional node parameter and to the beginning of the text the following code is
written:

node n("chars");
xNode.addChildLast(n);

For the calls of the production the additional parameter must be inserted by hand.
If in the calling production the same code was written by the wizard, the additional parameter mostly
is: n:

9.2.9.2.6 Input tables

There are tables in several wizards for the input of expressions. The operation of these tables is
always the same.

There are four buttons in the tool bar:

Insert a new row

Accept the value of the edited field

178 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Cancel changes in the edited field.

Remove row

Edit-mode

After a new row is inserted into the table, the wizard is put into an editing mode, in which some
keyboard inputs have changed function. So the work is simpler in the table. The table is in the edit
mode now and you can write directly into the fields. The input can be accepted by the accept-button
or by the enter key. By the arrow keys you can navigate in the table then and with Strg+Enter you
can append a new row.

The edit mode is left by the accept, cancel or delete button or by pressing the Esc key once. If you
would press Esc a second time, the wizard would be closed. Attention: the Enter key also get back
it's old meaning, when the edit mode is left: it starts the function of the current control element.

Literal

There is a column in some tables with the heading "literal". If the check box is activated in this
column, then the token doesn't need a name and the definition text is taken in literal meaning. That
means, the characters which have a Meta-meaning in regular expressions, don't have these here:
every letter means itself. A backslash doesn't have to be put in front of the quotation mark and the
backslash here as in the case of the definition of literal tokens directly within a production either.

9.2.9.3 Regex test

An item of the Help menu is Regex Test. Here you can call a dialog box for testing single regular
expressions.

179User interface

© 2002-10 Dr. Detlef Meyer-Eltz

The dialog consists in a menu, a tool bar and three sub-windows.
The items of the menu can be executed by means of the buttons in the tool bar too.

Clear fields

The contents of the three windows are cleared.

Compile

The regular expression in the topmost window will be compiled. Depending on the correctness of the
syntax the success will be confirmed or an error will be shown.

Execute

The regular expression in the topmost window will be compiled and applied to the text in the middle
window. If the expression is syntactical correct, it will be listed together with its sub-expressions in
the undermost window. In the right of each sub-expression the sections of text is presented, which
is matched by the sub-expression. In the example shown, the first sub-expression matches the
hours and the second the minutes of the time.

List box

In the list box of the tool bar all tokens of the actual project are listed. If you choose one of these
tokens, its definition will be shown in the sub most window of the dialog box.

Options

SKIP

180 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The option SKIP is usually deactivated. Then a match in the text only is found, if it matches at the
start of text. (When parsing a text the next token shall match at the current text position normally.)
If the option SKIP is activated, then in the complete text is searched for to the next position where
the regular expression matches. If the text beginning matches, this is judged to be a fault.

Word boundary

The word boundary option here has the same effect for literals as the word boundary option in the
project settings. The evaluation is done as in the case of the parsers produced by TETRA, by a
special ternary tree. For regular expressions this option doesn't have any consequences here
, since the expression is taken unchanged from the topmost edit field The SKIP expressions of a
production are created however, while compiling the project and literal sub-expressions then are
inserted together with word boundaries expressed by the anchors "\<" and "\>".

Case sensitive

The case sensitive option here has the same effect as the case sensitive option in the project
settings.

Remark:

The test of the regular expression works in the same manner as a scanner of a TextTransformer
project. If the expression in the up most window is a literal, this will be mentioned in the result
window. The expression then will not be evaluated as regular expression, but as a literal. While '"'
and '\"' are indifferent for a regular expression, this is not the case for the test of literals.

9.2.9.4 Character class calculator

The character class calculator is made to construct character classes step by step, by adding or
subtracting characters from the actually resulting class.

181User interface

© 2002-10 Dr. Detlef Meyer-Eltz

The characters, which shall be added or removed, can be selected from a list of predefined character
classes or they can be put in as a range or a list of characters or an individual character.

The same rules as for the characters of a string apply to the literal character list. E.g. line breaks '\n'
also can be inserted. The backslash character must therefore also be doubled: \\, to insert it into a
list.

The button marked with '+' in the tool bar of the character class calculator

is used to add characters to the resulting class. The characters to be added must have been
selected before by means of the dialog elements below.

The button marked with '-' in the tool bar of the character class calculator

is used to remove characters from the resulting class The characters to be removed must have been
selected before by means of the dialog elements below. If characters are selected which don't exist

182 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

in the result class, then this doesn't have any consequence.

The button marked with 'x'

deletes the previous selection.

The result can be represented as

compressed

Characters are summarized into character classes provided that the set is complete. The remaining
characters are represented as ranges or single characters.

list of ranges

Characters succeeding one another in the ANSI table are summarized to ranges. E.g. the range of
1-6. results from 1,2,3,4,5,6. The remaining characters are listed one by one.
Whether the characters are put into a range expression or not also depends on the following setting

minimal distance for character ranges

Characters are put into a range expression only when in accordance with the ANSI list at least so
many other characters are situated between the smallest and the greatest character as the minimal
distance is demanding.

enumeration

All characters are listed one by one..

With the longish button above the result list: all characters, which are not in the actual result, you
can invert the previous result. So all characters are listed, which were not selected before.

If the dialog is exited with Ok, a second dialog appears, where you can enter the number of
characters, which shall follow each other.

183User interface

© 2002-10 Dr. Detlef Meyer-Eltz

After pressing Ok a second time, the resulting expression will be copied into the clipboard.

Example:

The Wikipedia dokumentation :

http://en.wikipedia.org/wiki/Wikipedia:How_to_edit_a_page

defines:

In the URL, all symbols must be among:
A-Z a-z 0-9 . _ \ / ~ % - + & # ? ! = () @ \x80-\xFF

To construct this character set, you have to:

1. add the character set: "any word character - all alphanumeric characters plus the underscore"

2. add the character range from Hex 80 to Hex ff

3. add the character list: ".\\/~%+-&#?!=()@"

Caution: the list may not contain white spaces and the backslash has to be doubled.

If you are pressing Ok now and let the unlimited repeat, the result is:

[-[:word:]€-ÿ!#%&()+./=?@\\~]+

The hyphen appears in front of the expression, as it shall not characterize a range.

184 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.2.9.5 ANSI table

At the item ASCII-Table of the Help menu a list of all ASCII characters is shown.

In the first column the character itself is shown, as far as it is depictable. The second column
contains the according code in decimal presentation and in the third column in hexadecimal
notation. In the last column there are additional remarks for some characters.

9.3 Script management and parsing

There are four similar windows for the four types of scripts. In each window one script is shown and
can be edited. The illustration shows the production window as an example:

185User interface

© 2002-10 Dr. Detlef Meyer-Eltz

There is one such window each for:

1. Token
2. Productions
3. Class elements (variables and functions)
4. Tests

These four pages have a uniform toolbar and a corresponding menu, by which tokens, productions,
functions, variables or tests can be changed, renamed, deleted or added.

There is another window each for the lists of all scripts of a type available in a project. If one of the
names is selected in the list, then the corresponding script is shown. The illustration shows the
token list as an example:

186 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

A special case is the list of the productions. It is shown on the syntax tree window. For compiled
productions not only the names of the production but their complete syntactic structure is
represented here.

In a new project without any rules nearly all buttons are menu items are disabled.
A first rule can be inserted by clicking on the insert button or by means of the menu item: Project |
New.

9.3.1 Tool bar and menu

All script pages have a same looking tool bar.

New script

Accept changes

Cancel changes

Delete script

Parse/Test single script

Parse/Test all connected scripts (with a common start rule or group)

Parse/Test all scripts

to the previous script

again to script

187User interface

© 2002-10 Dr. Detlef Meyer-Eltz

The same actions are accessible as items of the project menu. This menu is displayed only inside
of the main menu, if a tab window for a script management is visible.

In the project menu additional items for local options, for import and export of scripts and to remove
the semantic code in scripts are shown. On the element page and on the test page instead of the
last menu item, there is the possibility to erase all scripts of the corresponding page.

9.3.2 Insert

New script

To create a new script you can use the +-button. The gray edit fields will turn to white and text can
be written into them. At least a name and a text must be written; otherwise the script will not be
accepted. A name may contain the alphanumerical character and the underscore, in which the
underscore may not be the first character.

Examples.: Identifier, Const_declaration, UB40

Each new name must differ from all other names by at least one character.

188 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.3.3 Delete

Delete script

To delete a script, it first must be chosen from the list of all scripts. Now you can click the button [-]
or the according item in the menu.

You can't undo the delete function. After you have saved the project all deleted scripts are lost.
As long as the project wasn't saved, you can reload the old project to restore the deleted scripts, but
then you will loose all other changes. In the case of emergency you can open a second instance of
the TextTransformer and copy the script from there.

9.3.4 Edit

An existing script can be edited immediately. Simply write the new text into the according field. By
this the TextTransformer automatically changes into the edit mode.

If a script is in edit mode is shown at the background color of the edit fields.

Background: white = edit mode
 gray = not in edit mode

As soon as one of the fields of a script was changed, also the state of the tool bar buttons will
change: the insert and the delete button are disabled, while the accept button will be enabled.

9.3.5 Cancel

Cancel changes

By this button or the corresponding menu item you can reset a changed script to its previous state,
as long as the changes were not confirmed.

9.3.6 Accept

Accept changes

A new script or a changed one will be taken over into the repository, by confirming the changes with
the accept button or the corresponding item in the menu.

The background color of a script editor is white if it is in the editing mode. As soon as the changes
are accepted, the background color changes to gray.

189User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.3.7 Rename

A script can be renamed. It first must be chosen from the list of all scripts. Now the name can be
changed in the according edit field. After confirming with

Accept changes

the script will be taken over into the repository, if the new name doesn't collide with an existing
name, i.e. if it is different from all other names. Otherwise there will be a warning.

9.3.8 Navigation

To choose a script, click on its name in the list of all scripts.

A double click inside the text of a production on the (bold printed) name of a different production will
display it.

By means of the buttons in the tool bar

to the previous script

again to the script

You can navigate to the previous script or back again.

9.3.9 Parse/Test single script

Parse/Test single script

For a token or a production this function will parse the syntax of the actual script, to look for
syntactical errors.

For a class element this action is disabled.

A single test will be executed for a test script.

9.3.10 Parse/Test all connected scripts

Parse/Test all connected scripts

For a token this button has no other meaning, than to parse a single token, because tokens don't
depend on each other.

190 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

In the production window all scripts will be parsed, on which the current script depends. This causes
an exhaustive check of all these scripts. Following points will be tested:

Syntactical correctness of the scripts
Completeness of the scripts
Syntactical correctness of the interpreter code
Type check of the interpreter code

For a class element this action is disabled.

In the test window all scripts will be executed, which belong to the same group as the current script.

9.3.11 Parse/Test all scripts

Parse/Test all scripts

On the token and the production page all scripts will be parsed, checked for syntactical
correctness and completeness and the interpreter code will be checked also.

On the production page this function has the special effect that interfaces for all productions are
created. So an interactive change of the current production while transforming one input text is
possible.

On the element page all function scripts, variable declarations and variable initializations will be
checked.

On the test page all tests are executed. Tests of a common group are parsed in common.

9.3.12 Error messages

Error messages and warnings, which occur while parsing scripts, will be displayed in the Errors
window.

The items of the list are colored:

yellow items are warnings
red items are error messages

After a single click with the left mouse button on one of these items, the whole message is
displayed inside of the message window in the center of the user interface. By F1 help to the kind of
error can be obtained.

191User interface

© 2002-10 Dr. Detlef Meyer-Eltz

After a double click on the line, the position in the script will be displayed, which caused the
message

9.3.13 Clear semantic code

By the function: clear semantic code, all semantic actions can be removed from a script.
Parameters and return types are removed too.

On the token page in all scripts the parameters, return types and actions are removed.
On the production page, you can call this function either for an individual script or for all scripts of
this page.
On the element page, there is nothing but semantical code. So you have the possibility to remove all
scripts totally from the project.
On the test page, there is the possibility too, to remove all scripts totally from the project.

in the general Edit menu, there is the possibility to remove the semantic code of the token page, the
production page and the element page at once.

Example:

If this function is applied ont:

Parameter: str& xs
return type:
Text:
{{
m_bInNewLine = true;

node n("ClearItpText");

}}
Expression[n]

{{
xs = m_ftClear.visit(n);

}}
{-
out << xs;

-}

one gets:

Parameter:
Rückgabetyp:
Text:
Expression

192 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.3.14 Import

The menu item Import lets you import lists of scripts, which were exported in a previous session.

Depending on the actual page the export files will have different formats and extensions:

Type of script extension

All tti

Tokens ttx

Productions ttr

Interpreter tte

Tests ttt

It isn't checked, whether the imported productions, tokens etc. are written in a correct TETRA
syntax. On the contrary: the syntax for the import is designed as tolerant as possible. Most syntax
elements are optional. So the import is made easier of grammars which were written with other
parser-generators. It is a disproportionately big effort to write exact conversion programs for such
grammars. The possibilities of the IDE simplify the adaptation to the TETRA syntax enormously.

The choice exists at the import to make a new project or to insert the imported scripts in the project
already existing, if a project is already opened in the TextTransformer.

The small box "Overwrite options" determines, whether the project options are taken from the
import file or not. If the option is activated, the current project options then are overwritten, even if no
options are listed in the import file. The default options are then set.

If the option "Overwrite script of the same name" is not activated, only those scripts are added to
the repository, which have names, that differ from the names of scripts, that already exists in the
repository. Scripts will not be overwritten by the import then.

The import format for a complete project has the structure:

ImExport ::=
"TextTransformer"
ProjectOptions

(
 Tokens
| Productions

193User interface

© 2002-10 Dr. Detlef Meyer-Eltz

| Members
| Tests
)*

The formats for the export of the tokens, productions, interpreter scripts and the tests are identically
with those of the respective productions of the complete format.

Tokens ::= "TOKENS" Token*
Productions ::= "PRODUCTIONS" Production*
Members ::= "MEMBERS" Member*
Tests ::= "TESTS" Test*

The details can be taken from the enclosed ImExport project. The structure of a production is given
as an exemplary example here:

Production ::=
Comment?
IDENT
Params?
ReturnType?
"::="
LocalOptions?
Field

Example:

/*
*/
Text() : void
[LocalOptions]
CaseSensitive=1
CommentToCode=0
CreateInterface=0
Exportable=1
GlobalLiteralScanner=1
GlobalRegexScanner=0
IgnoreChars=IGNORE
IgnoreWhiteSpace=1
InclusionProd=
Interpretable=1
IsNullableWarning=1
Separated=1
StartSuccNullableWarning=1
TestAllLiterals=0
UseIgnoreRegex=1
UseLocalOptions=1

(>
"(>"
(
 SKIP
 | STRING
)*
"<)"
<)

194 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The definition of a production starts with its name. On this parameters in brackets follow optionally.
A return value can again optionally follow behind a colon. The text of the production is included in the
brackets "(>" and "<)". These tokens are chosen so that they might not appear within the text, The
syntax for the other scripts is analogous. The number of the following texts corresponds to the
number of respective entry fields is in the TextTransformer.

The mentioning of the options is also optional. For not mentioned options the respective default
value is set.

9.3.15 Export

By means of the export item in the project menu the scripts are written into an ASCII-file.

The exported files can be used as backup or for a reimport into other projects.

9.3.16 Collapsing semantic code

On the production page there is a special button:

Collapse semantic code

If this button is pressed, only the syntactical part of the script is shown and its structure is much
more clear.
Normally the semantic code is characterized by inclusion into one of the pairs of brackets: {{...}},
{_..._}, {-...-} or {=...=}, as is shown in the left picture.
If this code is collapsed, these brackets are replaced by a plus symbol at the left border of the edit
field, as shown in the right picture.

195User interface

© 2002-10 Dr. Detlef Meyer-Eltz

The plus symbol is shown in the line above the line where the opening bracket had been. This is not
possible for the first action of the example, because it begins in the first line. Because of this the
collapsing is incomplete. This is the case also, if one action is in the same line as syntactical code.
By a mouse click on a plus symbol, the code of the corresponding action is shown again:

9.4 Debugging and executing

The productions and tokens can directly be tested and executed inside of the TextTransformer. To
do this, first write or load a source text, which shall be analyzed or transformed. Now you have to
choose a start rule from the combo box in the tool bar.

The program (the start rule) can be executed in different modes: step by step or
at a stretch. In both case at first the start rule will be parsed and presented in the syntax tree
together with its sub-rules.

There are numerous aids simplifying the debugging of TextTransformer projects:

· The recognized and expected text sections are highlightedly

· Breakpoints can be put in the text

· Breakpoints also can be put in the syntax tree

· The contents of variables can be looked up in the variable inspector

· You can jump back to the current position

· The information retrieved last is shown in the info-box

· Debug information is output in the log window

Further aids are put in the navigation block

· The recognized and the expected tokens are shown

· A stack of the called productions is shown

· The first sets of productions and branches are shown

196 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.4.1 Source text

Source text window:

You can select between a pure text viewer and an editor on the upper edge of the source text
window. The text represented is the source text which is analyzed and transformed.

Editor (windows linebreaks)

To the start of the TextTransformers, at first the editor is active. So it is possibly to enter a text in
the window or to copy a text into the editor. You can test the parser with this text and arbitrary
variations of the text

Viewer (read only)

Usually a source text available on the hard disk will be parsed. If such a file is opened it always
appears in the viewer. The viewer shows the text exactly as it is stored on the hard disk. Also text
files with line breaks not in conformity with Windows and even binary files are shown correctly and
can be parsed. You, however, can't change the text.

The viewer can show the loaded file on three modes:

Text

In the text mode the line breaks are represented as usual.

Binary

In the binary mode line breaks and other control characters are represented by points.

197User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Hexadecimal

In the hexadecimal mode the hexadecimal values of the characters are shown together with them.

9.4.2 Section of text

The section of text, which will be transformed, depends on the actual state of the program and on
the choice of the user. In the options for the user interface can be set, that a transformation shall
begin always at the beginning of the input text, or if other possibilities shall be allowed too. In the the
latter case the following dialog appears before the start of the debugger:

In the editor the option At the beginning of the selected text also is offered, if no text is
highlighted. In this case the debugger starts at the current position of the cursor.

9.4.3 Enabling actions

The c++-interpreter can be disabled, to test only the analysis of the input. If however the text shall
be transformed, this code must be executed. So you have to enable the actions.

Enabling and disabling the semantic actions can be done either by the menu: Start->Action, or by
the checkbox in the toolbar.

actions enabled

actions disabled

If the parser uses semantic actions in IF-structures or WHILE-structures, the actions must be left
enabled, because the project would not compile without them.

198 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.4.4 Choosing a start rule

To transform a text, you first have to choose a start rule. This choice is done in the according combo
box of the tool bar:

Per default the production, which is set in the project options, will be selected in the combo box of
the tool bar. If there is no explicit start rule set in the options, the name of the production will be
displayed, which also is the name of the project. If there is no such rule, the selection remains
empty and you have to choose a production manually.

Even productions with parameters, can be chosen as start rule. When such a rule is executed,
default values are used for the parameters.

9.4.5 Interactive change of a start rule

If sections of text shall be transformed interactively by different productions, the according production
can be selected in the combo box of the tool bar.
If the productions were compiled by Parse all scripts, an interactive change is possible every time.
However, if the were compiled by Parse connected scripts (this is the case also, if you have started
the transformation immediately on the main page), a just selected rule first must be (automatically)
parsed eventually.
What exactly happens, if you change the start rule depends of the things done before.

199User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.4.6 Change of the start rule

What exactly happens, if you change a start rule depends of the things done before. During a
TextTransformer session several situations can occur.

1. Change of the page: On the production page at last a different production was parsed
(compiled) than is selected in the box of the tool bar. If you now go to the main page and start a
transformation, the following box will appear:

2. Change of the start rule by the box of the tool bar: If the productions were compiled by Parse
all scripts, a change is possible immediately.
However, if Parse connected scripts compiled them, the box above will appear, to confirm the
change.

As well under point 1 as under point two there are two possibilities (if the scripts were parsed by
Parse connected scripts):

a) The new rule already is compiled: If the new production is contained in the set of productions,
of which the first start rule depends, the new rule will be parsed already too. But to execute it
immediately is possible only, if the Interface option is enabled for this rule. If not, this rule first has to
be compiled (automatically), to create a special scanner, which can test, whether the actual text is
matched by one of the token of the rules first set.

b) The new rule is not compiled already: If the new production is not contained in the set of
productions, of which the first start rule depends, it must be compiled.

9.4.7 Parse start rule

The selected production of the box in the toolbar can be parsed directly by means of the button (of
the same toolbar)

200 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

If the actual page is not the Tetra page, the page will change to the production page.

9.4.8 Syntax tree

When a start rule was parsed, it will be displayed together with its sub-rules in a syntax tree. By a
pop-up menu breakpoints can be set at tree nodes or accompanying first sets can be shown.

At first the productions appear in collapsed form.

Collapsed form

In the collapsed form only the names of the productions are shown, precede by a plus symbol '+'. (If
the productions aren't parsed, the plus '+' is absent.)

Expanded Form

In expanded form the names are preceded by a minus '-' and below of the name the sequence of
sub-structures is displayed.

Node icons

Each node of the tree is preceded by a little icon, which characterizes the type of the node. The
names of the nodes are preceded by a prefix, which also denotes the type.

Icon Type Prefix

Production

with local options

Call of a production NT

Terminal symbol = Token T

ANY-Symbol ANY

SKIP symbol SKIP

Alternative Alt

Option Opt

Repetition Rep

optional Repetition OptRep

counted Repetition Count

IF structure If

WHILE structure Cond

BREAK Br

Semantic action Sem

201User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Concatenation

Parts of a production, which follow each other, will be displayed one beneath the other, conjunct by
a vertical line with little arrows. A production

A = a b c d

will be displayed as follows

Alternatives

For parts of a rule, which are alternative, an extra node is inserted, and beneath this node the
alternatives are displayed as discrete nodes. A production:

A = a | b | c | d

will be displayed as follows

The name of the node, which combines the alternatives is constructed by the prefix "Alt_", a counter
and "_of_", followed by the name of the superior node. From the name you can reconstruct the type
and position of a node inside of the whole grammar.

Options and repeats

For options or repeats an extra node is constructed. The child node of the latter is that, what is
optional or will be repeated. The production:

B = (b)+

is displayed as follows

The name of an option node or a repeat node is constructed analogous to the name of an alternative

202 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

node. The following expressions are used:

Opt for options
0ptRep for optional repeats
Rep for repeats

Semantic actions

At positions, where semantic actions are executed inside of a production, in the syntax tree simple
nodes are displayed. The names of the nodes are constructed from "_Sem", a counter and the name
of the superior production. Actions, which are directly combined with a token are not displayed.

Complex example

If one of a group of alternatives consists itself of a sequence of token and productions, this sequence
is displayed as a sequence of connected nodes. The whole sequence of this alternative is separated
from the other alternatives.
Example:

D = (B | c d | (a)? d)+

would be displayed in the syntax tree as:

9.4.8.1 Pop up menu

For each node in the syntax tree a pop up menu is shown, if you click on the node with the right
mouse button.

203User interface

© 2002-10 Dr. Detlef Meyer-Eltz

You can get information about the context of a node, by:

Show first sets

You can set or remove a breakpoint, by

Toggle node breakpoint

The use of these items only makes sense, if the node is compiled.

9.4.8.2 Show first sets

By means of the pop up menu, that appears if the right mouse button is pressed for a node in the
syntax tree, information about the first set of the node is displayed (if the node is parsed).

Example:

Remark:
Beginning with the version 0.9.8.8 in addition a line is displayed with the options valid for the node.
E.g. Options: sep !icase, global ig lit (!all) !rgx

The meaning of these abbreviations is explained below.

This box belongs to the alternative in the block production of the Guard example:

block =
"{" copy_text
(
 block
| STRING copy_text
| SKIP copy_text
)*
"}" copy_text

204 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

In the tree view:

1. Caption

The caption of the dialog displays the name of the node.

2. Header

In the first line is written, whether the node is nullable or not.

3. FIRST SET:

The lines of the FIRST SET list are consisting of the name, definition and symbol number of the first
set of the node.

"{": { (12)
STRING: "([^"]|\\")*" (13)

All tokens are listed, which are beginning the alternative chains.

In the example the node presents the following alternative:

 block
| STRING copy_text
| SKIP copy_text

"{" is the single token, by which the block-production can begin and STRING is an alternative
terminal symbol.

4. SKIPS:

If a SKIP-symbol belongs to the alternatives of the node, or if the node itself represents a
SKIP-symbol, the set of token, to which can be skipped, is shown here.
In the example:

"{": { (12)
"}": } (15)
STRING: "([^"]|\\")*" (13)

205User interface

© 2002-10 Dr. Detlef Meyer-Eltz

The next position, where one of these tokens appear in the input, will be searched, if none of the
tokens, which are listed in point 3, are found at the actual text position

5. SCANNER FOR NEXT TOKEN

Only, if the node represents a terminal symbol or the call of a non-terminal, further token lists can
follow for the "SCANNER FOR NEXT TOKEN". While in the lists at point 3 and 4 token are listed,
which lead to the current node, in the following lists token are listed, which lead to the next node.
In the same block-production of the example above the display for the block node is:

After a recursive call of the block-production inside of itself, the next token must be found. The
candidates for this search are listed in the lists following the title "SCANNER FOR NEXT TOKEN".
Either with "{" a new block begins immediately or a string follows or the block will be left with "}". If
none of these cases applies - because of the SKIP-symbol - the next position in the text will be
searched, where one of these cases applies.

6. FOLLOWERS IN ALL CALLING PRODUCTIONS

Finally there is a different list of tokens, if the node represents a terminal symbol "at the end" of a
production. "At the end" means, that there is an immediately follower of the node, which does not
belong to the actual production.
In the block production, this applies to the node of the closing brace "}". The first sets for this node
are the following:

206 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

In the list following the title "FOLLOWERS IN ALL CALLING PRODUCTIONS" all tokens are listed,
which can follow the call of a production. Such a call is the call of the block-production inside of
itself. Therefore followers of this call must be includes in the list of the followed of "}". In point 5 the
list of the token, which can follow the call - the next token - already were listed.

"{": { (12)
"}": } (15)
STRING: "([^"]|\\")*" (13)

The other "FOLLOWERS IN ALL CALLING PRODUCTIONS" are following the calls of block in other
productions.

The last list is changed if it is shown while debugging the Guard-project. The list then will be
renamed to:

7. FOLLOWERS IN ACTUAL CALLING PRODUCTION

Now only the tokens are listed, which at the actual moment really can follow, that means the
followers of the actual call of the production. In the example: the followers of the call of block inside
of the block production:

207User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Now only the token discussed in point 5 are shown. Follower tokens of calls of block from other
productions actually are irrelevant.

Options:

Beginning with the version 0.9.8.8 in addition a line is displayed with the options valid for the node.

Symbol Abbreviation for Meaning

! not

sep separated word boundaries

icase ignore case ignore case

global Settings for the global scanners

ig ignore ignorable characters

lit literals literal tokens

all test all

rgx regular expressions not literal tokens

E.g.

Options: sep !icase, global ig lit (!all) !rgx

This means, that literal tokens must be separated words, that case is not ignored and that the global
scanners for the ignored characters and for the literal tokens are used.

208 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.4.9 Start mode

There are different possibilities or modes, to execute a TETRA program. These possibilities are
attainable either by the menu or by the buttons on the tool bar.

Next token (F6)
Step into (F7)
Whole routine (F8)
Start (F9)
Execute (F10)
Transformation of groups of files (F11)
Reset (Ctrl+F12)

If you chose one of the first five items, the application changes into the debug mode and the layout
of the whole user interface is change too.

This is the "DebugDefault" layout. You can customize is to your own needs.

209User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.4.10 Execution step by step

The execution step by step is useful, to find positions, where errors (bugs) might occur.
You can execute the recognition or action of each node of the syntax tree. The node, that will be
executed next is marked in yellow color.
At each step is tested, if the text, which follows the already parsed text, is matched by one of the
token of the first set of the actual node. If this is not the case, the parsing has failed and will be
stopped with an error message. If a matching token is found, the next node will be marked.

What is the next node depends on the kind of step you make.

Next token (F6)

The rules are executed to the next terminal node. There might be some branches and semantic
actions performed until there. The actions are executed if the interpreter is enabled.

Back to the last token (Shift + F6)

You can go back virtually to the previous token by this button. Semantic actions aren't undone.
When making progress once more no semantic actions are executed, until the position which was
already achieved is exceeded.

Step into (F7)

The child nodes of a production, an option, a repeat or an alternative will be executed one by one.
Depending on the position of the actual, yellow marked node, there are following possibilities:

a) If the actual node represents a branch (option, repeat or alternative), the debugger will step into
the first child node.

b) If the actual node represents the call of a production, the debugger will jump to the representation
of that production.

c) If the actual node represents a terminal symbol, that is a leaf in the tree, the execution will lead to
the following node (below), if there is a node. Otherwise, the terminal node is the end of a chain and
the step will lead to the node behind the parent of the terminal.

Single step back (Shift + F7)

You virtually can go back one step by this button. Semantic actions aren't undone. When making
progress once more no semantic actions are executed, until the position which was already
achieved is exceeded.

Step over (F8)

In this mode a whole branch is executed. The result is the same as a Step into, if the current node

210 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

is a terminal node or represents a semantic action. If the current node represents a whole structure,
this is executed in one step.

9.4.11 Execute a look-ahead step-by-step

Productions can be executed on a trial basis. In dependence of the success the same production is
executed or another branch is chosen. Such a look-ahead also can be tested step-by-step.
This is possible in arbitrary staggering. I.e. the success of a look-ahead can depend on further
look-ahead's which are carried out within the first one.

Level of look-ahead

The level of the look-ahead is shown on a little field within the tool bar. An empty field or a zero
means that the parser isn't within a look-ahead but in the main stream.

Into the look-ahead (Ctrl + F7)

If the parser is at the beginning of an IF or a WHILE structure like shown below,

you can step into the corresponding look-ahead by this button. At other positions the button works
just like the button for a single step within a look-ahead level. If the expected token doesn't belong
to the first set of the look-ahead-production, there is no change of the level too.

Different highlighting of the symbols shows, that

 it will be testet next

 it has been testet successfully

 the test failed.

Out of the look-ahead (Ctrl + F8)

You can leave a look-ahead by this button. All remaining steps within the current level are executed
at once and the parser stops at the next higher level.

Remark: you can use the other buttons and functions of the debugger the same way within a level of
a look-ahead like at the level of the main parser.

211User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.4.12 Execution at a stretch

If you execute a program at a stretch, the input will be parsed till its end or up to an error. This can
be done in two modes

Start (F9)

In this mode the execution will be stopped at break points and then can be continued step by step. If
an error occurs, there will be detailed information about the circumstances.

Execute (F10)

This mode is for the fast execution of ready programs. Some steps, which are made in the other
mode, here are left out. But there will be given only general information, if an error occurs.

9.4.13 Checking success

As soon as the debugger is started, the status bar is colored yellowly. The yellow color indicates
that no fault has appeared till now, but the processing isn't completed yet.

If the execution of the transformation was successful, then this is signaled by a green colored status
bar in the debug mode.

If no following token is found before the text ends, the parser is stopped and the status bar is colored
orangely.

Furthermore it is possible to execute single steps because semantic actions still can follow on the
abortion of the recognitions.
A red status bar finally shows that the parser finished with a fault.

212 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

If the source text wasn't processed completely, the following lines are appended to the target text:

 XX
 XX XX
 XX An error occurred. The transformation is incomplete! XX
 XX XX
 XX

More information about the fault is shown in the log window.

9.4.14 Reset

By

Reset,

the execution mode of the TextTransformer is finished. Expanded branches of the syntax tree are
collapsed and if you click on the name of a production, its definition on the production page is
shown.

If an output was generated, the following dialog will ask you to delete it or not.

9.4.15 Mark recognized/expected token

If the program is executed step by step, not only the actual node in the syntax tree is marked, but
also the actual position in the input text. You can choose between a selection of the last recognized
token and the token, which is expected next. This choice is most comfortably carried out via a tool
button. If the button is up

213User interface

© 2002-10 Dr. Detlef Meyer-Eltz

the last recognized part of text remains marked, until the next terminal node in the syntax tree has
been passed.
If the button is pressed, then immediately after a token was recognized, the text section that
corresponds to the expected next token is marked.

9.4.16 Breakpoints

You can stop the execution of a program at a definite position of the input or at a definite node in the
syntax tree and test the further processing step by step.

Text breakpoint
Node breakpoint

9.4.16.1 Text breakpoint

After the recognition of a certain position in the input text, the program can be stopped by a break
point.

First you have to put the mouse cursor on the desired position in the input text. Now you can set the
break point with the pop up menu, which appears, if you click the right mouse button. You also can
use the menu: Start->Toggle breakpoint

 Toggle breakpoint

Now in the same line the border of the source window is marked red. In the editor a red point with a
white digit is displayed.

If you toggle the breakpoint again, the breakpoint will be removed.

A breakpoint at the beginning of a line also simply can be put and removed by a mouse click on the
margin.

214 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

In the editor only:
You can set breakpoints with a special number by pressing Ctrl + Shift + Digit at the same time.
With the same key combination a breakpoint can be removed if the cursor is in an arbitrary position
of the line.

Altogether, ten breakpoints (0 - 9) can be set. You can jump to one of them in the editor by
pressing Ctrl + Digit.

If the text is edited after a breakpoint was set, the breakpoints will be shifted. They should be
cleared before editing the text.

The menu item in Start:

Clear text break points

removes all breakpoints in the text.

9.4.16.2 Node breakpoint

Before a node is executed, the program can be stopped by a node breakpoint.

You first have to select the according node in the syntax tree with the left mouse button and then to
display a pop up menu by the right button. In the pop up menu the item Toggle node breakpoint sets
the breakpoint.

A node with a breakpoint is displayed in red color. The same item of the pop up menu can remove
breakpoint.

If the rules are parsed after a breakpoint has been set, all node breakpoints will be removed.

Node breakpoints can be put only in rules of the main parser. look-ahead productions and
sub-parsers are interpreter calls. To put node breakpoints there, they must be put for a test as a
start rule.

215User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.4.17 Recognized token

A docking window of its own is a little box with information about the recognized last token and the
next token found.

If a TETRA program is executed step-by-step, in this little table in the first row the current
recognized token and in the second row the found next token are shown. As soon, as the node,
which represents the found token is left, the found token is accepted and becomes the recognized
token. At the same time the next token is evaluated.
Special cases are the SKIP-nodes. As soon as a SKIP-alternative was chosen, also the token,
which follow the SKIP-node is known. It is shown in the third line of the table.

The combo box above of the token table contains a list of all tokens, on which the actual parsed
productions are depending. For each of these tokens the name, symbol number and regular
definition is displayed.

9.4.18 Stack window

Another window of its own is the stack window.

The stack window contains a list of all productions and branches, which are superior to the current
node. By stepping from one production into a different or, if an optional branch is chosen, the name
of the superior node is put into the first line of the stack window. The previous lines are moved one
line below. So in the stack window, the sequence of nodes is displayed, which characterize the
"way", to reach the actual node.

216 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The preceding number denotes the level of look-ahead..

If you click on an item in one of the lists, the according node will be shown in the syntax tree and
the section of text is marked too in the input window, which was recognized by the corresponding
structure..

9.4.19 Variable-Inspector

By the variable-inspector you can look at the contents of the variables of the actual scope of a
debugging session.

If you are in the debugging mode (not during a look-ahead, see below), you get the window of the
variable-inspector by the button

or by the according item in the start menu

You can either write the name of a special variable into the field of the combo box at the left top of
the dialog or select one of the five predefined items:

class variables

If you choose the item class variables, the source and target information are shown as well as all
variables, which are defined on the element page. (The parser itself is denoted as this or (*this).)

local variables

If you choose the item local variables, the values of all variables are shown, which are in the actual
scope. These are the variables passed to the actual production and the variables, which are locally
declared in the production.

xState (parser state)

217User interface

© 2002-10 Dr. Detlef Meyer-Eltz

If you choose the item xState, all elements of the parser state variable are shown, including all
sub-expressions of the last recognized token.

Plugin Variables

If you choose the item Plugin variables, all variables of the plugin are shown, especially the source
and target specification and the state of the indentation and scope stack.

DOM

If a DOMDocument has been created, it can be viewed here.
.

Buttons of the toolbar

Up in the hierarchy

With the Back-button you can go a level higher in the hierarchy of the class elements or finally to a
view of all variables of a visibility area (see above).

Actualize

After you have opened the variable-inspector, you have to actualize the value of an eventually already
chosen variable by the actualize button.

Details =
Choice of a single variable by double click

If several variables are shown, you can select one of them with the left mouse button on the value
side and view their content by the Detail-button or by a double click. So longer texts or the elements
of containers or tree structures - like shown below - can be seen.

218 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

In a tree view nodes can be selected with the right mouse button. Then you can expand or collapse
the whole branch, if you chose the corresponding items in the pop-up menu. You also can move the
root of the tree to it's parent node.

Stay on top

If the check box Stay on top is actualized, the variable-inspector remains visible on top of the screen
during the complete debugging-session. After each debugging step the content of the selected
variable is actualized automatically. If stay on top is not set, there will be no such actualization and
the inspector will be deleted from the screen by each step.
If the inspector is closed, while the check box is checked, it will be unchecked.

If it is a complex variable, as for example the xState-variable, the values of its class elements will be
listed. In some cases some properties of the variables will be added to the list of values. As
containers (mstrstr, vstr) can contain very much elements, for them only the number of elements is
shown.

When debugging a look-ahead the variable inspector isn't shown because during a look-ahead no
semantic actions are executed.

9.4.20 To the actual position

This function restores the state of the debugger after the last step: the last recognized token will be
marked in the input and the last node in the syntax tree will be selected.

219User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.4.21 Info box

By the menu: Start->Show last message or the button

the last message, which was shown in the info dialog, will be shown again. This can be e.g. the last
shown token sets.

9.4.22 Log window

Meta informations to the course of a program will be shown in the log window. These are messages
about the success or about errors as well as the output, which is written explicitly to log by the
programmer.

A small red box signals, that the window contains information..

9.5 Transformation of groups of files

There are two possibilities to transform files in batch mode:

1. interactively directly out of the TextTransformer or
2. by means of an additional command line tool: tetra_cl.

9.5.1 Transformation manager

The transformation manager is a dialog, by which you can transform whole directories or other
groups of files.
You can reach the transformation manager either by the menu item Transform groups of files of the
Start menu or by the according button in the tool bar:

220 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Before the dialog opens the actual start rule - which will be used for the transformation - must be
compiled. If this is not the case, it will be done automatically when you open the manager.

At first the button in the tool bar of the manager for executing the transformations is deactivated
since no source files are selected for the transformation yet. Only if this has happened and options
are set as requested, the transformation can be started. Before starting the transformations, you can
check the list of the files which will be produced. There is a page of his own for each of these steps
in the transformation manager:

1. Source files
2. Tranformation options
3. Preview of the list of target files
4. Results

The settings, inclusive of the select folders and files, can be stored as a management and loaded
when required newly.

9.5.1.1 Defining a new filter

The choice of the source files is made easier if, before, file filters are already defined for file types
frequently required.
By the menu of the transformation manager New file filter a new mask for the files, which shall be
transformed, can be defined. The dialog, which appears is the same, which is shown for the
environment options.

9.5.1.2 Selecting source files

The files which shall be transformed are selected on the first page of the transformation manager and
are shown in a table.

221User interface

© 2002-10 Dr. Detlef Meyer-Eltz

The page has a tool bar of its own with the buttons:

Insert an empty row

Select a single source file

Select a whole source directory

Deleting a row

Clear the whole table

The choice of a file or a folder is carried out respectively with a corresponding selection box. Several
files also can be selected at once in the selection box.

After the confirmation of the choice a new row is inserted in the table below the tool bar for every file
or every folder.

222 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

There are five columns in the table:

No

a simple counter

Path

The absolute path of the file or folder.

Filename or filter

For files the file name can be seen here (with extension).
For folders a filter can be specified here. Filters already defined can be selected from a combo box in
this column by the mouse,

however, also arbitrary other filters can be written directly to the field. E.g. with the filter "*.txt" only
the files of the folder will be transformed, which have the extension "txt".

Recursive

The check box in this field can be activated only for folders. If it is activated, then all files in the
sub-folders of the shown directory are transformed too.

Exclude

Normally the check box of this field remains deactivated. However, it can be that you want to except
some files or folders from the transformation of a folder. This is possible by producing rows of their
own for these exceptions in the table and activating the excluding check box by mouse.

Extra

Extra parameters per file or file group can be put in the last field.

9.5.1.3 Transformation options

The Config button opens a small editor, in which you can write configuration parameters for the
transformations.

223User interface

© 2002-10 Dr. Detlef Meyer-Eltz

In principle, there are two ways in the transformation manager to transform the source files:

1. N:N: each source file is mapped to a different target
2. N:1:. all files are mapped into a single target file

There are different sets of options depending on, whether an N:N or an N:1 transformation is
intended

Log-file

Notwithstanding the way of the transformation, however, a log-file in which the actions and reports of
the transformations are recorded can be determined. Such a log-file can contain more information
than the messages reported on the results page.

9.5.1.3.1 N:N Transformation

N:N: each source file is mapped to a different target

This is the standard case of the translation of a source text into a target text by the transformation
manager. The same number of target files is created as the number of existing source files. In
principle it is allowed to overwrite the source files by the targets. But you have to take care for an
according saving. The TextTransformer optionally can make a backup into a chosen directory, before
the transformation starts.

9.5.1.3.1.1 Select target directory

Both is possible: to overwrite the source files and to create texts in another folder.

Write the target files into the folders of their sources

The source files are overwritten when "Write the target files into the folders of their sources" is
activated and no particular pattern for the target files is intended. Neither a separate target directory
needs to be selected nor a folder structure fpr the targets has to be chosen. So the according fields
are disabled.

224 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Writing text into a specified folder

If the check box "Write the target files into the folders of their sources" is deactivated, the input fields
for the target folders are enabled.

After you have just opened the transformation manager for the first time, the target directory is set to
the directory, which is set in the environment options. But it can be changed temporarily.

By the button

a dialog for the selection of a different target directory is opened.

The button:

can help to navigate faster to the new target directory

Folder structure

If all source files have the same path, the following options for the folder structure don't matter. If they
are, however, from different directories, then there are several possibilities for the construction of the
paths of the target files:

Ignore folder structure

means, that all target files get the same path of the target folder.

Example:

225User interface

© 2002-10 Dr. Detlef Meyer-Eltz

If the target directory is: C:\targets

the transformation of the files

C:\program files\TextTransformer\source.cpp
C:\program files\TextTransformer\Sources\source.txt

results in the following target files:

C:\targets\source.cpp
C:\targets\source.txt

If there would be the source file "C:\source.txt" too, two of the resulting files would be the same. In
this case an according error message will be produced.

Maintain absolute folder structure

Example:

If the target directory is: C:\Targets

the transformation of the files

C:\program files\TextTransformer\Source.cpp
C:\program files\TextTransformer\Sources\Source.txt
C:\Source.txt

results in the following target files:

C:\Targets\program files\TextTransformer\Source.cpp
C:\Targets\program files\TextTransformer\Sources\Source.txt
C:\Targets\Source.txt

The file "C:\Source.txt" makes no problems here.

Maintain relative folder structure

Example:

If the target directory is: C:\Targets

the transformation of the files

C:\program_files\TextTransformer\Source.cpp
C:\program_files\TextTransformer\Sources\Source.txt

results in the following target files:

C:\Targets\Source.cpp
C:\Targets\Sources\Source.txt

226 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

If there would be the source file "C:\Source.txt" too, the starting directory for the relative folder
structure had to be moved and one gets the same result as in the case of the keeping the absolute
folder structure.

9.5.1.3.1.2 Setting pattern for the target files

The names of the source files can be changed during the transformation in the transformation
manager. They can be provided with a prefix, a postfix or a new extension. The pattern for the names
of the target files is determined by the according fields.

Example:

changes the filenames in the following way

test.dat -> tt_test_01.tst
Source.txt -> tt_Source_01.tst

9.5.1.3.1.3 Backup

If by the transformation existing files are overwritten, then it is advisably to make a backup of them
before. There therefore is the possibility in the options of the transformation manager of selecting a
folder into which the original files are copied before the transformation.

Even if the backup option is activated, a backup is made only, if at least one file will actually be

227User interface

© 2002-10 Dr. Detlef Meyer-Eltz

overwritten. In this case all source files are saved.

Before a transformation starts, it is checked whether, source files will be overwritten. If this is the
case and the backup option isn't set, a warning appears which still permits to let make a backup of
the the original texts.

By the roll back function the backup files can be copied back, as long as the settings weren't
changed in the transformation manager.

Remark: If the path and the name of a target file are identical with those of the source file, the result
of the transformation will first be written into a temporary file, which will be renamed to the original
name, if the transformation succeeds. If an error occurs, the temporary file will not be renamed and
is left in the target directory. You can look at it in an editor and see where the error occurred. The
names of the temporary files are constructed of temporary, eventually followed by a number and with
the extension tmp.

9.5.1.3.2 N:1: Transformation

N:1:. all files are mapped into a single target file

If information out of a multitude of files shall be extracted by the transformation manager into a
single different target file, there is a N:1 relationship between source and target. In this case a target
file has to be chosen, which is different to all source files. So a backup of the source files is not
necessary.

The target file can be opened by a file select dialog. You also can use the dialog for the choice of the
directory and enter the name of a file not existing yet in the dialog.

228 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.5.1.4 Preview of the target files

The list of the files which will be produced are shown on the third tab-page of the transformation
manager.

In case of an N:1 transformation the different rows of a table show which source files can contribute
to the file to be produced.

Excluding individual files

Similar to the table of the source files the table of the expected target files contains a field with a
check box to exclude individual files. Here you can exclude single files whose source files are in a
selected source folder.

Remark:
When writing a management the source files belonging to the excluded target files are excluded. If
the management then is loaded, these files appear as excluded in the source files table and no more
in the target files table.

Excluding successful transformed files

If, currently, the transformation of the files being part of the management was executed already

once, then by the button all those files can be excluded from another transformation which were
already transformed successfully. So it is possible to apply a corrected project alone to the files
which, till now, couldn't be transformed.

Including all files

By the button all selections for the exclusion of files can be removed.

Actualize

You can refresh the list of files by the button .

229User interface

© 2002-10 Dr. Detlef Meyer-Eltz

9.5.1.5 Start the transformation

The transformation of the selected files in the transformation manager is started by the menu item
Start transformation or by the button in the main tool bar

When the transformations are started, the page is changed to the Results-page automatically.

9.5.1.6 Results

The rows of the table on the result page of the transformation manager contain messages which
arise during the transformation of files. Messages are produced by the transformation manager
automatically. However, messages, programmed from the user are shown too.
Every message is immediately written into a new row of the table after the message was created.
So, the growing row number of the table at the same time shows the progress of the
transformations.

In the first row the status of the message is shown as a color.

Color Status user defined by

new source file

neutral information AddMessage

success message --

warning AddWarning

error message AddError

A report can be made from the list of results.

230 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.5.1.6.1 Report

A report can be written from the list of the results in the transformation manager. This can be done
either by the menu item "File -> Save results as ..." or by the button on the result page

Now you either have to select an existing file or you can choose a directory and write the name for a
new file into the according field.

The information which is included in the report can be determined by the user. Only the information
will be written for which the according boxes are checked.

A numbering of the source files is recommended because sometimes there are several messages to
one file.
The different color values of the first column of the result table are corresponding to the status boxes
here. Only those lines are written, which have a selected status.

9.5.1.7 Corrections

After the transformation has finished, you can examine the transformed files and if needed, make
corrections on the project.
To look up a single transformed file or to debug a source file, which produced errors, you can
choose the according line in the table. By a double click on the row in the table or by the popup
menu, the dialog will be closed and the source file will be loaded into the input window of the IDE. If
the source file was transformed successfully, the target file will be loaded into the target window too.

231User interface

© 2002-10 Dr. Detlef Meyer-Eltz

You can improve the project and reopen the transformation manager. The settings are the same as
before, if you have not opened another project meanwhile.So you can repeat all transformations with
your improved project.

9.5.1.8 Roll back

If the project was improved, you can repeat the transformation of the same source files to the same
target files. You can copy back the backup files before by Roll back, if the original files were
overwritten, .

Attention! If the source files were overwritten, and no roll back was made before a second
transformation, the backup himself will be overwritten by the results of the first transformation. It is
always more save to choose a target directory different from the source directory.

9.5.1.9 Management

The sum of the settings of the transformation manager is called a management here. A management
is a transformation manager project. To prevent a mistake with a TextTransformer project, it is
described as a management.

By the menu item: Save management as. you can save a management

By the menu item: Open management, you then can reload a management. Recent managements
can be accessed quickly by the history list in the menu.

A management can be used to control the commandline tool Tetra_cl too.

Managements are save with the extension "ttm". They are parsed by the project FileList.ttp.

The syntax for a management was designed as scarce and simple as possible, so that it also can
be written by hand. A management consists in the extreme case in only one file path.
Fields to inactive options aren't stored in a management also if they are readable in the
transformation manager. When parsing a management, values are deciding by their existence,
whether the options for which they are needed, are active or not. E.g. the existence of a target path
decides, whether files are written over or not.

An example management is in the folder of the GrepUrls example:

single_target = C:\Program Files\TextTransformer\Examples\GrepUrls\Result.txt
log_file = C:\Program Files\TextTransformer\Log\transformation.log
+ r C:\Program Files\TextTransformer\Examples\GrepUrls\boost*.htm;*.html

232 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

9.5.2 Command line tool

A command line version of the TextTransformer exists: tetra_cl.exe. By means of this program an
automatic transformation of groups of files is possible. Since version 1.2.2 the command line tool
can optionally be installed with the installation of the TextTransformer. It then is copied into the bin
folder of the program directory.

When calling tetra_cl, you have to pass some parameters concerning the files, which shall be
transformed and how.

9.5.2.1 Parameter

A call of tetra_cl has the following form:
Tetra_cl can be controled either by a management, which was produced with the transformation
manager or by parameters for the source and target files.
In the first case a call has the form:

tetra_cl -p PROJECT -m MANAGEMENT [-a]

and in the second case:

tetra_cl -p PROJECT -s SOURCE [-t TARGET] [-b BACKUP] [-c CONFIGURE] [-x EXTRA] [-a] [-r]

Parameter are specified by single letters preceded by a dash '-' and sometimes followed by a space
and some text. Expressions in brackets are optional.
If a path contains spaces, it has to be quoted.

Parameter Meaning Examples

-p PROJECT TETRA project exchange.ttp

-m MANAGEMENT a project file made with the
transformation-manager

MyWebSite.ttm

-s SOURCE Source file(s) C:\dir*.txt

-t TARGET Target file or directory C:\dir2\target.txt

-b BACKUP Backup directory C:\Backup

-c CONFIGURE Configuration parameter "\"C:\\boost\", \"C:\\mylib\""

-x EXTRA Extra-parameter alternative_rule

-a ASK Ask at each file

-r RECURSIVE recursively including the files of
the subfolders

-p PROJECT

The parameter -p must be followed by the address of the TextTransformer project, by which the files
of the source directory shall be transformed.

233User interface

© 2002-10 Dr. Detlef Meyer-Eltz

-m MANAGEMENT

The parameter -m is followed by the address of the transformation manager project, which specifies
the source and target files.
If an -m paramerter is provided, -s, -t and -r are ignored.

-s SOURCE

The parameter -s must be followed by a specification of the files, which shall be transformed.
In the simples case this a specification is an address of a single file, like "C:\dir\source.txt". To
transform all "txt" files of a directory, you can use a mask like: "C:\dir*.txt". If there is no directory
specified in the mask, all files of the actually directory will be transformed; e.g.: "ab?.*" will chose all
files of the actually directory beginning with "ab" followed by a single character and an arbitrary
extension, e.g. "ab1.txt", "ab2.txt" and "ab_.bat"

-t TARGET

The specification of a target is optional. If there is no, all source files will be overwritten by their
transformed versions. You can specify a fully qualified file name or a name without directory. In the
latter case, the transformed file will be written into the source directory. If there is specified a target
directory without a file name, all transformed source files will be written into the target directory using
their original names.

-b BACKUP

A backup directory is necessary, if at least one source file will be overwritten by a transformation. If
no file will be overwritten, no backups are made.

Examples:

tetra_cl -p exchange.ttp -s feuerbach.txt -b C:\Backup

"feuerbach.txt" will be overwritten by its transformed version. A backup of "feuerbach.txt" will be
copied into "C:\Backup" before the transformation starts.

tetra_cl -p exchange.ttp -s feuerbach.txt -t bachfeuer.txt

The transformed version of "feuerbach.txt" will be written into "bachfeuer.txt" in the same actual
directory.

tetra_cl -p exchange.ttp -s *.* -t ..\newdir

The transformed files will be written into the subdirectory "..\newdir". If this directory doesn't exist, it
will be created automatically.

If there are several source files but only one target file, all results will be written into the single target
file. This must be different from all source files.

234 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

-c CONFIGURE

Following on "-c", you can submit parameters as an identifier or string to the project, which are
needed there before the start of any of the transformations. The parameter is read with the function
ConfigParam there. A single config parameter is put for all files.

-x EXTRA

Following on "-x", you can submit parameters as an identifier or string to the project, which are
needed there before the start of a certain transformation. The parameter is read with the function
ExtraParam there. An extra parameter can be put per file.

-a ASK

If the optional parameter "-a" is written, you will be asked before each transformation:

transform: source to target ? (yes,no,all,cancel)

You have to answer by pressing the according first letter:

y transform this file
n don't transform this file
a transform all files
c cancel all transformations

-r RECURSIVE

By the optional parameter "-r" you can force a recursive search for source files in all subdirectories.

9.6 Keyboard shortcuts

Help

Calls this help F1

Regex Test F2

File operations

CTRL + O Open file

CTRL + S Save file

Navigate

SHIFT + F5 goto startrule

Compile

F5 Parse startrule

235User interface

© 2002-10 Dr. Detlef Meyer-Eltz

Executing and debugging

F6 Next token

F7 Step into

F8 Step over

F9 Start

F10 Execute

F11 Transformation manager

CTRL + F12 Reset

CTRL + SHIFT + Digit Set/remove breakpoint

CTRL + Digit Jump to breakpoint

Repository

CTRL + ALT + I Parse/test single script

CTRL + ALT + P Parse/test connected scripts

CTRL + ALT + T Parse/test all scripts

CTRL + ALT + N New script

CTRL + ALT + A Accept changes

CTRL + ALT + C Cancel changes

CTRL + ALT + D Delete script

Delete Delete selected script of the list

CTRL + ALT + M Comment

SHIFT + F3 Find next occurrence of the selected text (in all
scripts)

Clipboard

The following keyboard shortcuts will work only, if a script is selected in the list of all scripts. If
however an editor is active, the shortcuts have their usual text-processing function.

STRG+Insert copies the actual script into the clipboard. From there it can be reinserted into the
same project with a new name, or it can be inserted into a different project, which is opened in a
second instance of the TextTransformer.
Shift+Insert inserts a script from the clipboard into a project. (You have to accept the insertion
and if there is a name conflict, you have to rename it.)

9.6.1 Block commands

Inside of the different edit fields (not in the comment field) following keyboard shortcuts for block
command can be applied:

Shortcut Action or command

236 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

CTRL+K+B marks the beginning of a block

CTRL+K+I indents a block

CTRL+K+K marks the end of a block

CTRL+K+L selects the actual line as block

CTRL+K+N converts the block to upper case

CTRL+K+O converts the block to lower case

CTRL+K+T selects a word as block

CTRL+K+U 'unindents' a block

CTRL+K+Y deletes the selected block

TextTransformer

Part

X

238 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10 Scripts

A TextTransformer project can consist of four kinds of scripts:

Token definitions that describe the lexical units of the input as regular expressions are located on
the token page. (If they are literals, they can immediately be defined inside of the grammar rules.)

Grammar rules (productions) that describe the syntactical structure of the input. These rules are
located on the production page.

C++ code that describes the translation of the input into a target language. This code is
embedded into the grammar rules by use of special parenthesis.

Test scripts on the test page of the TextTransformer.

For simple projects the definition of grammar rules is sufficient.

The names of all production, element and token scripts of a project have to be different to each
other.

10.1 Token definitions

On the token page you can define tokens.

The definition of a token is done inside of a form.
Literal tokens can be defined directly inside of a production too.

On the following pages the syntax of regular expressions will be explained.
At first a simple subset of regular expressions will be presented: the literal expressions. Then the
regular expressions will be presented in detail.

10.1.1 Input mask for a token

The mask for a token definition has the following fields:

Name: unique name
Return type: C++-type
Parameter: C++-Parameter declaration
Comment: arbitrary comment
Text: Token script
Semantic action: Instructions

239Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Name and text are needed. If one of these fields is empty, the script will not be accepted and you
can't write a comment.

10.1.1.1 Name

Each token script must have a name. This name is used in production scripts to denote the token.
A name can be constructed of the alphanumeric characters and the underscore, but the latter may
not be at in first place of the name.

Examples: IDENTIFIER, int_value, UB40

Each new name must differ from all other names of tokens, productions, functions and variables by
at least one character.

10.1.1.2 Return type

The commands in the field semantic actions, which are executed immediately after the recognition
of the token, can return a value.
For the syntax the same applies, what is said for the return type of productions.

10.1.1.3 Parameter declaration

In the parameter field you can declare parameters for the token. The parameters can be used by the
semantic actions.
For the syntax the same applies, what is said for the parameters of productions.

10.1.1.4 Comment

A comment to the token script can be shown in the yellowish field. Temporary this field is also used
to show error messages.

To change the comment, use the button. A dialog will be opened, where you can write the new text.

240 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.1.1.5 Text

In the field Text the token definition as regular expression is formulated. In the simples form

the whole expression is written into the first line of the field.

This is possible in each case and in most cases this will be done so. But you can increase the
readability of complex expressions by

writing them into several commented lines.

Hereby the parts of the expression must be at the beginnings of the different lines and the
conjunction of the lines is made by a backslash " \" preceded of at least one white space. Each
conjunction character "\" and also the last part of the regular expression may be followed by a line
comment. A line comment begins with two slashes "//" and covers the rest of the line. The text
must be separated from line comments by at least on white space or a line break. The following
notations are equivalent:

\w+::\w+ // class and function name

\w+ \ // class name
::\w+ // function name

\w+ \
// class name
::\w+
// function name

10.1.1.6 Semantic action

The field Semantic action is used for c++ instructions that specify how the parser reacts to the
recognition of the token. Even if a token is often used in the grammar, this reaction must be
specified only once. For example, like a bilingual dictionary the translation of a token text can be
given here:

Text: "Hello world"
Action: out << "Hallo Welt";

For the syntax of the instruction the same is applied as described for semantic actions in
productions.

If you don't use braces, the project options for double braces are applied.

For token actions no nodes will be created in the syntax tree. So the tree becomes clearer.

It isn't possible to define a transitional action for a token if an action is assigned to it as described
here.

241Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.1.2 Literals

Each special word of a text, each number and generally each part of a text can be considered as an
individual literal token. A literal simply is a special sequence of characters.
For example the word "TETRA" is a 'T'' followed by an 'E' a 'T', 'R' and an 'A'.

According to their simplicity and their importance for syntactical analysis literals have not to be
defined separately on the token page. You can define them directly inside of a production. This is
possible in two ways:

1. by inclusion of the text in quotation marks, e.g. "TETRA"
2. by putting an underscore in front of the text, e.g. _TETRA,

In the second case a named literal token is produced that is inserted on the token page
automatically. The special advantages of named literal tokens are discussed separately. The simple
literal tokens usually suffice. For example a rule to parse a salutation could look like

("Mr" | "Mrs") name

Hereby "Mr" and "Mrs" are meaning themselves, while name could denote a different regular
expression or a production.

Inside such a token each character means itself. That holds not generally for regular expressions.
For example the smiley

";-)"

defined in the syntax of regular expressions looks like:

";\-\)"

Here the hyphen and the parenthesis have a Meta meaning, so that they must be preceded by a
backslash to get back their originally meaning.

Some characters, which could be represented otherwise, such as line breaks, can be used as
escape sequences also within the definition of literal tokens.

10.1.2.1 Named literals

Sometimes it is advisable to define named literal tokens instead of using simple literal tokens. Either
this can be done directly on the token page or you simply can define them within a production too,
by putting an underscore in front of the literal text. In this case a new token is inserted on the token
page automatically, as soon as the production is accepted. If e.g. the expression _TETRA occurs in
the production, then the following token is produced:

Name _TETRA
Definition TETRA

242 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Since special characters aren't permitted in script names, this way no tokens which include special
characters can be defined. However, it is possible to change the definition of a named literal
afterwards correspondingly. E.g.:

Name _TETRA
Definition **TETRA**

If the name of a token starts with an underscore, all characters occurring in the definition are
interpreted literally. So the stars '*' don't have the meaning of repeat marks here.

The advantages of named literal tokens are that they

1. have a unique name,
2. can be associated with a semantic action easily and
3. these names also are availably in the produced c++ code.

to 1.
Misspellings which could occur if the same literal is used in different places of the grammar are
avoided.

to 2.
If the same semantic action shall always be executed when finding a certain literal token in the text
even if it occurres in different places of the grammar, then it is appropriate to make use of the
possibility of connecting a token directly with an action. E.g. it often makes sense at the generation
of parse trees to insert the texts of the literal tokens as leafs in the tree in always the same way.

to 3.
A character string is produced at the generation of c++ code from a project for every named literal.
These strings can be used also in the code of the program, which uses the parser. For example:

const char _protected[] = "protected";

10.1.3 Regular expressions

The TextTransformer uses the regular expression library of Dr John Maddock. The syntax of the
expressions is the same as described there - with little restrictions.

Following elements are used to define regular expressions

Characters by code
Special characters
Sets of characters
Character classes
Locale dependant features
Wildcard
Anchors

243Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Concatenation
Groupings
Alternatives
Repeats
Macros

10.1.3.1 Single characters

All characters match themselves, if the don't have a special Meta-meaning.. So e.g. the letter 'A' in
the source text is recognized with the character 'A' in the regular expression and if a regular
expression contains the string "hello", it will recognize the word "hello"

10.1.3.2 Meta-characters

In contrast to literals, where all characters designate themselves, regular expressions use some
special Meta characters. Meta characters are used to define sets of characters, groupings and
sequences.

Following characters are Meta characters:

'.', '|', '*', '?', '+', '(', ')', '{', '}', '[', ']', '̂ ', '$' und '\'

If a Meta character in its literal meaning is needed, is must be preceded by the backslash '\'.

Quoting escape

The escape sequence \Q begins a "quoted sequence": all the subsequent characters are treated as
literals, until either the end of the regular expression or \E is found. For example the expression:
\Q*+\Ea+ would match either of:

*+a

*+aaa

10.1.3.3 Special characters

The visual representation of other nongraphic characters is possible by escape sequences.

The rules for the use of hexadecimal numbers are modified a little in contrast to the use in general
character strings. Only two hexadecimal numbers are interpreted as a characters if they aren't
parenthesized.

\xdd A hexadecimal escape sequence - matches the single character whose code
point is 0xdd
\x{dddd} A hexadecimal escape sequence - matches the single character whose code
point is 0xdddd.

244 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

\N{Name} Matches the single character which has the symbolic name name. For example
\N{newline} matches the single character \n.

10.1.3.4 Sets of characters

A set of characters can match any single character that is a member of the set.
Sets are delimited by "[" and "]" and can contain literals, character ranges or predefined character
classes.

The characters ".|*?+(){}$", which have a Meta meaning within the regular expressions, have their
literal meaning within the definition of character classes, i.e. no backslash must be put in front of
them here.

Set declarations that start with "^" contain the compliment of the elements that follow.

Examples:

Character literals:

"[abc]" will match either of 'a', 'b', or 'c'.

"[^abc]" will match any character other than 'a', 'b', or 'c'.

Character ranges:

"[a-z]" will match any character in the range 'a' to 'z'.

"[^A-Z]" will match any character other than those in the range 'A' to 'Z'.

Combinations:

All of the above and character sets and symbolic names can be combined in one character set
declaration, for example:

[[:digit:]a-c[.NUL.]].

To include a literal '-' in a set declaration then: make it the first character after the opening '[' or '[^',
the endpoint of a range precede with an escape character as in '[\-]'. To include a literal '[' or ']' or '^'
in a set then make them the endpoint of a range, or preceded with an escape character.

10.1.3.5 Character classes

Character classes are denoted using the syntax "[:classname:]" within a set declaration, for
example "[[:space:]]" is the set of all white space characters.
[[:digit:],] is the set of all digit and the comma.

The available character classes are:

245Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

alnum Any alpha numeric character; alpha and digit (*)

alpha Any alphabetical character a-z and A-Z, umlauts etc. (*)

blank Any blank character, either a white space, a non-breaking
space (decimal 160) or a tab

cntrl Any control character

digit Any digit 0-9

graph Any graphical character; all other except cntrl

lower Any lower case character a-z (*)

print Any printable character, graph and blank

punct Any punctuation character

space Any white space character (space, tabulator, carriage return,
line feed...)

upper Any upper case character A-Z (*)

xdigit Any hexadecimal digit character, 0-9, a-f and A-F

word Any word character - all alphanumeric characters plus the
underscore (*)

(*) according to the local settings on your computer other characters might be recognized too. Try it
in the dialog for the calculation of character classes!

There are some shortcuts that can be used in place of the character classes

\w [:word:]

\W ^[:word:]

\s [:space:]

\S ^[:space:]

\d [:digit:]

\D ^[:digit:]

\ l [:lower:]

\L ^[:lower:]

\u [:upper:]

\U ^[:upper:]

10.1.3.6 Locale dependant features

There are some country or language specific definitions for regular expressions. This concerns their
use in TextTransformer only marginally, because, at the moment only the German localization - if
installed on your computer - or otherwise the English localization is supported and the
TextTransformer IDE always uses the ANSI-character set. Nevertheless, in special cases these
features may be useful and a knowledge can be also helpful for an extended use of the generated
code.

Collating elements
Equivalence classes

246 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Collating Element Names

10.1.3.6.1 Collating elements

An expression of the form [[.col.]] matches the collating element col. A collating element is any
single character, or any sequence of characters that collates as a single unit. Collating elements
may also be used as the end point of a range, for example: [[.ae.]-c] matches the character
sequence "ae", plus any single character in the range "ae"-c, assuming that "ae" is treated as a
single collating element in the current locale.
Collating elements may be used in place of escapes (which are not normally allowed inside
character sets), for example [[.^.]abc] would match either one of the characters 'abc^'.
As an extension, a collating element may also be specified via its symbolic name, for example:

[[.NUL.]]

matches a NUL character.

10.1.3.6.2 Equivalence classes

An expression of the form[[=col=]], matches any character or collating element whose primary sort
key is the same as that for collating element col, as with colating elements the name col may be a
symbolic name. A primary sort key is one that ignores case, accentation, or locale-specific
tailorings; so for example [[=a=]] matches any of the characters: a, à, á, â, ã, ä, å, A, À, Á, Â, Ã, Ä
and Å. Unfortunately implementation of this is reliant on the platform's collation and localisation
support; this feature can not be relied upon to work portably across all platforms, or even all locales
on one platform.

10.1.3.6.3 Collating Element Names

Digraphs (Connection of two letters to a sound)

The following are treated as valid digraphs when used as a collating name:

"ae", "Ae", "AE", "ch", "Ch", "CH", "ll", "Ll", "LL", "ss", "Ss", "SS", "nj", "Nj", "NJ", "dz", "Dz", "DZ",
"lj", "Lj", "LJ".

POSIX Symbolic Names

The following symbolic names are recognised as valid collating element names, in addition to any
single character:

Name Character
NUL \x00
SOH \x01
STX \x02
ETX \x03
EOT \x04

247Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

ENQ \x05
ACK \x06
alert \x07
backspace \x08
tab \t
newline \n
vertical-tab \v
form-feed \f
carriage-return \r
SO \xE
SI \xF
DLE \x10
DC1 \x11
DC2 \x12
DC3 \x13
DC4 \x14
NAK \x15
SYN \x16
ETB \x17
CAN \x18
EM \x19
SUB \x1A
ESC \x1B
IS4 \x1C
IS3 \x1D
IS2 \x1E
IS1 \x1F
space \x20
exclamation-mark !
quotation-mark "
number-sign #
dollar-sign $
percent-sign %
ampersand &
apostrophe '
left-parenthesis (
right-parenthesis)
asterisk *
plus-sign +
comma ,
hyphen -
period .
slash /
zero 0

248 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

one 1
two 2
three 3
four 4
five 5
six 6
seven 7
eight 8
nine 9
colon :
semicolon ;
less-than-sign <
equals-sign =
greater-than-sign >
question-mark ?
commercial-at @
left-square-bracket [
backslash \
right-square-bracket]
circumflex ~
underscore _
grave-accent `
left-curly-bracket {
vertical-line |
right-curly-bracket }
tilde ~
DEL \x7F

10.1.3.7 Wildcard

The dot character "." matches any single character. You can interpret this as a set containing all
characters.

10.1.3.8 Anchors

Warning: Anchors only have an effect if the expression is target of a Skip node and the effect of
anchors depends on the ignorable characters set in the project options.

An anchor is something that matches the null string at special text positions.

Line anchor:

249Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

'^' matches the null string at the start of a line, when used as the first character of an expression, or
the first character of a sub-expression.

'$' matches the null string at the end of a line, when used as the last character of an expression, or
the last character of a sub-expression.

Word anchor:

"\<" matches the null string at the start of a word.

"\>" matches the null string at the end of the word.

"\b" matches the null string at either the start or the end of a word.

"\B" matches a null string within a word.

Buffer anchor

"\`" matches the start of a buffer.

"\A" matches the start of the buffer.

"\'" matches the end of a buffer.

"\z" matches the end of a buffer.

"\Z" matches the end of a buffer, or possibly one or more new line characters followed by the end of
the buffer.

A buffer is considered to consist of the whole sequence passed to the matching algorithms.

Remark:

In the TextTransformer "\A" precedes all regular expressions - when not used inside a SKIP
definition - to assert, that the next match will begin at the current text position. So an anchor like "^"
has no use. The search begins at the beginning of the actual buffer and the regular expression "does
not know" where the buffer begins in the text.
But for SKIP nodes the use of an anchor "^" can make sense:
If a token is defined as:

LINE_START_WORD = ̂ \w+

and the grammar defines a SKIP symbol:

SKIP LINE_START_WORD

the first line of the following text will be skipped:

" Wort1 not at line begin
Wort2 at line begin"

"Wort2" will be recognized as LINE_START_WORD.

250 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.1.3.9 Concatenation

Hitherto only elements of regular expressions were explained, which matches single characters.
From these and elements explained below, complex regular expressions can be constructed, to
match lists of characters like words and numbers etc. The simplest manner for this is to write one
element after the other. So each element recognizes one character of the whole list.

So the word "TETRA" consists of the regular elements "T", "E", "T", "R" and "A" But the same word
would also be recognized by "[A-Z]E[^0-9]RA". This expression is more general than the first and
also would match texts like "AE&RA" or "HEDRA".
The principle is the same: The x'th element of the complex regular expression matches the x'th
character.

10.1.3.10 Groupings

Parentheses serve two purposes:

1. To group items together into a sub-expression

If expressions are grouped into a sub-expression, operators like the repetition operator, can be
applied to the whole group. For example the expression "(ab)*" would match all of the string
"ababab".

2. To mark what generated the match

When the whole expression has matched, both informations can be accessed (via xState): on what
the whole expression matched and on what each sub-expression matched. Sub-expressions are
indexed from left to right starting from 1; sub-expression 0 is the whole expression. The according
parts of text are obtained by

str s = xState.str(index);

It is permissible for sub-expressions to match null strings. If a sub-expression takes no part in a
match - for example if it is part of an alternative that is not taken - then xState.str(index) will return
an empty string.

10.1.3.11 Alternatives

A regular expression can contain alternatives. That means, the whole expression matches the text,
if one of the alternatives matches. Alternatives are separated by the pipe character "|".

Examples:

251Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

"a(b|c)" matches "ab" or "ac".

"abc|def" matches "abc" or "def", but not "abdef".

At the last example you can see, that each alternative contains the largest possible sub-expression
(in contrast to repetitions see below). "abc|def" is not "ab" followed by "c" or "def", but "abc" or "def".

10.1.3.12 Repeats

Any atom (a single character, a marked sub-expression, or a character class) can be repeated with
the *, +, ?, and {} operators.

*

The * operator will match the preceding atom zero or more times, for example the expression a*b will
match any of the following:

b

ab

aaaaaaaab

+

The + operator will match the preceding atom one or more times, for example the expression a+b
will match any of the following:

ab

aaaaaaaab

But will not match:

b

?

The ? operator will match the preceding atom zero or one times, for example the expression ca?b
will match any of the following:

cb

cab

But will not match:

caab

{}

An atom can also be repeated with a bounded repeat:

a{n} Matches 'a' repeated exactly n times.

252 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

a{n,} Matches 'a' repeated n or more times.

a{n, m} Matches 'a' repeated between n and m times inclusive.

For example:

^a{2,3}$

Will match either of:

aa

aaa

But neither of:

a

aaaa

It is an error to use a repeat operator, if the preceding construct can not be repeated, for example:

a(*)

Will raise an error, as there is nothing for the * operator to be applied to.

All repeat expressions refer to the shortest possible previous sub-expression: a single character; a
character set, or a sub-expression grouped with "()" for example.
The expression "ba*" doesn't match "baba".

10.1.3.13 Macros

The names of already defined token can be used for the definition of other token. To do this, the
name must be included into the braces '{' and '}'. Now this expression can be situated inside of a
new token definition. When parsing the new definition, the TextTransformer will remove the braces
and substitute the token name by its text.

Example:

SPACES = [\t]*

DECLARATOR =
(((\w+::)*\w+)::)?(\w+) \ //Scope(s) and name
{SPACES} \ // optional spaces
\([^)]*\) // Parameter

Internally the TextTransformer will collapse the line to one:

(\w+::)?(\w+)::(\w+)[\t]*\([^)]*\)

253Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.1.3.14 boost regular expression library

The TextTransformer uses the regular expression library of Dr John Maddock at
http://www.boost.org, which is a part of the whole boost library. The syntax of the expression is the
same as described there as POSIX-Extended Regular Expression Syntax.
The boost regular expressions can be modified by flags. With two exceptions the default flags (=
extended) are kept.

const tt_syntax_option_type _boost_regex_normal =
 boost::regex_constants::extended
 & ~boost::regex_constants::no_escape_in_lists
 & ~boost::regex_constants::collate;

The flag "no_escape_in_lists" is negated. So a backslash has to be put in front of itself inside of the
definition of a character set.

The flag "collate" is negated, to be able to define character sets in the order, by which the
characters are listed in the ANSI-table.

The flag "extended" specifies that the grammar recognized by the regular expression engine is the
same as that used by POSIX extended regular expressions in IEEE Std 1003.1-2001, Portable
Operating System Interface (POSIX), Base Definitions and Headers, Section 9, Regular
Expressions (FWD.1).

When the expression is compiled as a POSIX-compatible regex then the matching algorithms will
match the first possible matching string, if more than one string starting at a given location can
match then it matches the longest possible string.

This matching algorithm is essential for the TextTransformer. So unfortunately non-greedy repeats

and look-ahead asserts aren't supported. Backreferences aren't disabled explicitely, but normally
they will not work correctly, as the enumeration of subexpressions is moved in
SKIP-expressions. Backreferences have to be avoided.

10.1.4 Predefined tokens

If you are in the list of tokens on the left side of the token page with your mouse, you will get a list of
predefined tokens, by right mouse click. If you choose one of these tokens, a new script with filled
name and text field will be opened. You now can modify it, or accept it as it is.

The predefined token are divided into the following categories:

Identifier
Words
Numbers

254 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Quotes
Dates
Comments
Ignorable
Line break
Binary null
Addresses
Data field (Character class calculator)

10.1.4.1 Identifier

The following predefined tokens can be inserted in a project by a pop-up menu.

ID: [a-zA-Z_]\w*

Identifiers beginning with a character of the alphabet or the underscore and followed by an arbitrary
number of alphanumeric characters or the underscore (= \w). It is important, that an identifier cannot
begin with a digit. Otherwise it would recognize numbers too. Mostly it is recommended, to define an
extra token for numbers.

URI_WS_DELIM
URI_QUOTE_DELIM
URI_ANGLE_DELIM

This are regular expressions for Uniform Resource Identifiers (URI), as for example website
addresses. URI's are described in RFC 3986

http://www.apps.ietf.org/rfc/rfc3986.html

The three expressions are variants of an expression given on the mentioned page. As opposed to the
latter these expressions don't recognize any empty text. A URI has to start with the "scheme"
expression described there, i.e. with characters on which a colon follows. In addition, a URI has to
be delimited from the surrounded text. The three expressions given here are different in the way of
this separation.

URI_WS_DELIM : (([^:/?#]+):)(//([^/?#\\s]*))?([^?#\\s]*)(\\?([^#\\s]*))?(#([\\s]*))?

This URI is delimited by white spaces from the rest of the text. So the URI may not contain
white spaces. For example URI_WS_DELIM recognizes the following text:

http://www.ics.uci.edu/pub/ietf/uri/#Related

255Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

URI_QUOTE_DELIM : "(([^:/?#]+):)(//([^/?#"]*))?([^?#"]*)(\\?([^#"]*))?(#([^"]*))?"

This URI is delimited by double quotes from the rest of the text. So the URI could have been
written in a manner, that it contains white spaces. For exampleURI_QUOTE_DELIM recognizes

the following text:

"http://www.ics.uci.edu/pub/ietf/uri/#Related"

URI_ANGLE_DELIM : <(([^:/?#]+):)(//([^/?#>]*))?([^?#>]*)(\\?([^#>]*))?(#([^>]*))?>

This URI is delimited by angle brackets from the rest of the text. So the URI could have been
written in a manner, that it contains white spaces. For example URI_ANGLE_DELIM recognizes

the following text:

<http://www.ics.uci.edu/pub/ietf/uri/#Related>

Remark:

The following sections are recognized by the sub-expression in the example above:

 $1 = http:
 $2 = http
 $3 = //www.ics.uci.edu
 $4 = www.ics.uci.edu
 $5 = /pub/ietf/uri/
 $6 = <undefined>
 $7 = <undefined>
 $8 = #Related
 $9 = Related

where <undefined> indicates that the component is not present. Therefore, we can determine the
value of the five components described in RFC 3986 as

 scheme = $2
 authority = $4
 path = $5
 query = $7
 fragment = $9

10.1.4.2 Words

The following predefined tokens can be inserted in a project by a pop-up menu.

The classes of possible recognitions of the words of different languages are overlapping. You only

256 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

should use one language in one project or be sure what you are doing.

WORD_EN: [A-Za-z]+

WORD_GE: [A-Za-zäöüÄÖÜ][A-Za-zäöüÄÖÜß-]*

WORD_FR: [A-Za-záàâéèêíìîóòôúùûÀÁÂÈÉÊÌÍÎÒÓÔÙÚÛÇçŒœ]+

WORD_SP: [A-Za-záéíóúÁÉÍÓÚñ]+

English, German, French or Spain word. The regex consist in one or more repeats of the letters on
the according alphabet. The letters [a-z) and [A-Z] (= [[:alpha:]] are contained in all alphabets.
(German words may not begin with 'ß' and may contain hyphens.)

NAME_INT: [[:alpha:]][-[:alpha:]]*

International name, which may contain hyphens.

10.1.4.3 Numbers

The following predefined tokens can be inserted in a project by a pop-up menu.

INT: \d+

A natural number (integer) simply consists in one or more digits. The class of all digits is predefined
as '\d'.

REAL: (\d+\.\d*|\.\d+)([eE][\+\-]*\d+)?

A real number, either begins with a dot or with a dot preceded by an integer. The dot is followed by
an arbitrary number of digits and optionally by an exponent expression. A dot without an adjoining
digit is not a real number.

Examples: .1; 1.;1.1; 3.14, 6.626E-34

HEX_PAS: \$[[:xdigit:]]{1,8}

A hexadecimal number as used in the programming language pascal: a dollar character followed by
up to eight digits or letters from 'A' to 'F' or 'a' to ''f'.

HEX_CPP: \$[[:xdigit:]]+

A hexadecimal number as used in the programming language c++: "0x" followed by several digits or
letters from 'A' to 'F' or 'a' to ''f'.

257Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.1.4.4 Quotes

The following predefined tokens can be inserted in a project by a pop-up menu.

STRING: "([^"\\\r\n]*(\\.[^"\\\r\n]*)*)"

String, beginning and ending with a double quote (\"). The string may contain other double quotes, if
they are preceded by backslashes.

"This expression was \"Friedl\" optimized"

The first sub-expression contains the characters inside of the outer double quotes, that means, by
xState.str(1) you can access this text directly.

A string as defined here cannot extend the end of line.

Remark: The expression is optimized according to Friedl's scheme

CHAR_CPP: '(\\?.)'

Characters are included in quotes as usual in c++. Preceded by a backslash, they get a special
meaning, as e.g. '\n': the line feed.

10.1.4.5 Dates

The following predefined tokens can be inserted in a project by a pop-up menu.

The classes of possible recognitions of the following dates are overlapping. You only should use one
of them in one project or be sure what you are doing. The expressions are kept general. So are
recognized next to 4-digit also 2-digit dates and different separators are allowed. For a concrete
application the expressions should be specified as far as possible.

DD_MM_YYYY:
(0[1-9]|[12][0-9]?|3[01]?|[4-9])[-./] \// day
(0[1-9]|1[0-2]?|[2-9])[-./] \//month
(\d\d|\d{4,4}) //year

This expression recognizes date like: 03.02.56; 3.2.1856; not valid dates like 31.2.9999 are not
excluded.

Remark: Each of the parenthesis of the expression contains exactly one part of the date. So day,
month and year can be easily obtained by:

str sDay = xState.str(1);
str sMonth = xState.str(2);
str sYear = xState.str(3);

258 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The regular expression is optimized according to the LL(1)-principle. It begins with alternatives,
which exclude each other. For example the 31 days of a month must begin with a preceding 0 or by
another digit. Each digit only can be followed by specific other digits.

alternative begin range

0 [1-9] 0 01, 02, 03, 04, 05, 06, 07, 08,
09

| [12] [0-9]? 1 1 oder 10 - 19

2 2 or 20 - 29

| 3 [01]? 3 3 or 30 or 31

| [4-9] 4 4

5 5

6 6

7 7

8 8

9 9

YYYY_MM_DD:
(\d\d|\d{4,4})[-./] \// year
(0[1-9]|1[0-2]?|[2-9])[-./] \// month
(0[1-9]|[12][0-9]?|3[01]?|[4-9]) //day

This expression is a simple rearrangement of the expression above. It recognizes dates like
56.03.02; 1856.3.2; not valid dates like 9999.31.2 are not excluded.
recognizes

10.1.4.6 Comments

The following predefined tokens can be inserted in a project by a pop-up menu.

They describe comments of different programming languages. Frequently they are use as parts of
the ignorable characters. In this case they neither need nor can be used inside of the productions.

LC: //[^\n]*(\n|\z)

Line comment, beginning with \"//\" and extending till the end of the line or end of file.

BC_CPP: /*[^*]**+([^/*][^*]**+)*/

Block comment (C++-style), beginning with "/*" and ending with "*/". Inside of block comments
sequences of '*' are permitted, e.g..: /********/. It's difficult to understand the construction of this
expression. It is derived in the book: J.E.F. Friedl:Regular expressions. ("[^/*]" here represents
special.)

BC_PAS: \(*[^*]**+([^)*][^*]**+)*\)

259Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Block comment (Pascal-style), beginning with "(*" and ending with "*)". Inside of block comments
sequences of '*' are permitted, e.g..: (********)

BC_HTML: <!--([^-]|-+[^->]|->)*-+->

HTML/XML block comment, beginning with "<!--" and ending with "-->".

10.1.4.7 Ignorable

The following predefined tokens can be inserted in a project by a pop-up menu.
Then they can be set in the project options for the ignorable characters.

IGNORE_CPP:
(\s \// spaces
|/) \// begin of a comment
/[^\r\n]*$ \// line comment
|*[^*]**+([^/*][^*]**+)*/ \// block comment
) \
)+

Line comments, block comments and spaces are ignored in c++-code.

IGNORABLE_PAS:
(\
\s \// spaces
|\{[^}]*\} \// {...}-comment
|\(*[^*]**+([^)*][^*]**+)*\) \// (*...*)-comment
)+

{...} comments, (*...*) comments and spaces are ignored in Pascal code

IGNORE_XML:
(\s \// spaces
|<!--([^-]|-+[^->]|->)*-+->)+ // block comment

XML ignores block comments and spaces.

10.1.4.8 Line break

EOL: \r?\n

This definition matches WINDOWS and UNIX line breaks, if '\r' and '\n' are not set to be ignored in
the project options.
In the editor all lines are made by "\r\n", even if the source file only contains '\n' line breaks.

As a predefined token EOL can be inserted in a project by a pop-up menu.

260 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.1.4.9 Binary null

NULL: \x00

NULL is defined as the character with the value null. The use of this token only makes sense when
binary files are parsed. It cannot occur in text files. It marks the end of the file EOF there.

As a predefined token NULL can be inserted in a project by a pop-up menu.

10.1.4.10 Addresses

The following predefined tokens can be inserted in a project by a pop-up menu.

EMAIL:
[\w\.-]+ \// local part
@ \
([\w-]+\.)+ \ // sub domains
[a-zA-Z]{2,4} // top level domain

A usual e-mail address. The complete syntax of an e-mail address is quite complex and cannot be
reasonably described with a single regular expression.

IP_ADDRESS:

(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\. \
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\. \
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\. \
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)

IP address, all four numbers restricted to 0..255

The address expressions are from an article of Vasant Raj:

http://www.codeproject.com/useritems/Regular_Expressions.asp

The expression for the e-mail address was simplified.

10.1.4.11 Data field

If the entry if in the pop-up menu of the predefined tokens: Data field is activated, the character class
calculator appears. By this dialog expressions can be generated, which e.g. can recognize data
fields of a database table.

Fields of a database table are frequently defined by a certain width: a number of characters. The
characters to be used within the field are restricted too. E.g. a field can be defined for ten
alphanumeric characters:

261Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

[[:alnum:]]{10,10}

10.1.5 Placeholder

Placeholder tokens get their meaning from the input text. Parts of text - mostly words -, which are
recognized by a general regular expression, can be assigned to a placeholder token. If the same
part of texts exists at a following position in the text again, the placeholder token now can recognize
it.

You can assign an arbitrary number of literal expressions to a placeholder token. If several literals
are assigned, they build a sequence of alternatives. Only one of them can match a text at a certain
position.

Dynamic tokens are only tested, if they are expected as a possible alternative.

Independently of the project settings placeholder tokens always are case sensitive and the word
boundary option is set.

A placeholder token is defined by the expression:

{DYNAMIC}

The expression {DYNAMIC} is a keyword and will not be interpreted as a macro by the
TextTransformer.

The assignment of a literal expression is done in a semantic action by the command: AddToken.

Example:

Variables, which are declared in a programming code with a certain type, can be assigned to a
placeholder for that type. In the code that follows, the type of the variable is known.

ID ::= \w+
INTEGER ::= {DYNAMIC}

"int"
(

ID
{{
AddToken(xState.str(), "INTEGER");
// assigns the found identifier to INTEGER
}}
","

)*

";"

262 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

INTEGER

If ID recognizes the names : i1, i2 and i3, at a following position i1 or i2 or i3 can be recognized as
an INTEGER. INTEGER now has the meaning of a token, which would be defined as: i1|i2|i3

Remark: The extension of a placeholder token by an additional literal has no effect on the
recognitions of a preceding SKIP symbol.

10.2 Productions

To transform an input text, it must be analyzed according to its syntax. This analysis is done by
means of rules ("productions"), which describe the syntax. In this productions instructions are
embedded, which determine, how to construct a new text from the analyzed source.

A production may be considered as a function - more exact: as a specification for creating a function
- that parses a part of the input text. By creating code, this specification will result in a real function.
The routine can return a value and will constitute its own scope for parameters and other local
components like variables and constants. These again, can be passed to other productions, which
are called like functions inside the body of the first production. The called productions parse sub
sections of the part of text, which is parsed by the calling production.

The definition of a production is done inside of a form.

10.2.1 Input mask for a production

The input mask for a production has the following fields:

Name: unique name
Return type: C++ variable type
Parameter: C++ parameter declaration
Comment: arbitrary comment
Text: script text of the production

Name and text are needed. If one of these fields is empty, the script will not be accepted and you
can't write a comment.

10.2.1.1 Name

Each production script must have a name. This name is used in other production scripts to denote
the production.
A name can be constructed of the alphanumeric characters and the underscore, but the latter may
not be at in first place of the name.

Examples: Const_declaration, line

Each new name must differ from all other names of tokens, productions, functions and variables by

263Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

at least one character.

10.2.1.2 Return type

In the field return type a type identifier must be specified only for the case, that instructions of the
semantic actions of the production return a value. Otherwise a procedure of the type void is created
automatically.

By according bracketing it is possible to determine, whether a return type shall be used inside the
interpreter or shall be written to the produced source code or both.
For example, a string is returned inside the interpreter and a pointer is the return type of the
produced source code, if you write the following:

{-str-} {_CToken*_}

Without brackets the project option for double braces "{{...}}" will be applied.
It is important, that the parts of interpretable and exportable code keep coherently.

Only the interpretable code is type checked by the TextTransformer. Other code will simply be
copied into the generated code and the c++ compiler then might find errors.

If a return type is defined in code only for the export a default value must be given. This can be done
here by appending a slash and the value. E.g.::

{_ CProduktion* _}/NULL

10.2.1.3 Parameter declaration

In the parameter field you can declare parameters for the production. The parameters can be used
by the semantic actions. For example:

str& s, int i

For such a declaration the project option for double braces "{{...}}" is applied.
By according bracketing it is possible to determine, whether a parameter shall be used inside the
interpreter or shall be written to the produced source code or both.
For example, a string could be declared for use inside the interpreter and a pointer for the produced
source code, if you write the following:

{-str& s-} {_int i}

It is important, that the parts of interpretable and exportable code result in coherent parameter lists.

{-str& s-} {_int i_} {-double d-}

would result in a wrong list, because a comma is missing: str& s double d. Correct versions are:

{-str& s-} {_int i_} {-, double d-}
{-str& s,-} {_int i_} {-double d-}
{-str& s, double d-} {_int i_}

264 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

{_int i_} {-str& s, double d-}

Only the interpretable code is type checked by the TextTransformer. Other code will simply be
copied into the generated code and the c++ compiler then might find errors.

10.2.1.4 Comment

A comment to the production can be shown in the yellowish field. Temporary this field is also used
to show error messages.

To change the comment, use the button. A dialog will be opened, where you can write the new text.

10.2.1.5 Text

The text of a production defines a grammar rule. The syntax for this definition is leaned on the
syntax of regular expressions. Grammar rules use some of the same Meta characters and introduce
some new key words.

The following list cites all uses Meta characters:

| Separation of alternatives

(...) Grouping of expressions
?Option
* An optional repetition
+ A repetition

[...] Calling parameter of a production

{-...-} Semantic action inside the interpreter
{_..._} Semantic action to export into the generated code
{=...=} Exportable semantic action, which also is executed by the interpreter
{{...}} Semantic action for export or of the interpreter according to the option set

// beginning of a line comment

The additional key words are:

BREAK to quit a recognition loop
EXIT to finish parsing
EOF end of input (end of file)
SKIP jump to the next token, which may follow one of the alternates of SKIP
IF...ELSE...END Conditional execution

265Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

WHILE...END Conditional execution

10.2.2 Elements

Similar to tokens, which are connecting characters, productions connect tokens. Regular sequences
or alternatives of token sequences can be formulated as a rule, that means as a production.

Definitions of productions are based on three kinds of elements:

1a) Literal tokens directly defined inside of a production
1b) Named tokens, defined on the token page
2. Other productions

Remark: The text, which a token matched, is accessible by xState.str()

About 1a) Literal tokens directly defined inside of a production

Simple words of the natural language or key words of a formalized language, punctuation marks,
operators etc. can, but must not be defined on the token page. These literal token can be defined
directly inside of a production by including them into quotes.

Examples:

"TETRA" matches: TETRA
";" matches: ;

If the quotation mark shall be used as a component of a literal token, then a backslash '\' must be
put in front of character to distinguish it of the enclosing quotation marks. The backslash must as
well be put in front a backslash.

"\"" matches: "
"\\" matches: \

About 1b) Named tokens, defined on the token page

The definition of complex token was described above. Inside of a production the names of already
defined tokens can be used.

About 2. Other productions

The definition of a production can be based on the definitions of other productions by using the
names of them.

Example:

Production1 ::= "hello" | "good bye"
Production2 ::= "world"
Production3 ::= Production1 Production2

266 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.2.3 Concatenation

If one symbol directly is followed by a second symbol, they are chained. Further symbols can
extend this concatenation.

"TETRA" "makes" "fun"

is the concatenation of the three token: "TETRA", "makes" and "fun".

Just as

"TETRA" "makes" emotion

emotion might be a token defined on the token page or a different production.
The TextTransformer will search for emotion as well in the list of all token as in the list of all
productions. This is the cause, why all names as well of tokens as of productions must be different.

Semantic actions take part in the concatenation.

The concatenation has the highest preference of all operators of a production.

10.2.4 Alternatives

Alternatives are separated by the pipe character "|".

Examples:

"all" | "nothing" denotes an alternative occurrence of "all" and "nothing" in the input.

text | number denotes the alternative productions text and number

Special cases are empty alternatives. Empty alternatives make sense, to execute an action, if no
other alternative matches. For example an error message might be written in this case:

"all" | "nothing" | {{out << "Error"; }}

Remark:
The first set of an empty alternative contains the special token EPS with the number 2. In the special
case, that no further token follows the empty alternative in the grammar, inside of the token box of
the debugger the expected token will be denoted by "EPS":

267Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

It is important, not to create an inadvertent empty alternative. This is the case in the following
production:

X ::= (
 | "empty"
 | "size"
 | "clear"
)

Each of the alternative token is preceded by a pipe character '|'. But in front of the first there is
nothing, to which an alternative is formed. Equivalent one could have written:

X ::= (
 "empty"
 | "size"
 | "clear"
 |
)

To prevent the inadvertent construction of empty alternatives, these formulations are disallowed. If
you really want to create an empty alternative without calling an action, you either can make the
whole set of alternatives optional:

("all" | "nothing")?

or you can construct an empty alternative with an empty action:

"all" | "nothing" | {{ /*Empty*/ }}

Remark: Empty alternatives are nullable.

10.2.5 Grouping

By means of the parenthesis '(' and ')' expressions can be grouped.
So the preference of concatenation can be eliminated.

Example:

("a" | "b") ("c" | "d") matches "a c", "a d", "b c" and "b d"
"a" | "b" "c" | "d" matches "a", "b c" and "d"

If you forget the preference of concatenation, this can lead to astonishing results, especially, if
semantic actions are involved.

Example:

268 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

{{str s;}}

"a"

{{s = "a"; }}

| "b"

{{s = "b"; }}

will result in an error message for the last line: Unknown identifier: s
Implicitly the first three lines are a closed chain. Only inside of this scope the declaration of string s
is valid. Correctly you have to write:

{{str s;}}

(

"a"

{{s = "a"; }}

| "b"

{{s = "b"; }}

)

A different example for this is the Inner-production in the introduction. There parenthesis around "b" |
"c" are necessary.

10.2.6 Repeats

The syntax for repeats is analogous to the according syntax for regular expressions, but the
operators operate on whole tokens, productions or groups of them.

+

A token, production or group followed by the plus character '+' matches any number of occurrences
of the group in the text, but at least one.
The +-operator may not be applied on nullable structures.

*

A token, production or group followed by the star character '*' matches any number of occurrences of
the group in the text, including null occurrences.

?

A token, production or group followed by the question mark '?' matches an optional occurrence of the
group in the text, that means null or one occurrence.

{}

You can specify the minimum and maximum number of repeats explicitly. Thus A{2} is the token or
production A repeated exactly twice, A{2,4} represents A repeated between 2 and 4 times, and A{2,}
represents A repeated at least twice with no upper limit. In contras to the according syntax of the
regular expressions white spaces are allowed inside the {}.

Attention: if the minimum number of pattern isn't found in the text, there is a fault. If the pattern

269Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

occurs however, the in the text more frequently than specified by the maximum number, there is a
fault only when the next text pattern isn't recognized differently.

Remark:
The WHILE structure offers the possibility of determining the number of repeats dynamically

10.2.7 BREAK

By means of the BREAK symbol loops - (...)* or (...)+ - can be left. If the parser finds the BREAK
symbol inside of a loop, the loop is left and the parsing will continue with the symbols following the
loop.

Example:

("a" "b" "c"| "d" | BREAK)+ "e"

matches following texts:

"a b c d a b c e"
"d d d e"
"e"

(A | BREAK)+ is equivalent to (A)*

Because at the BREAK symbol the loop is left immediately, other nodes cannot follow the BREAK
symbol. To connect an action with the BREAK symbol, the action must be written in front of the
BREAK:

("a" "b" "c"| "d" | {{out << "break";}} BREAK)+ "e"

The BREAK symbol must be written into the same production, where the loop is defined, which will
be left by the BREAK symbol. Outside of a loop the BREAK symbol has no meaning. It is not
possible to split the example above into two productions:

xxx ::=
("a" "b" "c"| "d" | Break)+ "e"

Break ::=
{{out << "break";}} BREAK // wrong

In these aspects the use of the BREAK symbol is similarly to the use of "break" in c++. Indeed, in
the generated code, BREAK will be substituted by "break".

By means of the BREAK symbol you can analyze structures, which would be an irresolvable
problem for a normal top down EBNF syntax based analysis. For example a text could be structured
like

(";" "a")+ ";" "b"

270 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

This text is syntactically valid, but causes the warning message:

";" is the start and successor of nullable structures

In this case the warning may not ignored. Parsing of the input:

"; a ; b"

leads to an error. After recognition of "; a" there is a conflict between a continuation by a new loop or
by ";" "b". The TextTransformer in such cases chooses the first alternative. "a" will be expected and
not "b".
By means of the BREAK symbol the production can be reformulated to

(";" ("a" | BREAK))+ "b"

Now the input is recognized correctly. After recognition of the second semicolon at the beginning of
the second loop the BREAK alternative will be chosen, the loop will be left and the following "b" will
be recognized.
You may think, that a different reformulation of the first production would have had the same result:

(";" ("a")?)+ "b"

But this rule also would recognize texts, which were not intended originally. For example:

 ";;;b"

10.2.8 EXIT

If the parser meats the key word EXIT, the analysis of the text will be interrupted. The break is done
in the same manner, as if the interpreter had executed a throw instruction.

EXIT can be followed by the additional key word OK. This signalizes a regular interruption. Without
OK an error is signalized.

Because at the EXIT or EXIT OK the program stops immediately, other nodes cannot follow the
EXIT or EXIT OK symbol. To connect an action with the EXIT symbol, the action must be written in
front of the EXIT:

Example:

{{ out << xState.FileName() << " finished" << endl; }}

EXIT

OK

EXIT can be used in look-ahead parsers to finish the look-ahead. In this case the look-ahead parser
is finished regularly without throwing an exception.

In the code, the TextTransformer generates, EXIT is realized by throwing an exception, if UseExcept

271Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

is not set to false and if not a sub parser or look-ahead parser is just executed.

throw tetra::CTT_Exit("EXIT, true);

This exception is not catched automatically in the generated code.

10.2.9 EOF

EOF denotes the "end of file" or "end of input". This special token is normally created automatically.
It is contained in the follow set of the start rule and in the follow set of the nullable structures at the
end of the start rule. If the start rule itself is nullable, EOF is contained also in its first set.

It is possible to use EOF explicitly inside of a production. Behind EOF no other tokens can follow.
Up to the end of the program EOF may be followed only by nullable structures or the program should
be interrupted by EXIT.

Example:

"a"
("b" | EOF EXIT)

"c"

Remark: The production parser of the TextTransformer uses EOF, to realize the reduced output and
assignment instructions (e.g.: {{out << }}) for the return values of productions.

10.2.10 ANY

The symbol ANY denotes a single token from the set of all tokens used in the project which isn't
used in the same production as an alternative to this ANY symbol. It can conveniently be used to
parse structures that contain
arbitrary text. For example, the content of an exportable action can be skipped by:

"{_" ANY* "_}"

In this example the closing "_}" is an implicit alternative of the repeated ANY symbol. This means
that ANY matches any terminal except "_}".

ANY recognizes only tokens which at least occur once explicitely within the rules dependent on the
start rule: This point applies to every parse-system separately.
The following text will be recognized by the example above, if the literal tokens "int", "=" and ";" and
an ID token for identifiers and a NUMBER token for numbers occur in the rule dependences

{_ int i = 3; _}

then is recognized as

"{_" ANY ANY ANY ANY ANY "_}"

whereby ANY represents the corresponding tokens respectively

272 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

"{_" "int" ID "=" NUMBER ";" "_}"

It is no problem, if "int" doesn't occur in the rules, because "int" could be recognized as ID too. But
if NUMBER would not be used in the rule (depending from the start rule), it had to be introduced here
as an explicit alternative:

"{_" (ANY | NUMBER)* "_}"

Otherwise the text would not be parsed.

10.2.10.1 Options

This section is only for specialists. It is recommended to the normal user to leave the default setting
"no failure alternative for ANY" in the project options and to skip this section.

In the project options you can choose, whether the context of the production which uses an ANY
symbol is taken into account at the calculation of its token set or not.

1. no failure alternative

In accordance with this option the alternatives of a production which uses the ANY symbol, is taken
into account at the calculation of the token set of this symbol. Example:

Produktion1 ::= ANY | "a"

Produktion2 ::= "b"

Produktion3 ::= Produktion1 | Produktion2

Because Produktion2 is an alternative to Produktion1 "b" is an alternative of ANY. ANY therefore
recognizes all tokens apart from "a" and "b".

This option is the default for new projects since it might correspond to the intuitions of the user.

There is a problem in a special case, though. If the ANY symbol is in an nullable structure at the end
of a production and this has different successors in different contexts, an unexpected behavior can
result.

Any ::= ANY+

Production ::= "a" Any "b" | "c" Any "d"

In this case the text "a d b" isn't parsed. The first alternative would let expect this but because of the
second "d" is excluded from the set of the tokens recognized by ANY
In such cases the TextTransformer generates a warning.

2. failure alternative

The calculation of the tokens recognized by ANY is more simple and therefore is a little faster if the
context isn't taken into account. However, this has the serious disadvantage that e.g. Produktion3
above doesn't compile. ANY then recognizes all tokens apart from "a" and therefore is in conflict
with Produktion2.

273Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

This option can make sense to guarantee compatibility with Coco/R projects since ANY is
calculated this way there.

10.2.11 SKIP

By means of the SKIP symbol sections of the text, for which there are no explicit rules can be
skipped.

Remark: The skipped text is accessible by xState.str() or trim_right_copy(xState.str()).

The key word SKIP is a complex symbol. The meaning depends on the context. It depends on:

1. the alternatives

The SKIP alternative is chosen, if none of the alternatives matches the actual text. The SKIP
alternative is chosenIn the production:

(

 "}"

 | "]"

 | SKIP

)*

if there is neither a "}" nor a "]" at the actual position of the input.

2. the possible followers

The SKIP symbol matches the text beginning at the actual position and ending at the position,
where the text is matched by a symbol, which can follow the SKIP symbol. If there are competing
followers, the match at the next position will be chosen.

For example

SKIP

(

 "]"

 | "}"

)

recognizes in the input

param1, param2] }

the text "param1, param2 ", because "]" follows immediately, while "}" follows at a later position.
The rule above (point 1) will have the same result. In the first pass of the loop SKIP matches and in
the second loop "]" matches. In the third loop "}" will be recognized too.
But it must be taken into account, that the match of SKIP depends on the follower of the loop itself.
In the following context:

274 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Startrule ::= Rule1 Rule2

Rule1 ::=

(

 "]"

 | "}"

 | SKIP

)*

Rule2 ::= "param2"

SKIP only would recognize "param1, ".

Supplementary explanations

Possible conflicts are treated differently depending on the options.

a) Isolation of SKIP and ANY

Occurrences of SKIP symbols must be isolated from each other. A SKIP may not have a second
SKIP as alternative and a second SKIP may not follow it directly. The following isn't allowed:

(SKIP | ...) | (SKIP | ...) // wrong

or

(SKIP | ...) (SKIP | ...) // wrong

ANY mustn't as well immediately follow on SKIP

(SKIP | ...) (ANY | ...) // wrong

b) SKIP-Repeats

The following cases aren't different, they have the same result:

SKIP?

SKIP*

A follower must be found at the actual position or at a later position. In the second case, SKIP is
executed once. The case

SKIP+

differs in the circumstance, that there may not be a follower at the actual position, but there must be
one at a later position. Again, the SKIP node is executed only once.

c) Konsumation of the ignored characters

275Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

The function of the SKIP symbol doesn't depend on the project options! E.g. SKIP EOL will
recognize the line end, even if '\r' and '\n' belong to the character, which are to be ignored. While
xState.str() after recognition of a normal token provides a text section, that stops before the following
ignorable characters, this isn't the case at a text section recognized by SKIP. If the ignored
characters are blanks, you can get the corresponding result by

trim_right_copy(xState.str())

d) no dynamic SKIP

The set of tokens, which can follow on SKIP is not dynamically changeable. If a placeholder token,
which follows on SKIP, is augmented by a literal, this extension has no effect on the recognitions of
the SKIP symbol.

e) naming of skip nodes

The name of a skip node is constructed of "SKIP" and the number, which represents the node in a
first set. For example: SKIP12 is a skip node, which is registered in the first set of its superior node
by the number 12.

10.2.11.1 Options

There are three options for the SKIP symbol which control the treatment of possible conflicts. Two of
this can get predefined in the project options. If a not predefined option shall be used, then this can
be expressed by appending a parameter to "SKIP". E.g.

SKIP[F]

1. no failure alternative

If the use of global scanners is set in the project options, it can happen that at the current position of
the source text a token which isn't expected in the grammar is recognized. For example regular
expression for identifiers is defined in many projects. If now

SKIP "Welt"

is used to parse

Hello world

"hello" would be interpreted as an identifier. According to the scanner algorithm, SKIP wouldn't be
tested. Instead an error message would be produced. If no failure alternatives are permitted,
however, "hello" becomes skipped and therefore the complete text would be parsed correctly.

Within a production this option can be set explicitly with the parameter NFA (no failure alternative):

SKIP[NFA]

There is a problem with hidden alternatives at this option, though. Example:

276 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

(ID ";"*)* SKIP

If a text starts with a semicolon, then it is skipped with SKIP. If the text starts with an identifier on
which a semicolon follows, then the identifier is recognized correctly. However, the semicolon is
skipped again. Although it is recognized at first it is not judged to be an alternative to SKIP. In this
case the strict option 3 would be adequate for SKIP (see below)

2. allow skip destinations at the current position // experimentally

Ein ähnlicher Konflikt wie eben beschrieben entsteht, wenn schon an der aktuellen Position des
Quelltextes ein Token erkannt wird, das als Ziel des SKIP-Knotens gesetzt ist.
A similar conflict as just described arises if a token which is the destination of SKIP, is already
recognized at the current position of the source text.

SKIP ID

The word "Hello" in the text:

Hello world

then would be recognized as identifier. The option described above, not to allow failure alternatives,
would not help, since the skip destinations aren't part of these alternatives. If they were added, an
expression like

SKIP? ID

would become senseless. SKIP would always match on the text (if not at the end with no following
identifier). So it is to recommend to amend the grammar correspondingly: With

SKIP? ID+

"Hello world" is parsed correctly. Experimentally there is the NF-option (no failure)

 SKIP[NF] // experimentally

This option possibly will be no longer available in future TETRA versions, if not desired by users.

3. strict generation of errors

Errors were always caused up to TextTransformer 1.5.0 in the cases represented above. This option
forces the programmer to consider and to treat conflicts explicitly. The possibility of making SKIP
optionally was already mentioned. One other possibility would be:

(SKIP | ID) ID

A strict generation of errors can be forced in a production with the F parameter:

SKIP[F]

Note:

277Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

It shall be pointed out again that the mentioned conflict possibilities result from the option to use
global scanners. A conflict with literals only can arise if also the option to test all literals is set and a
literal is an immediate alternative to SKIP. Otherwise literals aren't tested at all.

10.2.12 IF...ELSE...END

Alternatives, which would produce a LL (1) conflict in another place, are allowed in an
IF...ELSE...END structure. The progress of parsing isn't only determined by the next token here but
is controlled by predicates too; e.g. a look-ahead in the current text (see remark below).

This structure has more exactly the form:

IF(boolean expression)
 if-branch
ELSE
 else-branch
END

The IF-branch and the ELSE-branch are arbitrary concatenations or groupings of tokens and
semantic actions. The ELSE branch is optional. So a simple IF expression is possible too:

IF(boolean expression)
 if-branch
END

The boolsche expression only is evaluated, if the expected tokens is in the first set of the IF-branch.
If the IF-branch cannot start with the next token, the ELSE-branch is executed, independently of
whether the IF-condition is correct or not. If there is noe ELSE-branch, the structure is nullable.

The boolean expression always is interpretable and exportable.

Examples:

The simple structure can be used e.g. to resolve the conflict in the following rules:

Declaration ::= Type (IdentEqual)? QualIdent ";"
IdentEqual ::= Ident "="
QualIdent ::= Ident ("." Ident)*

// e.g: "int i = xState.itg;" oder "int i;"

Here is a LL(1) conflict, as both IdentEqual and QualIdent are beginning with Ident. It can be

resolved either by factoring out of Ident:

Declaration ::=
Type Ident
(
("." Ident)*

| "=" QualIdent

278 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

)
";"

or you can write a look-ahead production, using IdentEqual:

Declaration ::=
Type
IF (IdentEqual())

IdentEqual
END

QualIdent ";"

There are LL(1) conflicts too, which cannot be resolved so easy or not at all. Then the
IF...ELSE...END structure has to be used.

As boolean expression you also can use a class variable:

IF (m_bProfile)

(
 {{ double start = clock_sec(); }}
 Production
 {{ out << clock_sec() - start << " s" << endl; }}
)
ELSE

 Production
END

1. Remark:

The following structure is an infinite loop, if the condition is wrong:

(
 IF(Condition)

 Production
 END

)*

The expected token, which belongs to the first set of Production also belongs to the first set of the
loop. Because this token cannot be consumed, the loop is executed again and again.

Instead you should write:

WHILE(Condition)

 (Production)*

or

(
 IF(Condition)

 Production
 ELSE

 BREAK
 END

279Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

)*

In this respect the IF-construct of the TextTransformers isn't comparable with the IF-construct
Coco/R, where the condition is set before the loop.

2. Remark:

If one of the branches is nullable, the complete structure is regarded as nullable. This can have
an unexpected consequence. No matter what the condition yields in the following structure the
token 'd' is always recognized, if it is next in the text. Also, if the condition isn't satisfied, no error
results, if in this text doesn't follow 'c' but 'd'.

IF (Condition)

 "a"?
ELSE

 "c"
END

"d"

10.2.13 WHILE...END

Similar to the IF structure in a WHILE...END structure the decision whether a branch is executed is
done by a boolean expression.

This structure has more exactly the form:

WHILE(boolean expression)
 while branch
END

The while-branch is a concatenation or grouping of tokens and semantic actions.

The boolean expression always is interpretable and exportable.

Example

NUMBER
{{
int i = 0, iCount = xState.itg();
}}
WHILE(i < iCount)

ReadData {{ i++; }}
END

At first the number of following data records is read and then by ReadData the data records are read

280 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

themselves.

Example:

EmptyBracket ::= "[" "]"
NonEmptyBracket ::= "[" IDENT "]"

WHILE (EmptyBracket())

 EmptyBracket {{ iEmptyBracketsCount++; }}
END

NonEmptyBracket

The production EmptyBracket is used as well for parsing as for looking ahead. The empty brackets

are counted until the first not empty bracket appears.

10.2.14 Actions

Before and after the recognition of a token or the call of a production semantic actions can be
executed.(In very special cases this is possible during the recognition too.) Mostly these actions are
used to process the last recognized section of text. The instructions, which shall be executed, are
inserted into the text of a production. To distinguish them, they are included in special brackets. The
instructions are formulated in c++.
The TextTransformer can interpret a sub set of c++ directly. But when generating source code c++
can be used without limitations. The code is just copied in this case. To distinguish between code,
that shall be checked and executed internally and code, that shall be exported, there are different
kinds of brackets.

{-...-} Semantic action inside the interpreter
{_..._}Semantic action to export into the generated code
{=...=} Exportable semantic action, which also is executed by the interpreter
{{...}} Semantic action for export or of the interpreter according to the option set

The sub set of c++, which the TextTransformer can interpret is presented in the next chapter

A typical example of an action is to copy the last recognized section of text into the output

{{out << xState.str();}}

The syntax of the semantic actions is checked by the TextTransformer only in so far, as they are
intended for the interpreter. Only the c++ compiler will check code that simply will be copied into the
generated parser.

The different kinds of brackets cannot be applied in the conditions of IF-structures and
WHILE-structures. This code always is both: interpretable and exportable.

281Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

The project EditProds demonstrates the parallel use of semantic code for the interpreter and different
code for the export.

10.2.14.1 Transitional action

Besides the semantic actions there also is a type of very special "syntactic" actions. A transitional
action is executed after a token was accepted and before the next is recognized. This is the ideal
time to insert of new dynamic tokens with AddToken, since the new token is then already available
before the determination of the next token Transitional actions are necessary too, to assure that a
production behaves just the same at its use for look-ahead in the text as normally. A divergent
behavior could arise if during parsing new dynamic tokens are produced or if the text scope is
changed. But if such a change is executed as a transition action, it is executed also during the
look-ahead temporarily. Nevertheless, the set of the dynamic tokens and the text scope will remain
the same before and after the look-ahead.

As transitional actions primarily are considered the functions: AddToken, PushScope and
PopScope. As transitional actions they are executed, if they are appended to the expression for a
token in conjunction with a dot.

Examples:

ID.AddToken(xState.str(), "CLASS")

ID[n].AddToken(xState.str(), "CLASS")

ID[n].AddToken(xState.str(), "CLASS", "NewScope").PushScope("NewScope");

It isn't possible to define a transitional action for a token, if a "normal" action is also assigned to it.

At the generation of C++ code the action only is copied, i.e. e.g. no automatic adaptation to the
character type is carried out.

An interesting application is the recognition of constructors of c++ classes. Such constructors are
indicated by an identifier followed by two colons and the same identifier again, e.g.
"CParser::CParser". Normally the repeated identifier can easily be recognized by semantic code.
However, such code isn't executed at a look-ahead. In this case you could defines a placeholder
token "CLASS" and add the identifier to it during it's first recognition. The second occurrence is then
recognized by the CLASS token.

IsScoped ::=

ID "::" ID

IsClass ::=

ID.AddToken(xState.str(), "CLASS")

"::"

CLASS

IF(IsScoped())

 IF(IsClass())

282 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

 ID.AddToken(xState.str(), "CLASS")

 "::" CLASS {{out << "class found"; }}

 ELSE

 ID "::" ID {{out << "member function found"; }}

 END

ELSE

 ID {{out << "identifier found"; }}

END

10.2.15 Calling parameters

If a production calls another production the required parameters must be passed. Variables are
declared inside of a semantic action. The name of such a variable then can be included into braces
"[...]", which are following the name of the called production.

Example:

The production Comment may have the parameter str& xsComment.

Name: Comment
Parameter: str& xsComment
Text: ...

A second production Script could call the Comment production. So the str parameter must be
declared, before Comment can be called:

Name: Script
Parameter: ...
Text: {{ str s;}} Comment[s] ...

10.3 Class elements and c++ instructions

While parsing the input simultaneous the recognized sections of text can be processed. Before and
after each step of recognition semantic actions are executed. A semantic action consists of c++
instructions.
In contrast to programming languages, which have to translate instruction to binary code
understandable for the computer and then to build a new executable from these binaries, in the
TextTransformer a lot of instructions can directly be executed, that means: they are interpretable.

The integrated interpreter of the TextTransformer masters

1. A sub set of the instructions of the programming language c++

2. Several functions, which are created specially for the use in TETRA

283Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

3. Formatting instructions

4. Several instructions, to access the actual state of the parser

5. User defined functions and variables (class elements)

10.3.1 Input mask for class elements

Definitions of new functions and of class variables by the user are based on the instructions listed in
1 - 4. Inside of the parser class, which the TextTransformer generates, these functions and variables
are class elements.
The functions and variables and function-tables are indicated in the list of class elements by different
symbols:

function

variable

function-table

For each of these class elements there are the usual input fields:

Name: unique name
Type: C++ variable type
Parameter: C++ parameter declaration (for functions only)
Comment: arbitrary comment
Text/Initialization: script text of a function or initialization of a variable

For functions name and text are needed, for a variable a name suffices. If one of the needed fields is
empty, the script will not be accepted and you can't write a comment.

10.3.1.1 Name

Each class element (function or variable) must have a unique name.
A name can be constructed of the alphanumeric characters and the underscore, but the latter may
not be at in first place of the name.

Examples: Factorial, m_Table1

Each new name must differ from all other names of tokens, productions, functions and variables by
at least one character.

284 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.1.2 Type

Depending on the activation of the variable check box in the toolbar of an ielement script

the type in the type field is the type of a class variable or the return type of a member function. In the
first case a type has to be specified necessarily, in the second the type "void" is assumed, if no
other type is specified.

10.3.1.3 Parameter

Depending on the activation of the variable check box in the toolbar of an interpreter script

the parameter field is invisible or visible.
For the syntax the same essentially applies, what is said for the parameters of productions.

Implicit xState parameter

A problem exists, if a call to a method shall be valid as well for the interpreter as for the generated
c++ code. In the declarations of methods of the generated parser class an xState parameter is
inserted automatically at the first position. For example:

void Method(state_type& xState);

To make the use of the interpreter more comfortable, you need not write the xState parameter in a
call of this method. The interpreter always can access the state of the parser:

{- Method(); -}

In the interpreter this code will be parsed and the missing parameter is added automatically. But if
the code is exported, it simply will be copied, so that this parameter must be set explicitly.

{_ Method(xState); _}

If the semantic code shall be valid internally and externally xState has to be set:

{= Method(xState); =}

Since version 0.9.8.1 the xState parameter is inserted into the generated code automatically, if the
Only copy option is not set, and if the method is not called within a part of code, which only can be
exported.

In the project options you can activate a warning, which will appear, if such a state parameter is
missing.

285Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.1.4 Comment

A comment to an interpreter script can be shown in the yellowish field. Temporary this field is also
used to show error messages.

To change the comment, use the button. A dialog will be opened, where you can write the new text.

10.3.1.5 Text/Initialization

Depending on the activation of the variable check box in the toolbar of an interpreter script

the editor field is used for initialization code of the variable or for the body of a function.

a) Initialization code

Optionally for each class variable an initialization code can be written, which will be executed every
time the parsing of a new input text begins.

Example:

Name: m_TotalPercent
Type: int
Init:
m_TotalPercent = 100;

Name: m_Numerals
Type: mstrstr
Init:
m_Numerals["eins"] = "one";
m_Numerals["zwei"] = "two";
m_Numerals["drei"] = "three";
m_Numerals["vier"] = "four";
m_Numerals["fünf"] = "five";
m_Numerals["sechs"] = "six";
m_Numerals["sieben"] = "seven";
m_Numerals["acht"] = "eight";
m_Numerals["neun"] = "nine";

b) Function body

The body of a function is written here.

Example:

286 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Name: abs
Type: int
Parameter: int xi
Text:
if(xi < 0)
 xi = -xi;
return xi;

10.3.2 List of all instructions

Interpreted C++ instructions

Methods of the class str

bool empty() const
unsigned int size() const
unsigned int length() const
unsigned int find(const str& xs) const
unsigned int find(const str& xs, unsigned int pos) const
unsigned int rfind(const str& xs) const
unsigned int rfind(const str& xs, unsigned int pos) const
unsigned int find_first_of(const str& xs) const
unsigned int find_first_of(const str& xs, unsigned int pos) const
unsigned int find_first_not_of(const str& xs) const
unsigned int find_first_not_of(const str& xs, unsigned int pos) const
unsigned int find_last_of(const str& xs) const
unsigned int find_last_of(const str& xs, unsigned int pos) const
unsigned int find_last_not_of(const str& xs) const
unsigned int find_last_not_of(const str& xs, unsigned int pos) const
str substr(int from, int count) const
str substr(int from) const
char operator[](int xiIndex)
void clear() removes the text in the string
str& replace(unsigned int pos, unsigned int len, const str& s)

Methods of the container classes

Mehtod of a vector

All cursor methods and additional

cursor_type getCursor() const
void reset()
void clear()
void push_back(const value_type& xValue)
void pop_back()
value_type back()
value_type front()

287Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

bool remove()
bool setValue(const value_type& xValue)
operator[](int xiIndex)

Methods of a map

All cursor methods and additional

cursor_type getCursor() const
str key() const
bool containsKey(const str& xsKey) const
bool findKey(const str& xsKey)
void reset()
void clear()
bool add(const str& key, const value_type& xValue)
bool remove()
bool remove(const str& xsKey)
bool setValue(const value_type& xValue)
operator[](str xsIndex)

Methods of the cursor class

bool isValid() const
bool hasCurrent() const
bool empty() const
unsigned int size() const
value_type value() const
bool gotoNext()
bool gotoPrev()
bool containsValue(const value_type& xValue) const
bool findValue(const value_type& xValue)
bool findNextValue(const value_type& xValue)
bool findPrevValue(const value_type& xValue)

A map cursor has the additional methods

str key() const
bool containsKey(const str& xsKey) const
bool findKey(const str& xsKey)

Methods of a Function table

bool add(STRING, STRING);
void visit(const d/node& xNode)

Methods of the class d/node

d/node clone()
bool addChildFirst(const node& xNewChild)

288 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

bool addChildLast(const node& xNewChild)
d/node add(const str& xsLabel, const str& xsValue)
bool addChildBefore(const node& xnNewChild, const node& xnRefChild)
d/node removeChild(const node& xnOldChild)
bool replaceChild(d/node& xNewChild, d/node& xOldChild)

str label() const
void setLabel(const str& xsLabel)
str value() const
void setValue(const str& xsValue)
unsigned int id() const
void setId(unsigned int xuiId)

bool hasChildren() const
bool isDescendant(const node& xNode) const
bool isAncestor(const node& xNode) const
bool isSibling(const node& xNode) const
unsigned int level() const
unsigned int descendentsCount() const
unsigned int childCount() const

d/node root() const
d/node parent() const
d/node firstChild() const
d/node lastChild() const
d/node nextSibling() const
d/node prevSibling() const
d/node firstSibling() const
d/node lastSibling() const
d/node bottomFirstChild() const
d/node bottomLastChild() const
d/node next() const
d/node follow() const
d/node prev() const
d/node nextLeaf() const
d/node prevLeaf() const

d/node findNextLabel(const str& xsLabel) const
d/node findNextLabel(const str& xsLabel, const node& xnLast) const
d/node findNextValue(const str& xsValue) const
d/node findNextValue(const str& xsValue, const node& xnLast) const
d/node findNextId(unsigned int xuiId) const
d/node findNextId(unsigned int xuiId, const node& xnLast) const
d/node findPrevLabel(const str& xsLabel) const
d/node findPrevLabel(const str& xsLabel, const node& xnLast) const
d/node findPrevValue(const str& xsValue) const
d/node findPrevId(unsigned int xuiId) const
d/node findPrevId(unsigned int xuiId, const node& xnLast) const
d/node findPrevValue(const str& xsValue, const node& xnLast) const
d/node findChildLabel(const str& xsLabel, bool xbRecursive = true)
d/node findChildValue(const str& xsValue, bool xbRecursive = true)
d/node findChildId(unsigned int xuiId, bool xbRecursive = true)

289Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

d/node findParentLabel(const str& xsLabel)
d/node findParentValue(const str& xsValue)
d/node findParentId(unsigned int xuiId)

void setAttrib(const str& xsLabel, const str& xsValue)
str attrib(const str& xsLabel)
bool hasAttrib() const

void sortCildrentA()
void sortCildrenD()

String manipulating functions

stod to convert an str to double
stoi to convert an str to int
hstoi to convert a hexadicimal sting to int
stoc to convert a stirng to a character

dtos to convert a double value to an str
itos to convert a int value to an str
itohs to convert an interger into a hexadecimal string
ctohs to convert a character into a hexadecimal string
ctos to convert a character into a string

to_upper_copy returns an upper case string
to_lower_copy returns a lower case string
trim_left_copy removes leading spaces
trim_right_copy removes trailing spaces
trim_copy removes leading and trailing spaces

File handling

basename Returns the base name of a file path
extension Returns the extension of a file path
change_extension Changes the extension of a file pat
append_path Composes a path
current_path Returns the current path
exists Tests the existence of a path
is_directory Tests the existence of a directory
file_size Returns the file size
find_file Looks up a file in a directory
load_file Loads a file
path_separator String constant for the path separator

Output

out writing the output
log writing of log information
bool_bin writes binary bool

290 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

int_bin writes binary int
uint_bin writes binary unsigned int
float_bin writes binary float
double_bin writes binary double
char_bin writes binary char
string_bin writes char* with the length of the string
bin writes passed type binary
ends writes binary null character

Formatting instructions

unsigned int size() const
str str() const
void parse(const str& xs)

Other functions

clock_sec calculates time
time_stamp date/time string
time_stamp(const str& xsFormat)
random generates random numbers

throw throwing an exception

d/node detach_node(const d/node& xn)

Parser class methods

Parser state

unsigned int size() const
unsigned int length(int sub = 0) const
str str(int sub) const
bool matched(int sub) const
bool matched() const
str str() const
str text(unsigned int from) const
str text(unsigned int from, unsigned int to) const
str copy() const

int LastSym() const
unsigned int Line() const
int Col() const
unsigned int Position() const
unsigned int LastPosition() const
unsigned int NextPosition() const
void SetPosition(unsigned int xi);

291Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

bool IsSubCall() const
str ProductionName() const
str BranchName() const

str next_str() const
str next_copy() const
stri next_str(int sub) const
unsigned int next_size() const
unsigned int next_length(int sub = 0) const

str lp_str() const
str lp_str(int sub) const
str lp_copy() const
unsigned int lp_length(int sub = 0) const

str la_str() const
str la_copy() const
str la_str(int sub) const
unsigned int la_length(int sub = 0) const

int GetState()
void SetState(int xeState);

Plugin methods

str SourceName()
void SourceName(const str& xsSourceName, bool xbLast)
str TargetName()
void TargetName(const str& xsTargetName)
str SourceRoot()
void SourceRoot(const str& xsSourceDir)
str TargetRoot()
void TargetRoot(const str& xsTargetDir)

void RedirectOutput(const str& xsFilename)
void RedirectOutputBinary(const str& xsFilename)
void RedirectOutput(const str& xsFilename, bool xbAppend)
void RedirectOutputBinary(const str& xsFilename, bool xbAppend)
void ResetOutput()

dnode GetDocumentElement();
void WriteDocument();
void WriteDocument(const str& xsFilename);

indent
str IndentStr() const
void SetIndenter(char xc)
void PushIndent(int xi)
void IncrIndent(int xi)

292 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

void PopIndent()
void ClearIndents()

void PushScope(const str& xs)
void PopScope()
void ClearScopes()
str ScopeStr() const

bool AddToken(const str& xsText,
 const str& xsDynTokenName)
bool AddToken(const str& xsText,
 const str& xsDynTokenName,
 const str& xsScope)

void UseExcept(bool xbUseExcept)
bool GetUseExcept() const
bool HasError() const
void GenError(const str& xs)
void AddMessage(const str& xs)
void AddWarning(const str& xs)
void AddError(const str& xs)

10.3.3 Interpreted C++ instructions

The syntax of the interpreter is simple c++ syntax. All code, which works in the interpreter, can be
compiled also by external c++ compilers and can be executed. This is not true the other way round.
Tricky codings or code without consequences (e.g. returning a value, which will not be assigned)
can cause errors in the interpreter with messages, hardly to understand.)

Tip.: Write simple code and better use two instructions than one.

10.3.3.1 C++

Some general remarks for programming newcomers:

C++ is a well-known very complex programming language. A simple sub set of this language, which
is especially usefully to process text and which is understandable for programming newcomers, is
integrated into the TextTransformer.

Generally a program consists in a sequence of instructions, which will be executed one after the
other. Instructions mostly operate on data and data are represented by variables. For example: a
variable with the name T could contain the text "tetra" and the instruction to_upper_copy(T) would
transform this text into the upper case "TETRA".

C++ distinguishes different types of data, i.e. different types of variables represent different kinds of
content. These types sometimes can be converted to each other, sometimes not. For example, a
text is not a number. The attempt to convert the text "TETRA" into a number makes no sense. In a
programming language, which don't use types such a conversion would be allowed and would have

293Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

unpredictable consequences. In this respect c++ is more save. The disadvantage is a little bit more
work for the programmer: variables must be declared before they can be used.

10.3.3.2 Variable types

The TETRA interpreter knows elementary variable types, strings, nodes and container types and
cursor types:

Type Range of values Default value (*)

bool true/false (resp. 1/0) false (resp. 0)

char 0-255 '\0'

int -32768 - +32767 0

unsigned int 0 - 65565 0

double -1.7E+308 - +1.7E+308 (15
digits)

0.0

str ""

node node::npos

vector empty

map empty

cursor --

function table empty

* Default values are valid only inside of the interpreter. For the exported code, default values have
to be set explicitely, if needed.

10.3.3.2.1 bool

Syntax

bool <identifier>;

Description

The key word bool indicates a data type, which only can have the values false or true. The key
words false and true are boolean constants with predefined values. The numerical equivalent of
false is null and true corresponds one.

A value of the type bool can be converted into a value of the type int. The numerical conversion sets
false to null and true to one.

The other way round it is possible to convert double or int values into values of the type bool.
Thereby an arithmetic null is converted to the value false, and each other value to true.

294 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.3.2.2 char

Syntax

char <variable_name>

Description

Use the type specifier char to define a character data type. Variables of type char are 1 byte in
length.
Objects declared as characters (char) are large enough to store any member of the basic ASCII
character set. The visual representation of certain nongraphic characters is possible by escape
sequences.

10.3.3.2.3 int

Syntax

int <identifier> ;

Description

The int type specifier defines an integer data type, which can hold values in the range -32768 -
+32767.

Integer constants can be written in an octal or hexadecimal notation too.

10.3.3.2.4 unsigned int

Syntax

unsigned int <identifier> ;

Description

The unsigned int type specifier defines an integer data type, which can hold values in the range 0 -
+65565.

The unsigned type modifier designates, that the variable value will always be positive.

Integer constants can be written in an octal or hexadecimal notation too.

10.3.3.2.5 double

Syntax

double <identifier>

Description

295Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

The double type specifier defines a floating-point data type.

10.3.3.3 str

Syntax

str <identifier> ;

Description

str is the interpreter version of std::string or std::wstring. In the generated code str is defined by:
typedef std::string str or, for unicode parser by: typedef std::wstring str.

A str variable contains chains of characters, that means: text. The control characters, which consist
of the combination of a backslash with other characters also counts as a character, e.g. the linefeed
'\n '. To use a backslash character in its literal meaning in a string, a second backslash has to be
put in front of it: '\\'

Example:

str s = "C:\\TextTransformer\\bin";

// wrong: "C:\TextTransformer\bin"

The visual representation of other nongraphic characters is possible by escape sequences.

String literals adjacent to each other are unified into one single string literal. So you can better write
longer texts.

Example:

str s = "/**************************\n"

 "* This is a comment *\n"

 "**************************/\n";

In contrast to the previous variable types, str is not a basic type, but a derived type (a class), which
has methods, by which you can get information about the contained text or by which you can
manipulate it:

a) Information:

bool empty() const returns true, if there is no text in the string
unsigned int size() const returns the number of characters in the string
unsigned int length() const returns the number of characters in the string

A whole family of methods is used to search for special positions inside of a string.

Parts of the string:

str substr(int from, int count) const
str substr(int from) const

returns the part of the string beginning at the character with the index from and of the length count

296 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

(or the rest of the text, if there aren't count characters any more). If there is no second parameter, all
characters beginning at from will be returned.

Subscript-operator

Single characters of a string can be read by means of their index. The first character has index 0
and the last index size() - 1.

str s = "TextTransformer";

char c = s[5]; // now is: c == 'r'

It is not possible to change a character accessed by its index. Use the replace-method instead
(see below)

b) Manipulation:

void clear() removes the text in the string
str& replace(unsigned int pos, unsigned int len, const str& s)

Replaces (at most) len characters starting with position pos with all characters of s. A reference of
the string itself is returned.

Example:

str s = "wood";

out << s.replace(0, 1, "g") << " ";

out << s;

Output: good good

10.3.3.3.1 Searching

A group of methods can be used, to find certain positions inside of a string str.

unsigned int find(const str& xs) const
unsigned int find(const str& xs, unsigned int pos) const
unsigned int rfind(const str& xs) const
unsigned int rfind(const str& xs, unsigned int pos) const
unsigned int find_first_of(const str& xs) const
unsigned int find_first_of(const str& xs, unsigned int pos) const
unsigned int find_first_not_of(const str& xs) const
unsigned int find_first_not_of(const str& xs, unsigned int pos) const
unsigned int find_last_of(const str& xs) const
unsigned int find_last_of(const str& xs, unsigned int pos) const
unsigned int find_last_not_of(const str& xs) const
unsigned int find_last_not_of(const str& xs, unsigned int pos) const

unsigned int find(const str& xs) const
unsigned int find(const str& xs, unsigned int pos) const

297Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Returns the index of the first occurrence of xs in the string, if there is one. Otherwise a special
constant: str::npos, is returned. (str::npos only can be used in context of an equality operator.)

str s = "hello world";

unsigned int pos = s.find("o world");

if(pos != str::npos)

 out << s.substr(0, pos);

// else don't use value of pos

Prints: hell

You can pass the position, from where the search shall start, as a second parameter to the find
-function.

str s = "C:\\Programme\\TextTransformer\\Target\\test.txt";

unsigned int pos = s.find("\\");

unsigned int lastpos = str::npos;

while(pos != str::npos)

{

 lastpos = pos + 1;

 pos = s.find("\\", lastpos);

}

if(lastpos != str::npos)

 out << s.substr(0, lastpos); // prints : C:\Programme\TextTransformer\Target\

unsigned int rfind(const str& xs) const
unsigned int rfind(const str& xs, unsigned int pos) const

The rfind methods are working analogously to the according find methods, but rfind searches
backward.
The result of the last example will be found faster by the rfind method:

str s = "C:\\Programme\\TextTransformer\\Target\\test.txt";

unsigned int pos = s.rfind("\\");

if(pos != str::npos)

 out << s.substr(0, pos + 1); // prints : C:\Programme\TextTransformer\Target\

unsigned int find_first_of(const str& xs) const
unsigned int find_first_of(const str& xs, unsigned int pos) const
unsigned int find_first_not_of(const str& xs) const
unsigned int find_first_not_of(const str& xs, unsigned int pos) const
unsigned int find_last_of(const str& xs) const
unsigned int find_last_of(const str& xs, unsigned int pos) const
unsigned int find_last_not_of(const str& xs) const
unsigned int find_last_not_of(const str& xs, unsigned int pos) const

These functions search for characters of the string argument xs. By the optional second argument a
position can be set, where the search shall start.

find_first_of
searches the first character of xs

find_first_not_of

298 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

searches the first character, which is not contained in xs

find_last_of
searches backwards the first character of xs

find_last_not_of
searches backwards the first character, which is not contained in xs

Example:

The following code inserts backslashes before single backslashes, the line feed and before the
carriage return character. With xs = "Hello\r\nGood bye", you will get the result: "\"Hello\\r\\nGood
bye\"".

str sResult = "\"";

str sFindWhat = "\\\r\n";

unsigned int oldpos = 0;

unsigned int pos = xs.find_first_of(sFindWhat);

while(pos != str::npos)

{

 sResult += xs.substr(oldpos, pos - oldpos);

 switch(xs[pos])

 {

 case '\\':

 sResult += "\\";

 break;

 case '\r':

 sResult += "\\r";

 break;

 case '\n':

 sResult += "\\n";

 break;

 }

 oldpos = pos + 1;

 pos = xs.find_first_of(sFindWhat, oldpos);

}

sResult += xs.substr(oldpos);

sResult += "\"";

return sResult;

10.3.3.4 Container

Containers contain and manage collections of elementary variables.
TETRA knows two basic types of containers and an adapted type:

vector
map
stack

You can iterate over the elements of a container or you can search for special elements. For this
purpose serves a

299Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

cursor

Every container contains internally a cursor and the methods of the cursor are invoked directly as
methods of the container. However, a cursor can be declared also externally.

The names of the container and cursor types are formed from an expression for the kind of the
container and the short expression of the contained variable types.

type vector map function table

bool vbool mstrbool bool_mstrfun

int vint mstrint int_mstrfun

unsigned int vuint mstruint uint_mstrfun

double vdbl mstrdbl dbl_mstrfun

char vchar mstrchar char_mstrfun

str vstr mstrstr str_mstrfun

node vnode mstrnode node_mstrfun

A very special kind of container for the evaluation of parsing trees is a

function table

There isn't any cursor for function tables.

10.3.3.4.1 vector

A container class vector manages a list of elements. All elements of a list have the same data type.
There are, however, different vector types depending on type of the contained elements. (See the
table above)

Syntax

vbool <identifier>
vint <identifier>
vuint <identifier>
vdbl <identifier>
vchar <identifier>
vstr <identifier>
vnode <identifier>

Description

The vector types are typedefs of the clsss CTT_Vector< value_type > in the exported code.
CTT_Vector is derived from std::vector< value_type >.

All vector classes have the same methods. These are

1.) the read only methods of the general cursor class:

bool isValid() const

300 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

bool hasCurrent() const
bool empty() const
unsigned int size() const
bool gotoNext()
bool gotoPrev()
value_type value() const
bool containsValue(const value_type&) const
bool findValue(const value_type& xValue)
bool findNextValue(const value_type& xValue)
bool findPrevValue(const value_type& xValue)

2.) getCursor() const

By this method an external cursor is connected with the vector.

Example:

vint v;

vint::cursor cr = v.getCursor();

cr now points to the same data element as the internal cursor, but further both can be placed
independently from each other.

3.) Methods, which change the content of a vector:

void reset()

Positions the cursor before/behind the list of elements of the vector.

void clear()

removes all elements from the vector and resets all cursors.

void push_back(const value_type& xValue)

Appends xValue at the end of the vector. All cursors are reset.

void pop_back()

Removes the last element from the vector. All cursors are reset. If the vector is empty, an error
occurs..You should check, whether the vector contains elements before calling pop_back:

bool remove()

removes the current element from the vector and returns true. If there is no current element or if an
error occurs, false will be returned. All cursors are reset.

301Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

bool setValue(const value_type& xValue)

changes the value of the current element and returns true. If there is no current element or if an error
occurs, false will be returned.

4.) Direct access of the elements

value_type back()

returns the last element. If the vector is empty, an error occurs..You should check, whether the
vector contains elements before calling back:

if(v.size())

value = v.back();

value_type front()

returns the first element. If the vector is empty, an error occurs..You should check, whether the
vector contains elements before calling front:

if(v.size())

value = v.front();

Index operator

The elements, which were inserted into a vector by the push_back method can be accessed
directly by their index. The first element has index 0 and the last has index size() -1. If a vstr named
v exists

str s = v[0];

copies the first String into s and

v[0] = s;

copies the string s into the first element, if the first element exists. If no first element was inserted
by push_back, an error occurres.

10.3.3.4.1.1 Stack

There isn't a general stack container class of his own in the TextTransformer interpreter. Stacks can
nevertheless be realized easily.

At first there are two special stacks for text-scopes and indentations. A stack also arises from

302 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

productions called recursively automatically (see below).

In other cases a vector can be used as a stack. A new value can be pushed on the stack with
push_back, then the value can be accessed by back and finally it can be removed again by
pop_back.

vint v;

for(int i = 1; i <= 3; i++)

 v.push_back(i);

while(v.size())

{
 out << v.back();

 v.pop_back();
}

// result: 321

E.g. a Stack arises automatically, when the text : "(((1)))", is parsed with the following start rule:

StackItem(int xi)

{{ int i = xi + 1; }}

"("
StackItem[i]

{{ out << i << endl; }}
")"
| DIGIT

For every new instance of stack a local variables i is created: i is pushed on the stack. When the
stack production is left, the variable is destoyed: i is popped from the stack.

303Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.3.4.2 map

A container class map manages a list of pairs of values. All pairs of a list have the same data types.
There are, however, different map types depending on type of the contained pairs. (See the table
above)

Syntax

mstrbool <identifier>
mstrint <identifier>
mstruint <identifier>
mstrdbl <identifier>
mstrchar <identifier>
mstrstr <identifier>
mstrnode <bezeichner>
mstrdnode <identifier>

Description

The map types are typedefs of the class CTT_Map< value_type > in the exported code. CTT_Map is
derived from std::map< value_type >.

A map variable is a list of pairs of values. Each pair consists of a key word and its value. The pairs
are sorted alphabetically according to the key. Thus a map has a good performance, when searching
for a key, but not so good performance when searching for a value.
A map is always in a certain state: one of the pairs is the current pair. This pair is denoted by the
cursor (pointer). The cursor also can be invalid: it can be positioned before or behind the elements
(pairs). In this case the property hasCurrent is false and to access the key or value makes no
sense. The cursor can be positioned and the properties of the current pair of strings can read or
manipulated.

All map classes have the same methods. These are

304 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

1.) the read only methods of the general cursor class:

bool isValid() const
bool hasCurrent() const
bool empty() const
unsigned int size() const
bool gotoNext()
bool gotoPrev()
value_type value() const
bool containsValue(const value_type&) const
bool findValue(const value_type& xValue)
bool findNextValue(const value_type& xValue)
bool findPrevValue(const value_type& xValue)

2.) getCursor() const

By this method an external cursor is connected with the map.

Example:

mstrnode m;

mstrnode::cursor cr = m.getCursor();

cr now points to the same data element as the internal cursor, but further both can be placed
independently from each other.

3. In addition to these general methods the map as well as an external cursor of a map has the read
only methods:

str key() const

returns the key of the current element or an empty string, if there is no current pair.

bool containsKey(const str& xsKey) const

returns true, if a key xsKey is contained in the map.

bool findKey(const str& xsKey)

searches for the key xsKey. If the key is contained in the map the according element becomes the
actual element and the function returns true. Otherwise false will be returned.

4.) Methods, which change the content of a map:

void reset()

305Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Positions the cursor before/behind the list of elements of the map.

void clear()

removes all elements and resets all cursors.

bool add(const str& key, const value_type& xValue)

inserts an element into the map with the key key and the value value. If the insertion succeeded,
true is returned. If there was already a pair with the key key inside of the map, false will be returned
and the value will not be overwritten. All cursors are reset.

bool remove()

removes the current element from the map and returns true. If there is no current element or if an
error occurs, false will be returned. All cursors are reset.

bool remove(const str& xsKey)

removes the element with the key xsKey from the map and returns true. If the key isn't contained in
the map or an error occures, false will be returned. All cursors are reset.

bool setValue(const value_type& xValue)

changes the value of the current element and returns true. If there is no current element or if an error
occurs, false will be returned.

5.) Direct element access

If you have a mstrstr named m, you can insert elements or access their values directly by

m[key]

This either returns the value of the element with the key key, or inserts an element with key, if it
does not yet exist. So by

m["one"] = "two";

you insert a value with the key "one" and the value "two" and by

str s = m["one"];

you can copy the value "two" into the string s. If a new element is inserted, all cursors are reset.

Attention: if there was not inserted a value for the key before, the latter statement will automatically
insert an empty string as value for the key "one" and copy the empty string to s. If you want to test,

306 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

if the key exists in the map, you have to use the findKey function above.

10.3.3.4.3 cursor

A corresponding cursor type belongs to every container type. By means of the cursor single
elements of the container can be searched for and the contents of the element can be read.
Every container contains internally a cursor and the methods of the cursor are invoked directly as
methods of the container. However, a cursor can be declared also externally. The type name of the
cursor arises from the name of the accompanying container, by appending the expression ":
:cursor".

Example:

Use of an internal cursor:

vstr v;

v.push_back("tt");

v.push_back("TETRA");

v.reset();

while (v.gotoNext())

 out << v.value() << endl;

or declaration of an external cursor:

vstr v;

v.push_back("tt");

v.push_back("TETRA");

vstr::cursor cr = v.getCursor();

while (cr.gotoNext())

 out << cr.value() << endl;

The direct call of the internal cursor will be usually preferred to of the declaration of an external
cursor because of its simplicity. However, if for example a range of the container shall be marked,
then an external cursor is necessary.
The use of the internal cursor also has a side effect. By the change of the position of the internal
cursor the state of the container is changed since the position of its cursor is part of this state. The
internal cursor cannot be used therefore in a const parser.

The cursor itself can be in three states:

1. it is placed before the first (the same as behind the last) element: the function hasCurrent then
returns false.

cr.hasCurrent() == false

2. it denotes a value. Now is

cr.hasCurrent() == true

If the content of the containers is changed by addition or removal of an element, the position of the
cursor (not the cursor itself) gets invalid again:

307Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

cr.hasCurrent() == false

3. it is invalid, if there is no connection to a container:

cr.isValid() == false

A connection to a container is made by the call of the container method getCursor (see example
above). But the connection can get lost, if the container stops existing.

Example:

vstr::cursor GetInvalidCursor()

{
 vstr v;

 return vstr::cursor(v);

}

To call a method of an invalid cursor will not create an error, but will be useless.
Different to an external cursor an internal cursor never is invalid; its existence ends with the
existence of the container.

10.3.3.4.3.1 General cursor methods

Cursors have read only access to the connected container. The cursors of different kinds of
containers (vector and map) have a set of common methods, which will now be listed and explained..
Thereby an element is either a single value contained in a vector or a pair of values contained in a
map.

a) Information:

bool isValid() const

returns, whether the cursor is connected to a container. For an internal cursor this is always the
case.

bool hasCurrent() const

returns true, if the cursor is positioned on an actual element. Otherwise false will be returned.

bool empty() const

returns true, if there is no element in the container. If the container is invalid, true will be returned.

unsigned int size() const

308 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

returns the number of elements in the container. If the container is invalid, 0 will be returned.

value_type value() const

returns the value of the current element. If there is no current element, the default value of the value
type will be returned: an empty string for the string type, 0 for numerical types and false for the bool
type.

If the vaue type is node, you can call value().label() or value().value() to get the label or value of the
node.

bool gotoNext()

sets the cursor on the next element. So it becomes the current element. If the current element was
the last element of the list, gotoNext returns false and the cursor position becomes invalid. If the
cursor position was invalid, it will be set on the first element by gotoNext.

bool gotoPrev()

sets the cursor on the previous element. So it becomes the current element. If the current element
was the first element of the list, gotoPrev returns false and the cursor position becomes invalid. If the
cursor position was invalid, it will be set on the last element by gotoPrev.

bool containsValue(const value_type& xValue) const

returns true, if a value xValue is contained in the container.

bool findValue(const value_type& xValue)

searches for the first value xValue. If the value is contained in the map the according element
becomes the actual element and the function returns true. Otherwise false will be returned.

Example:

vstr v;

vstr::cursor cr = v.getCursor();

if (! cr.findNext("tt"))

 out << "v is empty";

bool findNextValue(const value_type& xValue)

Beginning at the actual position this function looks for a following element, the value which of is
xValue. If such an element exists, it becomes the actual one and true is returned. Otherwise the
actual position remains unchanged and false is returned.

bool findPrevValue(const value_type& xValue)

Beginning at the actual position this function looks for a previous element, the value which of is

309Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

xValue. If such an element exists, it becomes the actual one and true is returned. Otherwise the
actual position remains unchanged and false is returned.

A map cursor has some additional methods:

str key() const
bool containsKey(const str& xsKey) const
bool findKey(const str& xsKey)

10.3.3.4.4 Function table

A function table is a map in which functions are sorted according to keys of strings. All functions of
a list have the same type. There are, however, different function table types, depending on the type
the functions return. (See the table above)

Syntax

mstrfun <identifier> ;
bool_mstrfun <identifier> ;
int_mstrfun <identifier> ;
uint_mstrfun <identifier> ;
dbl_mstrfun <identifier> ;
str_mstrfun <identifier> ;
node_mstrfun <identifier> ;
dnode_mstrfun <bezeichner> ;

Description

By means of these special containers the processing of a parse-tree is easier. To each label of a
node a function can be assigned, which evaluates the node.
A function table shall be exemplified by mstrfun. mstrfun is similar to a map mstrstr: mstrfun, as it
has an str key and another str as value. But the value here denotes the name of a class method.
Class methods are added to a function table by their names. All methods must have the same type.
The type of a function results from its return type and its parameters. So all functions contained in a
table must have the same return type and the same number and kind of parameters. An additional
condition is, that the first Parameter has to be the type: const node&. By this parameter the node
is passed, which shall be evaluated.
If you define an mstrfun-variable as an element of the TextTransformer, the parameter field is
shown after you have specified the mstrfun-type in the field for the return type. Here you have to
specify the parameters in the same manner as usual for the functions.
The special type of the function table determines the return type of the functions contained in the
table:

type of function table return type

mstrfun void

bool_mstrfun bool

int_mstrfun int

uint_mstrfun unsigned int

dbl_mstrfun double

str_mstrfun str

310 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

node_mstrfun node

bool add(LABEL, FUNCTION);

In the text field you now can insert the functions by means of the add-command.
All functions, which mstrfun shall contain, must be inserted here. It is not possible to create
function-tables dynamically, while a transformation is running.

LABEL and FUNCTION can be passed either as strings - e.g. "number" - or as identifiers - e.g.
number. To pass a parameter as an identifier has the advantage that the syntax highlighting then is
active and you can change to the according function by a mouse click.
When C++ code is created for the export, the identifiers will be translated to strings or functions
addresses automatically.
It is not possible, to use general expressions for these parameters.

Example:

m_Eval might be an mstrfun, of void functions with only one node parameter, like

void VisitVariable(const node& xNode)

The first and the second of the following calls are correct, the third not:

m_Eval.add("Variable", "VisitVariable");
m_Eval.add(Variable, VisitVariable);

str sLabel = "Variable";

m_Eval.add(sLabel, "VisitVariable"); // error

Default function

Each function table must contain a default function, which will treat the nodes with labels, which are
different from all key values in the table. The default function is inserted by the empty string "" as
key:

Previous example continued:

void Default(const node& xNode)
m_Eval.add("", "Default");

The extension of function tables by new functions is made easier by the Function-Table-Wizard

. visit(const node& xNode ...)

A function of the table is called by a call of the visit method of the table. Depending on the value of
the label of the passed node, the call of visit will be redirected automatically to the function, which is
assigned to the value of the label.

Previous example continued:

311Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

node n("Variable", ...);

m_Eval.visit(n);

is equivalent with

if (n.label() == "Variable")

 VisitVariable(n);
 else
 Default(n);

In the exported c++ code mstrfun is implemented as CTT_Mstrfun.

10.3.3.5 node / dnode

Syntax

node <identifier> ;
dnode <identifier> ;

Description

The types node and dnode are designating the structure of a tree node. Such a node consists in a
first string - the label - to identify the kind of the node and a second string, which contains a value.
Finally, an unsigned int value can be assigned to the node. A special property of nodes is, that they
can be combined to a common tree structure.

node and dnode nearly have the same interface and therefore can be used analogously. The
difference is discussed below.

According to these properties nodes can be used in the TextTransformer:

· as a container to store single data

· as parse tree to represent the grammatical structure of the whole input text

The names and relations of the nodes are explained in the glossary.

Node-instances have special properties: they are reference counted pointers. If a node is
assigned to a different, a change of the value (or label) of one of these nodes will result in
a change of the value (or label) of the other too.

Example.:

node n1("label1", "value1");

node n2("label2", "value2");

n1 = n2;
n1.setLabel("label3");
// now as well n1 as n2 have the label "label3" and the value "value2"

A tree exists as long as there exists a reference to one of its nodes.

312 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The node function are listed into the following chapters:

Construction
Information
Neighbors
Search
dnode specials

10.3.3.5.1 node: Construction

You can create single nodes with initializing parameters or without:

node()
node(str& xsLabel)
node(str& xsLabel, str& xsValue)

A new node object will be created with a label and a value according to the parameters.

node(const node& xOther)

A reference on the node object xOther will be created. That means, the new node has the same
label, value and the same children as the old. If one of the nodes will be changed, the other will
change too.

A copy (isolated form the tree) of a node is yielded by:

node clone()

Example:

node nCopy = root_node.bottomLastChild().clone();

To add a node to a tree structure use one of the following functions:

bool addChildFirst(const node& xNewChild)
bool addChildLast(const node& xNewChild)
node add(const str& xsLabel, const str& xsValue)

By the first function the new node becomes the first child node of the node, of which you called
addChildFirst. By the call of addChildLast the passed node will become the last child. true is
returned, if the insertion was successful.
The third function add can be read as an abbreviation of:

addChildLast(node(xsLabel, xsValue)

313Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

that means a new node is created with the label xsLabel and the value xsValue and inserted as the
last child node. The new node is returned or node::npos, if the insertion was not successful.
If the xNewChild is already in a tree, it is first removed there.
If xNewChild has children, they are transported too.

bool addChildBefore(const node& xnNewChild, const node& xnRefChild)

Inserts the node xnNewChild before the existing child node xnRefChild.
If refChild is null, insert newChild at the end of the list of children.

node removeChild(const node& xnOldChild)

Removes the child node indicated by xnOldChild from the list of children, and returns it. If xnOldChild
is not a child node::npos is returned.

node detach_node(const node& xn)

This global function simplifies the use of removeChild, because it has not to be called with the parent
node. The function is defined as:

if(xn.parent() != node::npos)

 xn.parent().removeChild(xn);

return xn;

bool replaceChild(node& xNewChild, node& xOldChild)

Replaces the child node xOldChild with xNewChild in the list of children, and returns the success.

node and dnode behave differently if it is tried, to insert a d/node, which was already
inserted in a tree, at another position:

Up to version 1.7.2 this was forbidden for a node and you got an error message. From version
1.7.3 on, the behavior is assimilated to the behavior of dnode's

For a dnode this operation is a movement: the dnode with its sub-nodes is inserted in the desired
place, however, disappears at the old position. This can be quite useful.

Trees from node's and dnode's have a different memory management: node's are reference-counted
internally and dnode's are managed by the XMLDocument externally. The renunciation of such a
"factory" has the consequence of more effort in case of the removal of a node from a tree.

10.3.3.5.2 node: Information

Information about the data of a node itself or about its position inside of a tree can be obtained by
the following functions:

str label() const
void setLabel(const str& xsLabel)
str value() const

314 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

void setValue(const str& xsValue)
unsigned int id() const
void setId(unsigned int xuiId)

bool hasChildren() const
bool isDescendant(const node& xNode) const
bool isAncestor(const node& xNode) const
bool isSibling(const node& xNode) const
unsigned int level() const
unsigned int descendentsCount() const
unsigned int childCount() const

void setAttrib(const str& xsLabel, const str& xsValue)
str attrib(const str& xsLabel)

str label() const

Returns the value of the label.

void setLabel(const str& xsLabel)

Sets the label of the node..

str value() const

Returns the value of the node.

void setValue(const str& xsValue)

Sets the value of the node.

unsigned int id() const
void setId(unsigned int xuiId)

These functions are reserved for further developments of the TextTransformers. The id type may
change in future.

bool hasChildren() const

The function returns true, if the node has a child node; otherwise false will be returned.

bool isDescendant(const node& xNode) const

By isDescendant you can determine, whether the passed node xNode contains to the branch, which
has its origin in the actual node.

315Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

bool isAncestor(const node& xNode) const

By isAncestor you can determine, whether the actual nodes contains to the branch, which has its
origin in the passed node xNode.

bool isSibling(const node& xNode) const

By isSibling you can determine, whether the passed node xNode follows in the sequence of siblings
of the actual node.

unsigned int level() const

This function returns 0 for the root node; the first child of the root has the level 1 and so on

unsigned int descendentsCount() const

This function returns the number of nodes in the branch, which has its origin in the actual node.

unsigned int childCount() const

This function returns the number of nodes, which immediately are subordinated to the actual node.

Attributes

Attributes consist of a key and an accompanying value. E.g. attributes are useful for the storage of
ini entries: while the sections of the ini file are represented by nodes, the values of the section can
be put as attributes.

void setAttrib(const str& xsLabel, const str& xsValue)

For every node arbitrarily many attributes can be set with setAttrib. An attribute has a name xsLabel
and a value belonging to it, xsValue. If the name isn't existing in the list of the attributes yet, then
new attribute is inserted. If the name already exists, the according value will be overwritten with the
new value.

str attrib(const str& xsLabel)

By attrib the value with the name xsLabel can be read.

bool hasAttrib() const

Returns true, if the node has at least one attribute. Otherwise false is returned.

Example:

a) Parsing the ini file:

316 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

{{node n = xIni.add("[FONT]", ""); }}

"NAME" "=" Value {{ n.setAttrib("NAME", State.lp_str()); }}
"COLOR" "=" Value {{ n.setAttrib("COLOR", State.lp_str()); }}

b) Using the values:

node n = Ini.findNextLabel("[FONT]")

SetValues(n.attrib("NAME"), n.attrib("COLOR"));

10.3.3.5.3 node::npos

A special node is: node::npos. It is similar to str::npos or to a NULL-pointer in c++. All functions,
which return a node object, will return node::npos, if the node doesn't exist. For example a just
created node will neither have child nodes nor a parent:

node nNew;

node nPos = nNew.firstChild();

// now is: nPos == node::npos

Before you do something with a node, which is the result of a neighbor- or search-function, you
should always compare it first with node::npos:

if(nPos != node::npos)

{
 // do something with nPos
}
else

 // do nothing with nPos

All node functions, which return a different node, applied to node::npos, will return node::npos again.
node::npos cannot be inserted into a tree.

10.3.3.5.4 node: Neighbors

By the following functions you can get nodes, which are in certain positions relatively to another
node:

node root() const
node parent() const

node firstChild() const
node lastChild() const

node nextSibling() const
node prevSibling() const
node firstSibling() const

317Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

node lastSibling() const

node bottomFirstChild() const
node bottomLastChild() const

node next() const
node follow() const
node prev() const
node nextLeaf() const
node prevLeaf() const

If you know the names and relations of the nodes as explained in the glossary, the names of most of
these functions are self-explanatory. Each function returns the neighbor node according the name of
the function.

Example:

{{
node root("label_00", "value_00");

root.add("label_11", "value_11");
root.add("label_12", "value_12");

node pos = root.firstChild();

while(pos != node::npos)

{
 out << "label: " << pos.label() << ", "

 << "value: " << pos.value() << endl;
 pos = pos.nextSibling();
}

}}

results in:

label: label_11, value: value_11
label: label_12, value: value_12

After the execution of this assignment nChild is equal to the first child node of the node nParent. If
nParent has no child, the following is valid

nChild == node::npos

Further explanation is needed for:

node bottomFirstChild() const

First child of the first child ...

node bottomLastChild() const

Bottom last child of the last child

318 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

node next() const
node prev() const

next returns the next node in descending direction. prev teturns the next node in ascending direction
.

node follow() const

follow returns the next node in descending direction, which follows on the last child node. This is
either the nextSibling of the actual node or the nextSibling of the first of the parent nodes, which has
a nextSibling or node::npos.

node nextLeaf() const
node prevLeaf() const

next returns the next node in descending direction, which has no child nodes. prev teturns the next
node in ascending direction, which has no child nodes.

10.3.3.5.5 node: Searching

Starting from a node other nodes with certain data can be searched:

node findNextLabel(const str& xsLabel) const
node findNextLabel(const str& xsLabel, const node& xnLast) const
node findNextValue(const str& xsValue) const
node findNextValue(const str& xsValue, const node& xnLast) const
node findNextId(unsigned int xuiId) const
node findNextId(unsigned int xuiId, const node& xnLast) const

node findPrevLabel(const str& xsLabel) const
node findPrevLabel(const str& xsLabel, const node& xnLast) const
node findPrevValue(const str& xsValue) const
node findPrevValue(const str& xsValue, const node& xnLast) const
node findPrevId(unsigned int xuiId) const
node findPrevId(unsigned int xuiId, const node& xnLast) const

node findChildLabel(const str& xsLabel, bool xbRecursive = true)
node findChildValue(const str& xsValue, bool xbRecursive = true)
node findChildId(unsigned int xuiId, bool xbRecursive = true)

node findParentLabel(const str& xsLabel)
node findParentValue(const str& xsValue)
node findParentId(unsigned int xuiId)

node findNextLabel(const str& xsLabel) const
node findNextLabel(const str& xsLabel, const node& xnLast) const

Returns the next node in descending direction, of which the label is equal to the passed string
xsLabel. If no such node exists, the function returns node::npos.

319Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

With the second optional parameter xnLast a tree node can be chosen at which the search is
finished.

Example:

node pos = xn.findNextLabel("parameter");

while(pos != node::npos)

{

 out << "parameter: " << pos.value() << endl;

 pos = pos.findNextLabel("parameter");

}

This function outputs all parameters of all possible parameter lists which follow on xn.
If only the parameters of a current list shall be written, the code can be changed to:

node last = xn.bottomLastChild();

node pos = xn.findNextLabel("parameter" , last);

while(pos != node::npos)

{

 out << "parameter: " << pos.value() << endl;

 pos = pos.findNextLabel("parameter", last);

}

node findNextValue(const str& xsValue) const
node findNextValue(const str& xsValue, const node& xnLast) const

Returns the next node in descending direction, of which the value is equal to the passed string
xsValue. If no such node exists, the function returns node::npos.
With the second optional parameter xnLast a tree node can be chosen at which the search is
finished.

node findPrevLabel(const str& xsLabel) const
node findPrevLabel(const str& xsLabel, const node& xnLast) const

Returns the next node in ascending direction, of which the label is equal to the passed string
xsLabel. If no such node exists, the function returns node::npos.
With the second optional parameter xnLast a tree node can be chosen at which the search is
finished.

node findPrevValue(const str& xsValue) const
node findPrevValue(const str& xsValue, const node& xnLast) const

Returns the next node in ascending direction, of which the value is equal to the passed string
xsValue. If no such node exists, the function returns node::npos.
With the second optional parameter xnLast a tree node can be chosen at which the search is
finished.

node findChildLabel(const str& xsLabel, bool xbRecursive = true)

Looks for the next child node, the label which of is xsLabel. If such a node exists it is returned,
otherwise node::npos is returned.

320 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

If xbRecursive is true, the label is looked up in the child nodes of the children too.

node findChildValue(const str& xsValue, bool xbRecursive = true)

Looks for the next child node, the value which of is xsValue. If such a node exists it is returned,
otherwise node::npos is returned.
If xbRecursive is true, the label is looked up in the child nodes of the children too.

node findParentLabel(const str& xsLabel)

Looks for the next node in the set of parent nodes, the label which of is xsLabel. If such a node
exists it is returned, otherwise node::npos is returned.

node findParentValue(const str& xsValue)

Looks for the next node in the set of parent nodes, the value which of is xsValue. If such a node
exists it is returned, otherwise node::npos is returned.

node findNextId(unsigned int xuiId) const
node findNextId(unsigned int xuiId, const node& xnLast) const
node findPrevId(unsigned int xuiId) const
node findPrevId(unsigned int xuiId, const node& xnLast) const
node findChildId(unsigned int xuiId, bool xbRecursive = true)
node findParentId(unsigned int xuiId)

Analogously to the aforementioned functions you can search with these functions for a certain ID
value.

10.3.3.5.6 node: Sorting

void sortCildrentA()
void sortCildrenD()

By calling these methods the direct children of the node are sorted. sortCildrentA sorts the nodes
according to their labels in alphabetical ascending order and sortCildrenD sorts in alphabetical
descending order.

10.3.3.5.7 dnode specials

node and dnode nearly have the same interface and therefore can be used analogously. In contrast
to node, dnode is part of a xerces document. Such documents open a big room for to the
manipulation in the produced C++ code and they can easily be written as XML documents. Trees
from dnodes as opposed to such from nodes are also shown in the variable-inspector after a
transformation is ended.This lies in the fact, that the document is part plugin which exists outside
the parser while nodes exist only locally within the parser. This is also the reason why dnode class
elements cannot be initialized before the beginning of parsing. Only then the plugin is passed into
the parser so that the dnodes can be produced by the DOMDocument of the plugin. At the

321Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

generation of C++ code which uses dnodes the xerces library must be linked. In the project options
for the code production the CTT_ParseStateDomPlugin has to be set to as a plugin type then. The
evaluation by means of function tables in the exported code isn't implemented yet.

The root node of a dnode tree must be produced with the function GetDocumentElement. The
document finally can be written with the function WriteDocument

The way how the document is written is set in the project options.

While label and value of a node can consist of arbitrary characters, the set of the characters for the
the label a dnode are restricted on letters, numbers and the underline. The label may not start
with a number or the underline. Special characters aren't permitted here. Exactly the characters are
permitted, that are also are permitted for the definition of an XML-tag.

dnode's can be moved in a tree and nodes cannot. This difference was already metionned above.

10.3.3.6 const

Syntax

const <variable name> [= <value>] ;

<function name> (const <type>*<variable name> ;)

<function name> const;

Description

Use the const modifier to make a variable value not modifiable.
Use the const modifier to assign an initial value to a variable that cannot be changed by the program.
Any future assignments to a const result in a compiler error.

10.3.3.7 Operators

Operators can be applied to the elementary data types and strings and partly also to other types:

Arithmetic operators
Assignment operators
Relational operators
Equality operators
Logical operators

10.3.3.7.1 Arithmetic operators

Following arithmetic operators exist:
Binary operators:

Op1 * Op2
Op1 / Op2

322 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Op1 % Op2 (modulus or remainder)
Op1 + Op2
Op1 - Op2

Unary operators:
Op++
Op1--

Applied on types, which represents numbers, the operators + (addition), - (subtraction), *
(multiplication) and / (division) execute the according basic arithmetical operation.
(op1 % op2) Remainder of (op1 divided by op2)

For / and %, op2 must be nonzero op2 = 0 results in an error. (You can't divide by zero.)
% cannot be applied on the double type.

The operator ++ (increment) adds the number 1 to the value of the expression.
The operator -- (decrement) subtracts the number 1 of the value of the expression.

Applied on strings the addition causes a concatenation of the characters.

10.3.3.7.2 Assignment operators

Following assignment operators exist:

= *= /= += -= %= ^= |= &= <<= >>=

The value of the operand Op1 after execution of the assignment

Op1 = Op2;

is equal to the value of Op2.

The expression

Op1 op= Op2;

has the same effect as

Op1 = Op1 op Op2;

Example: Op1 += Op2; is equivalent to Op1 = Op1 + Op2;.

The operands Op1 and Op2 must be either of the same type or they must be compatible to each
other.

For Op2 also the call of a production or a token can be substituted, if they return a compatible value,
and if the closing bracket of the semantic action is immediately following the operator:

Example:

{{e = }} Term

323Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

{{e += }} Term
{{e -= }} Term

10.3.3.7.3 Relational operators

Syntax

relational-expression < shift-expression

relational-expression > shift-expression
relational-expression <= shift-expression

relational-expression >= shift-expression

Remarks

Use relational operators to test equality or inequality of expressions. If the statement evaluates to be
true it returns a nonzero character; otherwise it returns false (0).

> greater than
< less than
>= greater than or equal
<= less than or equal

In the expression

E1 <operator> E2

the operands must be both of arithmetic type.

10.3.3.7.4 Equality operators

There are two equality operators: == and !=. They test for equality and inequality between arithmetic
values or strings, following rules very similar to those for the relational operators.

Note:
Notice that == and != have a lower precedence than the relational operators < and >, <=, and >=.
Also, == and != can compare the string type for equality and inequality where the relational
operators would not be allowed.

The syntax is

equality-expression:

relational-expression
equality-expression == relational-expression

equality-expression != relational-expression

324 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.3.7.5 Logical operators

Syntax

logical-AND-expr && inclusive-OR-expression

logical-OR-expr || logical-AND-expression

! cast-expression

Remarks

Operands in a logical expression must be of scalar type.

· && logical AND; returns true only if both expressions evaluate to be nonzero, otherwise returns
false. If the first expression evaluates to false, the second expression is not evaluated.

· || logical OR; returns true if either of the expressions evaluate to be nonzero, otherwise returns
false. If the first expression evaluates to true, the second expression is not evaluated.

· ! logical negation; returns true if the entire expression evaluates to be nonzero, otherwise
returns false. The expression !E is equivalent to (0 == E).

10.3.3.7.6 Bitwise operators

Remark

Use the bitwise operators to modify the individual bits rather than the number.

Operator What it does
& bitwise AND; compares two bits and generates a 1 result if both

bits are 1, otherwise it returns 0.
| bitwise inclusive OR; compares two bits and generates a 1 result if

either or both bits are 1, otherwise it returns 0.
^ bitwise exclusive OR; compares two bits and generates a 1 result if

the bits are complementary, otherwise it returns 0.
~ bitwise complement; inverts each bit. ~ is used to create

destructors.
>> bitwise shift right; moves the bits to the right, discards the far right

bit and assigns the left most bit to 0.
<< bitwise shift left; moves the bits to the left, it discards the far left bit

and assigns the right most bit to 0.

Both operands in a bitwise expression must be of an integral type.

Bit value Bit value Result of Result of Result of
E1 E2 E1 & E2 E1 ^ E2 E1 | E2
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0 1

325Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Note: &, >>, << are context sensitive:
& can also be the reference operator.
>> can also be the input operator in I/O expressions.
<< can also be the output operator in I/O expressions.

10.3.3.7.7 Conditional operator

Syntax

logical-OR-expr ? expr : conditional-expr

Remarks

The conditional operator ?: is a ternary operator.
In the expression E1 ? E2 : E3, E1 evaluates first. If its value is true, then E2 evaluates and E3 is
ignored. If E1 evaluates to false, then E3 evaluates and E2 is ignored.
The result of E1 ? E2 : E3 will be the value of either E2 or E3 depending upon which evaluates.

The condition operator only is in the TETRA interpreter of a very restricted use since for the E's not
the full spectrum of c++ expressions is permitted at present. You can get more exact information
about this by looking into the parser for the TETRA c++-interpreter.

10.3.3.8 Control structures

Following control structures can be used inside of the TETRA-interpreter

if, else
for
while
do
switch

10.3.3.8.1 if, else

Syntax

if (<condition>) <statement1>;

if (<condition>) <statement1>;
 else <statement2>;

Description

Use if to implement a conditional statement.
The condition statement must convert to a bool type. Otherwise, the condition is ill formed.

326 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

When <condition> evaluates to true, <statement1> executes.
If <condition> is false, <statement2> executes.
The else keyword is optional, but no statements can come between an if statement and an else.

In contrast to the C/C++ standard inside of the condition no variables may be defined and no
assignments can be executed. That means the following is not possible:

if (int val = stoi("1")) or // false

int val; if (val = stoi("1")) // false

Possible is:

if (stoi("1"))

10.3.3.8.2 for

Syntax

for ([<initialization>] ; [<condition>] ; [<increment>]) <statement>

Description

The for statement implements an iterative loop.
<condition> is checked before the first entry into the block.
<statement> is executed repeatedly UNTIL the value of <condition> is false.

Before the first iteration of the loop, <initialization> initializes variables for the loop.
After each iteration of the loop, <increments> increments a loop counter. Consequently, j++ is
functionally the same as ++j.

In C++, <initialization> can be an expression or a declaration. The scope of any identifier declared
within the for loop extends to the end of the control statement only. A variable defined in the
for-initialization expression is in scope only within the for-block.

10.3.3.8.3 while

Syntax

while (<condition>) <statement>

Description

Use the while keyword to conditionally iterate a statement.
<statement> executes repeatedly until the value of <condition> is false.
If no condition is specified, the while clause is equivalent to while(true). The test takes place
before <statement> executes. Thus, if <condition> evaluates to false on the first pass, the loop does
not execute.

327Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.3.8.4 do

Syntax

do <statement> while (<condition>);

Description

The do statement executes until the condition becomes false.
<statement> is executed repeatedly as long as the value of <condition> remains true.
Since the conditon tests after each the loop executes the <statement>, the loop will execute at
least once.

10.3.3.8.5 switch

Syntax

switch (<switch variable>) {

 case <constant expression> : <statement>; [break;]
 .
 .
 .
 default : <statement>;

}

Description

Use the switch statement to pass control to a case, which matches the <switch variable>. At which
point the statements following the matching case evaluate.
If no case satisfies the condition the default case evaluates.
To avoid evaluating any other cases and relinquish control from the switch, terminate each case with
break;.

10.3.3.9 Output

The result of a transformation appears on the screen or in a file if it is written there. Representatives
of these output destinations are

out for the results of the transformation
log for additional information about a transformation

Normally TextTransformer generates text files. It is also possible for special professional purposes to
produce binary files.

328 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.3.9.1 out

out represents the target text: inside of the IDE working space this text appears in the target
window. In the Transformation-Manager or the command line tool and the generated c++ parser, the
target text is written into a file. To write a text or the content of a variable to out, the shift operator
"<<" is used.

Example:

May sResult be a string variable, which holds the text "42", the following instruction:

out << sResult;

causes the appearance of "42" in the target window. Shift instructions can be chained:

out << "The result is: " << sResult << "\n";

This chain of instructions writes

"The result is: 42"

into the target window. (The character '\n' represents a line feed. When this character is written to
out, the next output will be written into the next line.)

The result of a call of a production or a token, which returns a value, can be written to the output
directly. For this, the closing bracket of the semantic action must follow the shift operator directly
and the bracket must be followed by the call of the rule. Example:

{{ out << }} Rule

Remark 2: The output to out can be redirected into another file by RedirectOutput.

Remark 3: If c++ code is generated, out is replaced by the expression: xState.out(). xState.out()
returns an ostream object from the plugin.

endl

out << endl

is another notation for

out << '\n'

In c++ this command also flushes the output buffer.

Remark: Up to the version 0.9.8.6 of the TextTransformer cout had to be written instead of out. cout
represents the standard output channel, normally the console.

329Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.3.9.2 log

Similar, as an output can be directed to out, you also can direct an output to log. But while the first
output is appended to the target text, the second will appear in the log window. This output can
provide Meta information about the course of a program and can help to search possible faults.

Example:

log << "value: " << xs;

If the parser will be exported as c++ code, the log commands will not be written, if you havn't
activated the option only to copy the code. To make it possible to generate executable programm
code too, when this option is activated, you can write "clog" instead of "log".

10.3.3.9.3 Binary output

For writing variables into binary files there is a simple notation in the TextTransformer:

Example:

out << int_bin(42) << double_bin(123,456);

or simpler:

out << bin(42) << bin(123.456);

The second notation is translated into the first one automatically in the exported C++ code. In these
expressions an overwritten output operator is called for temporary objects which provide the writing of
the binary forms of the respective variable types.

The variable types bool, char, int, unsigned int, float and double can be written binarily in this way.
string_bin writes string c_str into the output.

bool_bin(bool b)

int_bin(int i)

uint_bin(unsigned int ui)

float_bin(float f)

double_bin(double d)

char_bin(char c)

string_bin(string s)

A special case is the zero character '\0'. To write this binarily there is this besides char_bin('\0')
the manipulator ends.

out << ends; // writes 00

To prevent, that '\n' will be converted in "\r\n', the file should be opened in the binary mode.
Binary data are represented in the output window of the TextTransformer only mutilated.

330 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.3.10 return

Syntax

return <expression> ;

Description

Use the return statement to exit from the current function back to the calling routine, returning a
value.
As well productions, as element functions as token actions can return values.

Remark: the type of the returned value must be compatible with the type declared in the according
field of the script.

10.3.3.11 break

Syntax

break ;

Description

Use the break statement within loops to pass control to the first statement following the innermost
switch, for, while, or do block.

10.3.3.12 continue

Syntax

continue ;

Description

Use the continue statement within loops to pass control to the end of the innermost enclosing brace;
at which point the loop continuation condition is re-evaluated.

10.3.3.13 throw

With an instruction of the kind:

throw CTT_Error("error message");

a TETRA program can be canceled. An arbitrary text or a string variable can be passed as
message. In the C++ jargon for this statement is said, that the exception "CTT_Error" is thrown.

331Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Inside of the TextTransformer, the text will be shown in the log window.

User defined error message: error message.

Remark: Such a break is executed in the term production of the calculator example to prevent a
division by null.

An alternative to the throw command is the function GenError.
You can force a stop of a program also, if the interpreter is deactivated. For this the key word EXIT is
defined.

10.3.4 String manipulation

Inside of the TextTransformer some instructions are available, which are no standard instructions.

stod to convert an str to double
stoi to convert an str to int
hstoi to convert a hexadicimal sting to int
stoc to convert a stirng to a character

dtos to convert a double value to an str
itos to convert a int value to a str
itohs to convert an interger into a hexadecimal string
ctohs to convert a character into a hexadecimalstring
ctos to convert a character into a string

Remark: An integer variable, which represents an ANSI value, can be converted directly into the
character by assignment to a char variable:

char c = 65; // c == 'A'

to_upper_copy returns an upper case string
to_lower_copy returns a lower case string
trim_left_copy removes leading spaces
trim_right_copy removes trailing spaces
trim_copy removes leading and trailing spaces

In the professional version the source code for these instructions is delivered in the file: tt_lib.cpp

10.3.4.1 stod

Prototype

double stod(const str& xs)

332 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Description

Converts an str into a double number.

Return value

stod returns the result of the conversion or throws an exception (boost::bad_lexical_cast), if the
string cannot be converted to a double value.

10.3.4.2 stoi

Prototype

int stoi(const str& xs)

Description

Converts an str into an integer.

Return value

stoi returns the result of the conversion or throws an exception (boost::bad_lexical_cast), if the string
cannot be converted to an integer.

10.3.4.3 hstoi

Prototype

int hstoi(const str& xs)

Description

Converts an str, which consists of hexadicimal characters, into an integer.

Return value

hstoi returns the result of the conversion or 0, if the string cannot be converted to an integer.

Example:

The result of hstoi("FF") is the number 255.

10.3.4.4 stoc

Prototype

char stoc(const str& xs)

Description

333Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Converts an str into a character.

Return value

Returns the first character of the string xs or, if the string is empty, '\0'.

Example:

char c = stoc("hello");

// c == 'h'

10.3.4.5 dtos

Prototype

str dtos(double xd)

Description

Converts a double value into an str.

Return value

dtos returns the result of the conversion or throws an exception (boost::bad_lexical_cast), if the
value cannot be converted to a string.

10.3.4.6 itos

Prototype

str itos(int xi)

Description

Converts an integer into an str.

Return value

itos returns the result of the conversion or throws an exception (boost::bad_lexical_cast), if the value
cannot be converted to a string.

334 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.4.7 itohs

Prototype

str itohs(int xi)

Description

Converts an integer into an str, which consists of hexadecimal characters.

Return value

itohs returns a string as result of the conversion

Example:

The result of itohs(1000) is the string: "3e8".

10.3.4.8 ctohs

Prototype

str ctohs(char xc)

Description

Converts a character into an str, which consists of hexadecimal characters.

Return value

ctohs returns a string as result of the conversion

Example:

The result of ctohs('A') is the string: "41".

10.3.4.9 ctos

Prototype

str ctos(char xc)

Description

Converts a character into an str.

Return value

returns a string, which contains xc as single character.

335Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Example:

str s = "hello";

s = ctos(s[0]);
// s == "h";

10.3.4.10 to_upper_copy

Prototype

str to_upper_copy(const str& xs)

Description

Returns a string, which is created from the string xs, by converting each character to upper case.

Example:

str s = to_upper_copy("TextTransformer");

has the result: s == "TEXTTRANSFORMER".

10.3.4.11 to_lower_copy

Prototype

str to_lower_copy(const str& xs)

Description

Returns a string, which is created from the string xs, by converting each character to lower case.

Example:

str s = to_lower_copy("TextTransformer");

has the result: s == "texttransformer".

10.3.4.12 trim_left_copy

Prototype

str trim_left_copy(const str& xs)

336 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Description

Remove all leading spaces from the input. The result is a trimmed copy of the input.

Example:

str s = trim_left_copy(" TextTransformer ");

has the result: s == "TextTransformer ".

10.3.4.13 trim_right_copy

Prototype

str trim_right_copy(const str& xs)

Description

Remove all trailing spaces from the input. The result is a trimmed copy of the input.

Example:

str s = trim_right_copy(" TextTransformer ");

has the result: s == " TextTransformer".

This command is useful, to extract text, which is covered by a SKIP symbol. When the parser
recognizes the token after the SKIP symbol, leading spaces are ignored, but not the spaces before
the token. For example:

SKIP {{ out << trim_right_copy(xState.str()); }} "$"

input : " 77.74 $"
output : "77.74"

xState.str() == "77.74 " and trim_right_copy(xState.str()) == "77.74".

10.3.4.14 trim_copy

Prototype

str trim_copy(const str& xs)

Description

337Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

Remove all leading and trailing spaces from the input. The result is a trimmed copy of the input

Example:

str s = trim_copy(" TextTransformer ");

has the result: s == "TextTransformer".

10.3.5 File handling

The following functions for the path and file treatment are based on the portable boost filesystem
library.

basename Returns the base name of a file path
extension Returns the extension of a file path
change_extension Changes the extension of a file pat
append_path Composes a path
current_path Returns the current path
exists Tests the existence of a path
is_directory Tests the existence of a directory
file_size Returns the file size
find_file Looks up a file in a directory
load_file Loads a file
load_file_binary Loads a file in binary mode
path_separator String constant for the path separator

see also: source and target, redirection, unit_dependence example

10.3.5.1 basename

Prototype

str basename(const str& xsPath);

Description

If the substring after the last path separator in the path xsPath contains a dot ('.'), the substring
ending at the last dot (the dot is not included) is returned. Otherwise the entire substring is returned.

Example 1:

out << basename("D:\\TextTransformer\\Settings\\EditDefault.ds");

Output::

EditDefault

338 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Example 2:

out << basename("D:\\TextTransformer\\Settings");

Output::

Settings

10.3.5.2 extension

Prototype

str extension(const str& xsPath);

Description

If the substring after the last path separator in the path xsPath contains a dot ('.'), the substring
starting with the dot is returned. Otherwise an empty string is returned.

Example:

out << extension("D:\\TextTransformer\\Settings\\EditDefault.ds");

Output::

.ds

10.3.5.3 change_extension

Prototype

str change_extension(const str& xsPath, const str& xsNewExtension);

Description

This function returns the path, which results from changing the extension in the path xsPath to
xsNewExtension. xsNewExtension should include a dot to achieve reasonable results.

Example 1:

out << change_extension("EditDefault.ds", ".tb");

Output::

339Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

EditDefault.tb

Example 2:

out << change_extension("EditDefault.ds", "tb");

Output::

EditDefaulttb // presumably not wanted

10.3.5.4 append_path

Prototype

str append_path(const str& xsPath1, const str& xsPath2);

Description

Returns a path combined of the parts xsPath1 and xsPath2 in which they are connected by a path
separator. If xsPath1 or xsPath2 is empty, then the respectively other part is returned without
attaching a path separator.

Example:

str sLogPath = append_path (current_path(), "log.txt");

instead of

str sLog = current_path() + path_separator + "log.txt";

Under Windows is valid:

 append_path("a", "b") == "a\\b"

 append_path("a\\", "b") == "a\\b"

 append_path("a", "\\b") == "a\\b"

 append_path("a\\", "\\b") == "a\\b"

 append_path("a", "") == "a"

 append_path("", "b") == "b"

10.3.5.5 current_path

Prototype

str current_path();

Description

Returns the current path as maintained by the operating system.

340 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.5.6 exists

Prototype

bool exists(const str& xsPath);

Description

Returns true, if the operating system reports the path represented by xsPath exists, else false.

Example:

if(exists(TargetName())

 throw CTT_Error("target file already exixts");

10.3.5.7 is_directory

Prototype

bool is_directory(const str& xsPath);

Description

Returns true, if the operating system reports the path represented by xsPath is a directory, else
false.

Example:

if(is_directory(TargetName()))

 throw CTT_Error("not a correct target file");

Remark:

In contrast to the corresponding function in boost filesystem is_directory returns false for an empty
string and does not produce an exception. Otherwise the above example would not run in the TETRA
working space

10.3.5.8 file_size

Prototype

unsigned int file_size(const str& xsPath);

Description

Returns the size of the file in bytes as reported by the operating system. An exception is thrown, if
the path does not exist or, if the path is a directory.

Example:

341Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

if(exists(SourceName()) && file_size(SourceName()) == 0)

 throw CTT_Error("source file is empty");

10.3.5.9 find_file

Prototype

bool find_file(const str& xsDirectory, const str& xsName, str& xsFoundPath, bool ci = true);

Description

This function returns true, if a file exists in the directory xsDirectory with the name xsName.
xsFoundPath then contains the complete path for this file. If the file isn't found, the function returns
false. The case of the letters of the name is ignored by default, as it is usual under Windows. With
the fourth parameter can be forced, that the case is not ignored.

Example:

 str sPath;

 if(find_file(SourceRoot(), "log.txt", sPath))

 {

 ...

see also: unit_dependence example

10.3.5.10 load_file

Prototype

bool load_file(str& xs, const str& xsFileName)
bool load_file(str& xs, const str& xsFileName)

Description

Opens the file with the name xsFileName and reads the content into the string xs. true will be
returned, if this process was successful, otherwise false will be returned
If the command load_file is used, the file is opened in the text mode, i.e. under Windows, that that
all CR/LF combinations (carriage return/line feed) are translated into a single LF character. This is
not the case, if the file is read in the binary mode with load_file_binary.

Example:

str s;

str sFileName = "C:\\Programme\\TextTransformer\\Beispiele\\Atari1\\test.txt";

if(load_file(s, sFileName))

342 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

 out << "file size : " << s.size();

 else

 out << "could not read file: " << sFileName;

Caution with cyclic Include files. If two files include each other directly or indirectly a serious
abnormal end of the TextTransformer can happen. To avoid this danger, the opened files should be
logged and a file only should be opened, when it isn't already open.

10.3.5.11 path_separator

path_separator is a string constant for the path separator. The constant contains the value which is
used by the operating system to separate lists and files from each other in paths

Windows : "\\"
Unix : "/"

So, e.g.:

path = directory + path_separator + filename;

results in a correct path for all operating systems, which are covered by the boost filesytem library.

10.3.6 Formatting instructions

Formatting commands are used to determine, how the generated output looks like. (See also:
indentation)
The interpreter provides the Boost Format library from Samuel Krempp for formatting arguments
according to a format-string(, similar to printf in c).

The syntax of the format string and the right number of the arguments will not be checked
before the execution of the formatting command.

Remark: The following explanations are essentially restricted to the "%|spec|" specification. Other
possibilities more close to the traditional printf syntax can be found in Krempps original
documentation.

A format object is constructed from a format-string, and is then given arguments through repeated
calls to operator%. Each of those arguments are then converted to strings, who are in turn combined
into one string, according to the format-string.

out << format("writing %|1$|, x=%|2$| : %|3$|-th try")
 % "toto" % 40.23 % 50;
// outputs: "writing toto, x=40.230 : 50-th try"

343Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.6.1 How it works

1. When you call format(s), where s is the format-string, it constructs an object, which parses the
format string and look for all directives in it and prepares internal structures for the next step.

2. Then, either immediately, as in

out << format("%|2$| %|1$|") % 36 % 77)

or later on, as in

format fmter("%|2$| %|1$|");
fmter % 36; fmter % 77;

you feed variables into the formatter. Those variables are dumped to out, which state is set
according to the given formatting options in the format-string -if there are any-, and the format object
stores the string results for the last step.

3. Once all arguments have been fed you can dump the format object to out, or get its string value
by using the str() member function. The result string stays accessible in the format object until
another argument is passed, at which time it is reinitialized.

// fmter was previously created and fed arguments, it can print the result :
out << fmter ;

// You can take the string result :
str s = fmter.str();

// possibly several times :
s = fmter.str();

// You can also do all steps at once :
out << boost::format("%|2$| %|1$|") % 36 % 77;

4. Optionally, after step 3, you can re-use a format object and restart at step2 :
 fmter % 18 % 39;
to format new variables with the same format-string, saving the expensive processing involved at step
1.

All in all, the format class translates a format-string (with eventually printf-like directives) into internal
operations, and finally returns the result of the formatting, as a string, or directly to out.

10.3.6.2 Examples

Simple output, with reordering:

out << format("%1% %2% %3% %2% %1% \n") % "11" % "22" % "333";

It prints : "11 22 333 22 11 \n"

344 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Simple output, no reordering:

out << format("writing %||, x=%|| : %||-th step \n") % "toto" % 40.23 %
50;

It prints : "writing toto, x=40.23 : 50-th step \n"

More precise formatting, with positional directives:

out << format("(x,y) = (%|1$+5|,%|2$+5|) \n") % -23 % 35;

It prints : "(x,y) = (-23, +35) \n"

Two ways to express the same thing:

out << format("(x,y) = (%|+5|,%|+5|) \n") % -23 % 35;
out << format("(x,y) = (%|1$+5|,%|2$+5|) \n") % -23 % 35;

all those print : "(x,y) = (-23, +35) \n"

New formatting feature: 'absolute tabulations', useful inside loops, to insure a field is printed at the
same position from one line to the next, even if the widthes of the previous arguments can vary a lot.

for(unsigned int i=0; i < names.size(); ++i)
 out << format("%|1$|, %|2$|, %|40t|%|3$|\n") % names[i] % surname[i]
% tel[i];

For some std::vector names, surnames, and tel (see sample_new_features.cpp) it prints:

Marc-François Michel, Durand, +33 (0) 123 456 789
Jean, de Lattre de Tassigny, +33 (0) 987 654 321

10.3.6.3 Syntax

format(format-string) % arg1 % arg2 % ... % argN

The format-string contains text in which special directives will be replaced by strings resulting from
the formatting of the given arguments.

Remark: The format syntax is leaned on the one used by printf of the c-language. If you are familiar
with printf you can look at Samuel Krempps original documentation at www.boost.org, where some
differences of the syntax of the Format library to that of printf is discussed. On top of the standard
printf format specifications, new features were implemented, like centered alignment.

Format accepts several forms of directives in format-strings :

· Legacy printf format strings : %spec where spec is a printf format specification. This is considered

345Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

as obsolete in the TextTransformer.

· %|spec| where spec is a printf format specification. The brackets are introduced, to improve the
readability of the format-string, but primarily, to make the type-conversion character superfluous in
spec, which are necessary in the first form. (Optionally it still can be used.) e.g. : "%|-5|" will
format the next variable with width set to 5, and left-alignment (just like the following printf
directives : "%-5g", "%-5f", "%-5s" ..)

· %N%; this simple positional notation requests the formatting of the N-th argument - without any
formatting option.

A specification spec has the form: [N$] [flags] [width] [. precision]

Fields inside square brackets are optional. Each of those fields are explained one by one in the
following list:

N $ (optional field) specifies that the format specification applies to the N-th argument. (it is called a
positional format specification) If this is not present, arguments are taken one by one. (and it is then
an error to later supply an argument number)

flags is a sequences of any of those:

Flag Meaning

'-' left alignment

'=' centered alignment

'_' internal alignment

'+' show sign even for positive numbers

'#' show numerical base, and decimal point

'0' pad with 0's (inserted after sign or base
indicator)

' ' if the string does not begin with + or -, insert a
space before the converted string

width specifies a minimal width for the string resulting form the conversion. If necessary, the string
will be padded with alignment and fill characters specified by the format-string (e.g. flags '0', '-', ..)

precision (preceded by a point), sets the precision

When outputting a floating type number, it sets the maximum number of digits:

after decimal point when in fixed or scientific mode
in total when in default mode

When used for a string argument it takes another meaning: the conversion string is truncated to the
precision first chars. (Note that the eventual padding to width is done after truncation.)

%{nt} , where n is a positive number, inserts an absolute tabulation. It means that format will, if
needed, fill the string with characters, until the length of the string created so far reaches n
characters. (see examples)

346 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

%{nTX} inserts a tabulation in the same way, but using X as fill character instead of the current 'fill'
char (which is space in default state)

10.3.6.4 Methods

unsigned int format::size() const

To get the number of characters in the formatted string, you can use the size() member function :

format formatter("%|+5|");
out << formatter % x;
unsigned int n = formatter.size();

str format::str() const

Once all arguments have been fed into a format object, you can get its string value by using the str()
member function:

format formatter("%|+5|");
formatter % x;
str s = formatter.str();

void format::parse(const str& xs)

Clears the format object and parses a new format string

format formatter("%|+5|");
out << formatter % x;
formatter.parse("%|+10|");

10.3.7 Other functions

clock_sec calculates time
random generates random numbers
time_stamp converts the present date and time into a string

347Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.7.1 clock_sec

Prototype

double clock_sec()

Description

Calculates the "CPU time" in seconds, since the program has been started.

clock_sec can be used, to calculate the time, which passed between two events.

clock_sec in principle is: std::clock() / CLK_TCK;

Return value

clock_sec returns the used "CPU time" in seconds, since the program has been started.

If the processor time isn't available or the value cannot be represented, the function returns -1.

10.3.7.2 time_stamp

Prototype

str time_stamp()
str time_stamp(const str& xsFormat)

Description

Converts the present date and time into a string. If the function is called without parameter or with an
empty string, then the resulting string contains 26 characters in the following format:

Mon Nov 21 11:31:54 1983\n

To get another format, the function can be called with a format string. This string is a combination of
normal text and formatting characters followed on "%". The possible formatting characters are listed
in the following table:

Format character Meaning Example
a Abbreviated weekday name Sun
A Full weekday name Sunday
b Abbreviated month name Feb
B Full month name February
c Date and time Feb 29 14:34:56 1984
d Day of the month 29
H Hour of the 24-hour day 14
I Hour of the 12-hour day 02
j Day of the year, from 001 60

348 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

m Month of the year, from 01 02
M Minutes after the hour 34
p AM/PM indicator, if any AM AM
S Seconds after the minute 56
U Sunday week of the year, from

00
w Day of the week, with 0 for

Sunday
0

W Monday week of the year, from
00

x Date Feb 29 1984
X Time 14:34:56
y Year of the century, from 00

(deprecated)
84

Y Year 1984
Z Time zone name PST or PDT

Only those parts that are actually used are noted

Return value

A string with date and time

Examples

out << time_stamp() << endl;

out << time_stamp("It is %M minutes after %I o'clock (%Z) %A, %B %d %Y") <<

endl;
out << time_stamp("It is %M minutes after %I o'clock (%Z)") << endl;

out << time_stamp("%A, %B %d %Y") << endl;

results in:

Tue Oct 23 00:34:51 2007

It is 34 minutes after 12 o'clock () Tuesday, October 23 2007
It is 34 minutes after 12 o'clock ()
Tuesday, October 23 2007

when writing this help section.

10.3.7.3 random

Prototype

int random(int num)

Description

Number randomizer.

349Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

random returns a random number in the area of 0 to (num - 1). Both num and the random number
returned are integer values.

Return value

random returns a number between 0 and (num-1).

10.3.8 Parser class methods

Beside of the class methods, which you can define freely, there are some predefined class methods
of the parser.

1. Access of the parser state
2. Plugin methods

10.3.8.1 Parser state

At each moment the state of the parsing process is characterized by the actual position in the input
text and by the hitherto recognized token and productions. The interpreter can access some of the
properties of the actual state. The state as a whole is represented by the variable xState.

Remark to the names xState and State:

In the course of the development of the TextTransformer State was also used instead of the name
xState. The preceding 'x' shall express that it is a parameter variable. State was taken as a class
element too. The parser state is only existing as a parameter by now. Therefore the name xState is
used everywhere now. However, State can be used for xState as synonymous furthermore. For the
interpreter the use of State or xState doesn't make any difference. See also: xState as parameter of
a call of a class method

Single properties of the state can be investigated by the following instructions:

unsigned int size() const
unsigned int length(int sub = 0) const
stri str(int sub) const
str str() const
bool matched(int sub) const
bool matched() const
str text(unsigned int from) const
str text(unsigned int from, unsigned int to) const
str copy() const
int itg() const
int itg(int sub) const
double dbl() const
double dbl(int sub) const

str next_str() const

350 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

str next_copy() const
str next_str(int sub) const
unsigned int next_size() const
unsigned int next_length(int sub = 0) const

str lp_str() const
str lp_str(int sub) const
str lp_copy() const
unsigned int lp_length(int sub = 0) const

str la_str() const
str la_copy() const
str la_str(int sub) const
unsigned int la_length(int sub = 0) const

int LastSym() const
unsigned int Line() const
int Col() const
unsigned int Position() const
unsigned int LastPosition() const
unsigned int NextPosition() const
void SetPosition(unsigned int xi);

bool IsSubCall() const
str ProductionName() const
str BranchName() const

bool xState.IsSubCall() const
str ProductionName() const
str BranchName() const

int GetState()
void SetState(int xeState);

Example:

Source text: one two three four
Production: "one" "two" "three" "four"

If "two" was recognized last, is valid:

0123456789...
one two three four

xState.str() : two
xState.copy() : two
xState.length() : 3
xState.size() : 1
xState.Line() : 1
xState.Col() : 8
xState.LastPosition() : 4
xState.Position() : 7

351Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

xState.NextPosition() : 8

unsigned int size() const

Returns the number of sub expressions, which take part at the actual recognition, included the
whole recognition (sub expression with the index null). This is the case even if no matches were
found

str str(int sub) const

Returns what matched, item 0 represents the whole string, item 1 the first sub-expression and so
on, defaults to the whole match (sub == 0).

bool matched(int sub) const
bool matched() const

returns true, if the sub-expression specified by sub matched or whether there is a match at all.

str text(unsigned int from) const
str text(unsigned int from, unsigned int to) const

By the function text you get parts of the source text.
If it is invoked with only one parameter, it delivers the text from the position "from" until the end of the
token recognized currently. With the second parameter the end of the text section can be
determined.
If from or to is greater than the length of the source text or if to is greater than from, an empty string
is returned. If only to is greater as the length of the source text, the string from from until the end of
the text is returned.

str copy() const

returns the string from the end of the last recognized token to the end of the current recognized
token. xState.copy() is equivalent to xState.str(-1) + xState.str():

unsigned int length(int sub = 0) const

Returns the length of the matched sub expression, defaults to the length of the whole match (sub ==
0).

int LastSym() const

Returns the internally given number of the last recognized token.

unsigned int Line() const

352 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Returns the line number of the last recognized token. (The line count begins with one.)

int Col() const

Returns the column number of the last recognized token. (The column count begins with one.)

unsigned int LastPosition() const

Returns the position of the last recognized token, that means the number of characters from the
beginning of the parsed text to the first character of the recognized token.

unsigned int Position() const

returns the position, where last recognized token ends. This position is equal to LastPosition() +
length()

unsigned int NextPosition() const

returns the position, where the next token begins, that means the number of characters from the
beginning of the parsed text to the first character of the expected next token.

If a SKIP token was recognized last, then position and NextPosition are identical.
The spaces at the end of the text covered vy SKIP can be removed with trim_right_copy

void SetPosition(unsigned int xi);

With SetPosition the current position can be set directly as a number of characters from the start of
text. The next token is calculated newly with the current scanner in result of this method. E.g. this
can be useful if the text contains Meta information about the lengths of its components.

bool IsSubCall() const

returns true, if actually a production is executed, which was invoked from the interpreter. A
temporary parser-state variable xState is used here (in contrast to the plugin). Within the productions
of the main parser this function returns false.

str ProductionName() const

returns the name of the actual production.

The return type always is std::string, even, when Unicode parsers are created.

This function is not thread save.

str BranchName() const

353Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

returns the name of the last branch (alternative, option etc.) in the grammar.

The return type always is std::string, even, when Unicode parsers are created.

This function is not thread save.

int itg() const
int itg(int sub) const
double dbl() const
double dbl(int sub) const

The functions itg and dbl immediately convert the text of the token recognized last into an integer
value or a double value. itg returns a correct integer value for text sections too, which can be
interpreted as octal or hexadecimal numbers.

--

str lp_str() const
str lp_copy() const
str lp_str(int sub) const
unsigned int lp_length(int sub = 0) const

These methods are concerning the part of text, which was recognized by the last call of a production
("lp" for "last production").
lp_str returns the part of text without the ignored characters at the beginning, while lp_copy returns
the whole text. The methods lp_str(int sub) and lp_length(int sub) are formally equivalent to the
methods str(int sub) and length(int sub). But they can be called only with the indices -1 and 0. If the
index is == -1, you get the information about the ignored text of the production.

Example:

Prod1 ::= Prod3 Prod2 {{cout << xState.lp_copy(); }}
Prod2 ::= {{cout << xState.lp_copy(); }} Prod1+
Prod3 ::= ID

Input ::= a b c
Output ::= a b c

Prod3 in Prod1 recognizes "a", which then is printed Prod2. Prod2 then recognizes " b c", which is
output at the end of Prod1.

--

str la_str() const
str la_copy() const
str la_str(int sub) const
unsigned int la_length(int sub = 0) const

These methods are concerning the part of text, which was recognized by the last call of a
look-ahead parser ("la" for "look-ahead").

354 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

la_str returns the part of text without the ignored characters at the beginning, while la_copy returns
the whole text. The methods la_str(int sub) and la_length(int sub) are formally equivalent to the
methods str(int sub) and length(int sub). But they can be called only with the indices -1 and 0. If the
index is == -1, you get the information about the ignored text of the look-ahead.

--

unsigned int next_size() const
unsigned int next_length(int sub = 0) const
stri next_str(int sub) const
str next_str() const
str next_copy() const

This group of functions is analogously to the functions whose names don't start with "next_". They
return the corresponding values for the token expected next. The time, when the next token is found
out has changed in the course of the development of the TextTransformer, and it might be possible,
that modifications could arise again. These functions have to be used therefore only under
reservation.

--

int GetState()
void SetState(int xeState);

There are some integer values which characterize the state of the parse-state.

 typedef enum { epCleared,

 epExpectingToken,

 epExpectingSKIP,

 epExpectingBreak,

 epExpectingEOF,

 epNoProgress,

 epStopped,

 epExpectationError,

 epUnexpectedError,

 epSkipMatchedNeatless,

 epUnknownError,

 epParsedIncomplete,

 epUnknown

 } EPState;

Experienced users can try to manipulate these values in OnParseError, to make some error
recovery.

10.3.8.1.1 Sub-expressions

Parenthesis "(...)" in regular expressions can be used to mark sections of text, which are recognized
by the sub-expressions of a regular expression.

By means of an index parameter for the functions str and length the text or the length of
sub-expressions can be accessed

355Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

The whole recognized text is returned by the call of xState.str() or xState.str(0). xState.str(1) returns
the section of text, which was recognized by the sub-expression with the index 1.

The index of a sub-expression is the number of its opening parenthesis inside of the whole
expression. The counting begins from left to right with the index 1.

In the menu help an item Regex test exists, where you can open a dialog, which presents a simple
possibility to investigate the sub expressions of a regular expression.

Following indices are defined:

- 2 everything from the end of the match, to the end
of the input string

- 1 the ignored characters in front of the actual
recognized token

0 the actual recognizes section of text

0 < N < size() the section of text, which was recognized by the
N'th sub expression of the actual recognized
token

N < -2 or N >= size() Represents an out-of range non-existent
sub-expression: an empty string

Example:

the expression:

 "(ab)*"

may be applied to

 "ababab"

Then xState.str(1) would contain the last "ab" of the text.

Sub-expressions can match empty strings. For example a sub-expression can be part of an
alternative, which doesn't match text.

10.3.8.2 Plugin methods

The plugin methods are using data, which are valid only for one pass through the parser or are
changed dynamically while such a pass:

Paths and names of the input and output files
Redirection of the output
Indentation stack
Text-scope stack
Dynamic scanners

356 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Error handling

The Plugin methods can be used in the interpreter, like normal functions.
Only in the case, that the parser shall be exported as c++ code, there are some points to be taken
into account.

If the const option is active, you have to call the methods as methods of the parse state, if however
the const option is deactivated both possibitities to call the methods are equivalent. For example:

const is not active: ResetOutput();
or: xState.ResetOutput();

const is active: xState.ResetCout();

The plugin methods are combined to this special group for the creation of multi threaded save code.
The plugin methods and data are located in a special plugin class, which is "transported" through
the productions by the parse state class. So they can be changed, without any influence on the
state of a const parser.

10.3.8.2.1 Source and target

Prototype

str SourceName()
void SourceName(const str& xsSourceName, bool xbLast)
str TargetName()
void TargetName(const str& xsTargetName)
str SourceRoot()
void SourceRoot(const str& xsSourceDir)
str TargetRoot()
void TargetRoot(const str& xsTargetDir)

Description

By these functions you can get the current source and target directories and files. The use of these
functions makes sense at most for the transformation manager, the command line tool and in the
generated code.In the TETRA working space these paths are constructed from the current project
directory and the name "unnamed.txt", if texts weren't loaded in the source window or saved in the
target window before.

str SourceName()

returns the name of the actual source file; the absolute path included.

str TargetName()

returns the name of the actual target file; the absolute path included.

357Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

str SourceRoot()

returns the absolute path of the superior source directory

str TargetRoot()

returns the absolute path of the superior source directory.

bool IsLastFile()

indicates, if the actual source file is the last of a sequence of files. This information can be
important, if a group of source files is processed to a single target file to finish certain actions. If
single source files are transformed to single target files respectively, this function returns true.

void SourceName(const str& xsSourceName, bool xbLast)
void TargetName(const str& xsTargetName)
void SourceRoot(const str& xsSourceDir)
void TargetRoot(const str& xsTargetDir)

In the created c++ code the name of the actual source file cannot be evaluated automatically, but
the programmer can set it by this function; accordingly the source directory and the target directory.
When the name of the source file is set, you can use the second parameter xbLast to indicate,
whether the file is the last of a sequence of files. Per default xbLast is true, because in a 1:1
transformation each source file is the last of the actual transformation.

str str()

If you are not in the TextTransformer IDE and the output wasn't redirected to a file, the output will be
written into a buffer of the plugin. The content of the buffer can be retrieved by the str-method of the
plugin:

xState.GetPlugin().str()

When this method is called, the buffer is cleared.

10.3.8.2.2 Start parameters

Parameters which are needed before the start of a transformation can be submitted by the Plugin.
Depending on the way of execution parameter strings are set in the code, in the command line, in
the transformation manager or in the project options. If necessary, this string can be processed with
an sub-parser to take it to pieces..

str ConfigParam () const

Parameters for the configuration of an arbitrary transformation can be read with the function
ConfigParam, if they were set by the user before.
Include directories are a typical example of configuration parameters.

358 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

str ExtraParam () const

Parameters for the configuration of a certain transformation can be read with the function ExtraParam
, if they were set by the user before.

10.3.8.2.3 Redirection

Syntax

void RedirectOutput(const str& xsFilename)
void RedirectOutputBinary(const str& xsFilename)
void RedirectOutput(const str& xsFilename, bool xbAppend)
void RedirectOutputBinary(const str& xsFilename, bool xbAppend)
void ResetOutput()

obsolete:
void RedirectCout(const str& xsFileName, bool xbAppend);
void ResetCout()

Description

When the command RedirectOutput is called, all output will be written into the file with the name,
which is specified by the parameter xsFileName. out then represents the file xsFileName. If a file
with this name doesn't exist, it will be created.
Per default an existing file with the specified name will be overwritten. If the second parameter
xbAppend is true, the output will be appended to an existing text.

The command has an effect only within the transformation-manager, the command line program or
the exported code. In the working space the output always is written completely into the output
window.

You cannot use RedirectOutput, if in the options UTF8 encoding is set. By this option
RedirectOutput internally is performed already.

By RedirectOutput you can split the target into different files.

By ResetOutput the original state is restored. So the output to out is printed into the original file.

It is neither necessary to call ResetOutput before calling RedirectOutput nor at the end of a
transformation.

10.3.8.2.4 xerces DOM

XML documents can be produced, processed and written with the DOMDocument class of the Open
source project

http://xml.apache.org/xerces-C/

359Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

In the TextTransformer the corresponding operations are integrated into the interpreter in such a way,
that the DOM-elements, which are wrapped in the dnode interface, can be used like node's. Except
from the life time of the dnode, the only difference compared with the node is, that a connection to
the DOMDocument class must made for the dnode. The instantiation of the DOMDocument class
happens in the CTT_Xerces class and the Plugin can transport a pointer to this class. The
connection is made by the single call of the GetDocumenttElement function for the root node of a
dnode-tree.

dnode GetDocumentElement();

To connect dnodes with the DOMDocument of the plugin, code like the following has to be be
executed:

dnode root = GetDocumentElement();

Analogously to the description of the tree construction from nodes further dnodes now can be added
to the root dnode

void WriteDocument();
void WriteDocument(const str& xsFilename);

By means of the WriteDocument command the DOM can be issued in the form of XML.

WriteDocument();

WriteDocument(const str& xsFilename);

xsFilename is the name with a complete path for the file into which the document shall be written. It
can optionally be passed to the function WriteDocument. Without this parameter the document is
written in TargetName. TargetName may not be passed as a parameter since otherwise the file
would be tried to open a second time. An existing file with the name xsFilename is overwritten.

10.3.8.2.5 Indentation stack

A frequent task is to indent some parts of the output. To facilitate this task there is a member in the
plugin class, which manages a list (a stack) of values for indentation. One such value denotes the
number of characters, e.g. blanks, which shall be sent ahead the real text of a line. A stack of such
values is needed, to handle nested indentations.

Example:

Typical cases are indentations to improve the readability of program code:

for (int i = 0; i < 10; i++)

{
if (i == 5)

{
func1 ();
func2 ();

}
}

360 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Here at first the for-loop is indented, then the if-clause and then the function calls are indented further
again. When a brace closes, the indentation is set back to the previous value.
If the not indented texts of the lines are stored in a vector (vstr) v, the output shown above can be
created by:

{{
PushIndent(2); // indent the whole text by two characters

for(int i == 0; i < v.size(); i++)

{
if(v[I] == "}"; // if a closing brace follows, set the indentation back

PopIndent(2);

out << indent << v[i];

if(v[I] == "{"; // increased indentation after an opening brace

IncrIndent(2);

}
}}

The central instruction of this example is:

out << indent << v[i];

indent is a class element, which contains the values for the indentations, but also can be used - as
shown here - for direct formatting of the output. For this it is passed to a stream, that means, by
being inserted in the chain of output elements connected by "<<". Normally, this insertion will take
place at the first position. Otherwise gaps would arise instead of indents.

indent can only be used inside of a <<-chain.

str IndentStr() const

By this function you get a string, which only consists of spaces. The length of the string is
determined by the value on top of the indentation-stack.

Methods, which determine the indentation value, are:

void SetIndenter(char xc)

Per default blanks are used for the indentation. With the function SetIndenter another character can
be set, e.g. the tabulator: '\t'.

void PushIndent(int xi)

By this instruction the new value xi for indentation is pushed on the stack.

361Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

void IncrIndent(int xi)

By this instruction also a new value for indentation is pushed on the stack. The new value is the sum
of the value on top of the stack and xi.

void PopIndent()

The value for indentation on top of the stack is removed.

void ClearIndents()

All values are removed from the indentation stack.

10.3.8.2.6 Text-scope stack

By means of the scope stack you can record, which part of the text just is processed. Parts of text
can be the introduction, a heading, a subparagraph etc. or the declaration part or the corresponding
definition part of a class in a programming language.
Dynamic scanners, which are presented on the next page, can "remember" tokens, which belong to
a certain scope.

Methods of the text-scope stack

void PushScope(const str& xs)

By this method the name of a part of text is put on the stack.

void PopScope()

By PopScope the uppermost value of the stack is removed.

void ClearScopes()

Removes all values from the stack

str ScopeStr() const

ScopeStr returns the name of the part of text, which is stored on the top of the stack.

362 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

10.3.8.2.7 Dynamic scanner

Because of dynamic scanners the TextTransformer is capable of learning.
Parts of text (literals), which are recognized by a general regular expression, can be assigned to a
placeholder token. If the same part of text appears again in the input, the dynamic scanner can
recognize it.

Since the next token always is already recognized, a newly added dynamic token can be
recognized only if the next token was consumed. If necessary, xState.SetPosition(xState.Position())
can be invoked after AddToken. So, a new recognition is forced at the current position.

Since TextTransformer 1.3.4 AddToken can be executed as a transitional action. The token is then
already available before the determination of the next token.

Independently of the project settings placeholder tokens always are case sensitive.

bool AddToken(const str& xsText,
 const str& xsDynTokenName)

AddToken adds the string xsText as an alternative to the placeholder token xsDynTokenName,
which must have been defined in advance on the token-page. If then the parser tests for an
occurrence of the token xsDynTokenName in the text, the test will match, if xsText or another string
added by AddToken is found.
The function returns true at success. If the placeholder-token isn't defined, false is returned.

bool AddToken(const str& xsText,
 const str& xsDynTokenName,
 const str& xsScope)

The relatively complex AddToken method with three parameters has been designed especially to
parse programming languages.
If this method is called, xsText will be added as an alternative like in the case of a call of AddToken
with only two parameters. But this alternative is recognized in the text only, if the actual text scope
is xsScope or a scope subordinated to xsScope, that means added after xsScope.
If for example the declaration of a class is parsed, the names of the class variables can be assigned
to the class - that means to the name of the class. In the definition part the name of the class can
be set again and the dynamic scanner will recognize the variable names. Outside of the class scope
the same names can have a different meaning.

Example: " Eval; Eval; Eval "

ID

{{
AddToken(xState.str(), "USER_FUNCTION", "FUNCTION_SCOPE");

PushScope("FUNCTION_SCOPE");

PushScope("BLOCK_SCOPE");

}}
// the next token already is recognized, therefore Eval can be recognized the
next but one as USER_FUNCTION.

363Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

";"

USER_FUNCTION

// Eval will be recognized as a USER_FUNCTION, because the actual scope
BLOCK_SCOPE is subordinated to FUNCTION_SCOPE.

{{
PopScope();

PopScope();

}}

";"

USER_FUNCTION

// Eval will not be recognized, because actually there isn't any scope set;

especially FUNCTION_SCOPE and none of its subordinated scopes aren't set.

Example:

In some grammars of other parser-generators the alternatives of a syntax rule are listed in such a
manner, that the name of the production and the definition symbol "::=" is put in front of each of
them. E.g.:

Rule1 ::= A B
Rule1 ::= C Rule1

Rule2 ::= D
Rule2 ::= Rule1 E

If such rules shall be imported into the TextTransformer, then dynamical tokens can be used, to
combine the alternatives into a single rule:

{{ str sScope; }}

ID

{{
sScope = xState.str();

AddToken(xState.str(), "SAME", sScope);

}}
"::="
Expression // GrammarExpression
{{ PushScope(sScope); }}

(
SAME

{{ PopScope(); }}

"::="
Expression // GrammarExpression
{{ PushScope(sScope); }}

)*

void ClearTokens(const str& xsScope)

With this function all dynamic tokens which were defined for the text area xsScope are deleted. If

364 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

xsScope is an empty string, all tokens for all areas are removed.

If tokens were assigned to certain text areas, ClearTokens should be invoked with an empty string
before finishing a program to avoid memory leaks.

10.3.8.2.8 Error handling

void UseExcept(bool xbUseExcept)

By this command you can determine, whether the parsing in case of a bug shall be interrupted by an
exception (xbUseExcept == true) or, whether the error message is stored intermediately in a
container of the plugin class and the abort is done by the fact, that for the next token the symbol
number null is given back.

bool GetUseExcept() const

returns, whether the parsing in case of a bug will be interrupted by an exception or, whether the
abort is managed by returning the symbol number null for the next token.

bool HasError() const

HasError returns true, if a parsing bug has occurred, which hasn't triggered an exception, because
UseExcept was set to false. If HasError is true, you have the chance to execute some action
immediately after the error occurred, before the parsing aborts.
After the execution of a production that was invoked directly from the semantic code every error,
which might have happened hereby is deleted, so that HasError returns false.

void GenError(const str& xs)

By the call of GenError an error is created, which leads to an abort of the parsing. A string that
contains the error message is passed to the function. This report is displayed in the log window after
the abort of parsing.
If UseExcept is not set the parsing will be finished regularly, otherwise the abort is done by an
exception similar to the throw command. The exception, which is created by GenError however
contains additional information about the location of the error.
.
void AddMessage(const str& xs)
void AddWarning(const str& xs)
void AddError(const str& xs)

The plugin class now has per default a container (vector), by which messages, warnings and errors
can be assembled For this there are the three methods: AddMessage, AddWarning and AddError
with a text string as parameter. These strings are shown in the log window after the parsing has
finished or they appear in the result window of the transformation manager, if the project was
executed there.

In the case of errors, some also special events occur which can be used for the treatment of errors..

365Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

In the exported c++ code you get two iterators by the methods MsgBegin and
MsgEnd by which you can access the messages, which are derived from CTT_Message. By
HasMessage can be proved whether there is a message in the container and by the method
GetMsgType of CTT_Message you get one of the enumerated types: eMessage, eExit, eWarning,
eError, eParseError or eSemError. An example of the use of the iterators can be seen at the end of
the main-frame..

10.3.9 Calling a production

In the introduction the similarity of productions and functions was shown. The TextTransformer uses
this similarity by not using productions only within the central parser framework but by also allowing
the direct use of productions as functions. Productions can be used

1. as independent sub parsers
2. for a look-ahead

10.3.9.1 Sub parser

A production can be called directly from the interpreter code. It then is not part of the real grammar
of the parser in which this interpreter code is embedded. The called production is rather a start rule
for a separate parser and a new input text is passed to it explicitly. The string parameter makes
the difference to the look-ahead call of a production.

For example a sub parser could extract some parameters from a part of text, which was recognized
by a look-ahead parser, before the main parser continues:

IF(Production()) // look-ahead parser

{{ Parameters(xState.la_str()); // sub parser }}
Production // main parser

END

Other applications of sub parsers are the treatment of include-files or external data could be fed into
the program by a sub parser.
If e.g. the production with the name Include shall be called, then this could be done as follows.

{{
str buf;

str sIncludeFile = xState.SourceRoot() + "\\" + xState.str(1);

if(load_file(buf, sIncludeFile))

 Include(buf);
 else

 throw CTT_Error(sIncludeFile + " could not be opened");

}}

Possible parameters of the Include production are appended to the string for the new source text.

366 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

To determine the number of lines to be parsed already before the beginning of parsing, the
sub-parser CountLines can be used:

CountLines(int& xi) ::=

(
 SKIP EOL

 {{ xi++; }}
)+

CountLines would have to be called in an action which is executed before the first token of the main
parser was recognized:

{{
int iLines = 0;

CountLines(xState.str(-2), iLines);

}}

10.3.9.2 Look-ahead

Productions can be invoked in the interpreter to test whether the input text matches the production
at the current position. If you use the look-ahead in combination with the IF symbol or by WHILE,
you can parse texts, which aren't LL(1) conform or which are difficult to describe with a LL(1)
grammar.
By this look-ahead the current position isn't changed and the semantic code of the production isn't
executed. Parameters therefore aren't necessary. The TextTransformer just recognizes a look-ahead
call by the missing parameter, opposed to the call of a sub parser, which needs at least a string
parameter.
The text is tested either until a token is expected which doesn't exist in the text or until the last
symbol of the production is recognized. So a bool value will be returned which is true if the text
matches the production and false, if it doesn't match. Under no (logical) circumstances exceptions
are thrown.
A look-ahead can depend on other look-ahead productions which are tested inside of the first. The
different levels of the look-ahead are represented as a number both in a separate field of the tool bar
and as a preceding number in the stack window.

The part of text, which was recognized by the look-ahead can be accessed by the la_str() method
of the parser state class. For example, you can pass this string to a sub parser.

A detailed example is the Java parser.

The result of the look-ahead depends on whether the look-ahead production is part of the
system where it is called or not.

The production Ident is used as a look-ahead production in the same parser system, where it is

367Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

used as a normal production. The input "int" yields the expected result: "int found", if the option for
testing all literals is activated.

IF(!Ident())

 "int" {{cout << "int found"; }}
ELSE

 Ident {{cout << "error"; }}
END

Ident ::= IDENT
IDENT ::= \w+

If, however, an external production is used for the look-ahead:

isIdent ::= IDENT

IF(!isIdent())

 "int" {{cout << "int found"; }}
ELSE

 IDENT {{cout << "error"; }}
END

the input "int" yields the error: "IDENT" expected. Since isIdent is a start production which isn't used
in the main parser, it doesn't know the tokens of the main parser either. So "int" is nterpreted as
IDENT and !isIdent() is wrong. The ELSE alternative is chosen. However, "int" was recognized in the
main system as int what isn't accepted by IDENT then.

In other cases it is to use an external production for looking ahead is of advantage. So in the next
example: SKIP will find the character at the end of a sentence even if the sentence starts with
"What" or "How".

isQuestion ::=
SKIP

(
 "?"
 | ("." | "!")
 EXIT

)

Sentence ::=
IF(isQuestion())

 Question
ELSE

 NonQuestion
END

Question ::=
(
 "What" {{ out << "You should better know than I!"; }}

 | "How" {{ out << "I don't know how!"; }}

)
| {{ out << "I don't understand your question!"; }}

IDENT+ "?"

368 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

NonQuestion ::=
IDENT+ ("." | "!")
{{
out << "That's interesting!";

}}

10.3.10 Events

There is a number of functions which are always called automatically when a certain event appears.
In these functions nothing happens as long as a corresponding event handling wasn't programmed
explicitly. The first step, to do this is, to insert such a function by the pop-up menu of the list on the
element page:

In contrast to the functions of the TetraComponents of the same name no explicit parameters are
passed in these functions. Like in all TETRA functions, there is, however, the implicit xState
parameter, by which you can access all properties of the parser-state

OnEnterProduction

The event OnEnterProduction occurs, when the parser branchs into a production

OnExitProduction

The event OnExitProduction occurs, when the parser leaves a production.

OnAcceptToken

The event OnAcceptToken occurs, if a token recognized by the scanner is found and accepted in
the grammar. This happens in the debugger at the moment where a terminal node is left.

OnBeginBranch

369Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

The event OnBeginBranch occurs, when the parser enters an option or a repeat.

OnEndBranch

The event OnEndBranch occurs, when the parser leaves the option or a repeat.

OnBeginDocument

The event OnBeginDocument occurs, when the parser begins with a new input.

OnEndDocument

The event OnEndDocument occurs, when the parser finishs parsing a file or a string.

OnParseError

The event OnParseError occurs before the parsing is aborted with an error message. Sometimes the
abort can be prevented, if the error can be recovered here. Otherwise you have the chance in
OnParseError to create some additional report about the circumstances of the error.

10.4 Test scripts

Test scripts are constructed similar to the scripts of productions or token. But test scripts cannot
have a return type and instead of an optional parameter list here exists an optional input text. The
syntax of a test scripts is identical with the syntax of a production.

The mask for the definition of a test script has following fields:

Name: unique name
Comment: arbitrary comment
Input: input text
Text: script
Expected output: Expected output
Test output: Real output of the executed test

Name and text are needed. If one of these fields is empty, the script will not be accepted and you
can't write a comment.

10.4.1 Name

Each test script must have a name.
A name can be constructed of the alphanumeric characters and the underscore, but the latter may
not be at in first place of the name.

370 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Examples: test1, int_test, CALC

Each new name must differ from all other names of tests by at least one character, but it has not to
be different from the token and production names.

10.4.2 Group

This is an optional field for the name of a group of tests.
All test scripts with the same group name are combined to one group. The sub rules of all tests of a
group are compiled together. If Test group or Test all is executed. This is faster than compiling all
sub rules for each test again.

In rare cases the result of an isolated test may be different to the test inside of a group. The follow
set of a SKIP symbol may change, because inside of a different test additional token may follow.

10.4.3 Comment

A comment to a test can be shown in the yellowish field. Temporary this field is also used to show
error messages.

To change the comment, use the button. A dialog will be opened, where you can write the new text.

10.4.4 Input

In the field for the input optional a text can be written, which shall be transformed by the test rule.
The test processes the input in the same manner, as an input text on the main page of TETRA
would be processed by an according start rule.

10.4.5 Code

The syntax of a test scripts is identical with the syntax of a production. Because a test normally is
used to test a production, a test script often consists in the declaration of variables, which are
passed as parameters to the tested production.

10.4.6 Expected output

In the field Expected output the text has to be written, which the execution of the test should
produce. After execution, this text is compared with the real output and in case of a deviation an
error message will be created.

371Scripts

© 2002-10 Dr. Detlef Meyer-Eltz

10.4.7 Test output

The field for the test output is a read only field. While creating a new test, this field remains empty.
After the execution of a test the generated output is written into this field and compared with the
expected output. In case of a deviation an error message will be created.

10.4.8 Error expected

Sometimes the parsing of a text shall fail. If a failure is expected, the check box in the tool bar
should be activated.

If an error occurs while executing the test of an expected failure, the error message is shown in the
output window, but the error will not be listed in the error list.

TextTransformer

Part

XI

373Algorithms

© 2002-10 Dr. Detlef Meyer-Eltz

11 Algorithms

It is helpful to know the algorithms, which the TextTransformer uses for text analysis, to develop
efficient programs and for better understanding possible errors and conflicts. As explained already in
the introduction this analysis is done in two steps:

For the lexical analysis an algorithm to extract the next token by a scanner is needed

For the syntactical analysis an algorithm for the choice of the next branch in the system of rules
(grammar) by the parser is needed

11.1 Scanner algorithm

A scanner tries to find the next token that matches the actual text. In contrast to other parser
generators the TextTransformer not only uses one scanner, but can use a variety of little scanners,
which are specifically testing only a sub set of all possible token. These sub sets consists of the
first set of the actual node and the SKIP-alternatives. However the principle of the scanner remains
the same: for each token of a set is tested, if it matches or not. If there are several matching tokens,
an algorithm exists to decide between the candidates. In detail:

1. Testing the first set

The TextTransformer tries to find a match of the actual text and one of the tokens of the first set of
the actual node. If there is exactly one matching token, at this point the analysis is finished.

2. Preference of the longest match

If there is more than one match at the same text position, the token with the longest match will be
preferred; that means the token, which covers the greatest number of characters.

3. Preference of literal tokens

If there still several token are possible, literal tokens are preferred.

4. Preference of the longest match of the first sub match

If two candidates aren't literals, the token with the longer first sub match is chosen.

5. Preference of the longest match of the next sub match

If there is still an ambiguity the length of the matches of the further sub expressions will be
consulted as criterion.

6. SKIP alternatives

374 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

If there is no matching token in the first set, SKIP alternatives will be tested. Is there exactly one
match the lexical analysis at this point is finished.

7. next text position

If there is more than one candidate, to which can be skipped, the token is chosen, which matches at
the nearest position in the text.

8. longest match (analog point 2-5)

If there are several token of the SKIP set, which all match at the same position of the text, the
decision is made according to the longest match analogous to point 2-5.

It is important, that no definition of one of alternative tokens includes the definition of a different. The
TextTransformer cannot give any warning in this case.

Example:

IDENT = \w+
NUMBER = \d+

Because "\w" among others includes the set of numbers, the definition of IDENT also includes the
definition of NUMBER. If there is an alternative

IDENT | NUMBER

and a number is at the input position, it isn't clear, which alternative will match (->remark). The
alternative of IDENT and NUMBER must not be formulated explicitly. A problem results in every
case, where conflicting tokens are hidden in a common first set.
Generally it is recommended to define token as specifically as possible. A definition of

IDENT = [[:alpha:]|_]\w*

would avoid the problem mentioned above. IDENT cannot begin with a digit and NUMBER must
begin with a digit.

Remark: Indeed IDENT will match. and if IDENT were defined as "[[:alpha:]|_|\d]+" NUMBER would
match. But this is determined by the internal implementation of the Regex-Library and cannot be
specified by rules.

11.2 Parser algorithm

The task of a parser is the syntactical analysis of text. The parser uses a rule system (grammar),
which defines the valid possibilities of token sequences. At every new step of parsing is tested,
whether the actual evaluated token is a token, which may follow or not. If not, the parsing failed; if
yes, the parsing will be continue through the alternatives of the grammar, which is determined by the

375Algorithms

© 2002-10 Dr. Detlef Meyer-Eltz

token.
The decision about the validity of the next token is made by means of precomputed token sets: the
first sets of the possible following nodes, including the SKIP alternatives. Here the function of the
parser is crossed over with the scanners, because these token sets are exactly the sets of the
single scanners, which were the theme in the previous section. In the project options the set of
tokens, which will be tested can be limited to the set of allowed tokens. This results into an
increased velocity of parsing, especially, if the lexicon is big.

The parsing algorithm is as follows:

1. Testing the first set of the startrule

At the beginning of the text analysis no token is recognized. Because of that, a local (interface)
scanner compares the beginning of the text with the set of tokens, by which the text can start,
according to the grammar.

2. Going to the expected terminal symbol

If a match is found, the parser steps to the node with a first set that contains the evaluated token.
This may be repeated through a sequence of nullable nodes, until the node is reached, which
represents the token itself.

3. Testing the followers inside and outside of the production

Each terminal node has a scanner, which evaluates the next token. But now there are two cases:
a) inside of the production, which contains the actual terminal symbol there always are other
terminal symbols situated, which must be passed before it is possible to leave the actual
production. In this case the next token will be evaluated and continued as described at point 2,
b) inside of the production, which contains the actual terminal symbol nothing follows or only
nullable structures are following. In this case, the set of possible followers of the terminal symbol
depends on the followed of the production. But a production can be called at different places of the
grammar, and at every place may be followed by different token sets. In this case the
TextTransformer will test at first only the incomplete set of those token, which can follow inside of
the actual production. Further point 3 will be executed.

Note:
The TextTransformer is an interpreted parser generator. It is a parser, which parses production
scripts to create a new parser. The created parser in turn parses input text to transform it. Because
the parser of the TextTransformer is created by itself, the algorithms of parsing scripts and of parsing
input text are the same.

11.3 Token sets

The decision on the next branching in the grammar can be made dependent in special cases of a
look-ahead in the text or of the semantic predicates. In most cases however, which will discussed
now, the grammatical alternative is chosen whose first symbol is recognized in the text next.
Besides the preference rules already explained this can depend on the set of the tokens which are
tested: tokens which aren't tested cannot cause any conflicts either. Therefore there is the

376 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

possibility in the options of the project and in the local options, only to test expected tokens.
However, it can just be desired to recognize conflicts early, too. So e.g. reserved words of a
programming language may not be used for variables as names:

double int; // error

The option is to test expected tokens only in this case has to be deactivated.
However, the token sets have to be discussed at the use of productions outside of the main parser.

Token sets of inclusions, sub-parsers and in a look-ahead

It's conspicuous for the case of comments that conflicts with the tokens of the main parser are
unwanted.

CppComment ::= "/*" (SKIP | STRING)* "*/"
// ! this definition isn't appropriate for nested comments

/* int iCount : Zähler */

If the keyword int were recognized here, the comment couldn't be parsed.
Inclusions can therefore form a new production system in the TextTransformer which is independent
of the token set of the main parser.
Exactly the opposite applies to look-ahead productions: it is mostly desired here, that the same
tokens as in the main parser are recognized.

The following rules are allowing a flexible adaptation of the token sets to the respective purposes:

1., Any production which isn't called by another production, i.e. every start production, is a base for
an independent production system with a token set of its own. This is the union of all tokens
occurring in the system. Look-ahead productions used in the system aren't regarded as called here,
so they are not part of the system automatically). The start rule of the main parser is the first
system.

2., If a production is used in several systems, then the token sets of these systems are united.

Example:

Prod1 ::= IF(Prod2()) Prod2 ELSE Prod3 END

Prod2 ::= "a" "b"

Prod3 ::= IF(!Prod4()) "c" "d" ELSE ID+ END

Prod4 ::= SKIP "h"

The rules Prod2 and Prod3 are reached from the start rule Prod1. The token set of this system is:
"a", "b", "c", "d", ID.

Prod2 is used as a look-ahead. Since this production, however, also is part of the system of the
start rule, the set of tokens tested by global scanners in Prod2 is identical with that one of the main
system: "a", "b", "c", "d", ID.

The look-ahead with Prod4, however, is independent of the main system. Prod4 therefore forms a
system of its own whose set of tokens only consists of "h".

Now let's extend Prod4 to:

377Algorithms

© 2002-10 Dr. Detlef Meyer-Eltz

Prod4 ::= SKIP "h" Prod2?

Prod2 then would be a part of the two previous systems. In this case the token sets of the two
systems are united in accordance with point 2 above: "a", "b", "c", "d", "h", ID.

This expansion of Prod4 can have to consequence that e.g. "a" isn't skipped by SKIP in the text "a
h" any more.

TextTransformer

Part

XII

379Grammar tests

© 2002-10 Dr. Detlef Meyer-Eltz

12 Grammar tests

A TextTransformer program must suffice to the condition of the so-called LL(1) analysis, which will
be explained in this chapter. If one of these conditions is not fulfilled, the TextTransformer creates an
error message or a warning. In the case of an error message, the error must be eliminated,
otherwise the program can neither be executed nor code can be generated. In the case of a warning,
the program can be executed and code can be created, but there are conflicts, which the
TextTransformer resolves by an automatic choice. Generally the TextTransformer chooses the
possibility, which the syntax analysis meets at first. In rare cases this resolution contradicts to the
intentions of the program author:

In detail a TETRA grammar must fulfill the following conditions.

1. The grammar must be complete

2. Rules must be reachable

3. The grammar may not be circular

4. Rules must be derivable to terminals

5. The grammar must be LL(1)

12.1 Completeness

Each non-terminal (=production) must be defined by exactly one rule and there may not be a
terminal, which is not defined

The TextTransformer guarantees the first part of the condition automatically, because it is not
possible to insert two productions with the same name.

For the second part however the TextTransformer will execute a special test. It may happen, that a
non-existing symbol name was used in the definition of a production. Already the syntax highlighting
helps to avoid such an error: this name will not be shown in boldface printing. Not later than the
TextTransformer parses the script an error message will be produced:

Unknown symbol: "xxx".
.

12.2 Reachable rules

Normally LL(1) parser like TETRA must fulfill the condition, that each production must be reachable
from the start rule.

In TETRA however this principle is weakened. TETRA's family concept allows the existence of
productions in the repository, which are not all subordinated to a common start rule. Nevertheless
this condition is guaranteed during the execution of a TETRA program or for code production,

380 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

because the TextTransformer cuts out exactly the set of rules, which are derivable from the actual
chosen start rule.

12.3 Derivable rules

Each non-terminal symbol must be derivable to terminal symbols. The following production is an
example for a rule, which hurts this principle:

X ::= "(" X ")"

If you parse this rule, following error message will occur:

"X": can't derive to terminals

12.4 Non-circularity

No non-terminal may be derived from itself, neither directly nor indirectly. The following production is
an example for a rule, which hurts this principle:

Circular1 ::= Circular2 | "T"
Circular2 ::= Circular1 | "T"

If you parse this rule, following error message will occur:

Circular derivation: "Circular1" . "Circular2"
Circular derivation: "Circular2" . "Circular1"

Remark:
Following rules however are yielding the error message, no being derivable to terminals.

Circular1 ::= Circular2
Circular2 ::= Circular1

The test of derivability is done before the circularity is found and the second test will not be
performed.

12.5 LL(1)-Test

Recursive descent parsing requires that the grammar of the parsed language satisfy the LL(1)
property. This means that at any point in the grammar the parser must be able to decide on the
bases of a single look-ahead symbol which of several possible alternatives have to be selected. For
example, the following production is not LL(1):

381Grammar tests

© 2002-10 Dr. Detlef Meyer-Eltz

ident ":=" Expression
| ident ("(" ExpressionList ")")?

Both alternatives start with the symbol "ident", and the parser cannot distinguish between them if it
comes across a statement, and finds an "ident" as the next input symbol. However, the production
can easily be transformed into

ident
(
":=" Expression
| ("(" ExpressionList ")")?

)

where all alternatives start with distinct symbols. There are LL(1) conflicts that are not as easy to
detect as in the above example. For a programmer, it can be hard to find them if he has no tool to
check the grammar. The result would be a parser that in some situations selects a wrong
alternative. The TextTransformer checks if the grammar satisfies the LL(1) property and gives
appropriate error messages that show how to correct any violations.

If LL(1) conflict can't be resolved by restructuring the grammar, you can use the IF...ELSE...END or
WHILE...END structures.

12.6 Warnings

The following messages are warnings. They may indicate an error but they may also describe
desired effects. The generated compiler parts may still be valid. If an LL(1) error is reported for a
construct X, one must be aware that the generated parser will choose the first of several possible
alternatives for X.

Following warnings can appear:

1. "X" is nullable
2. LL(1) error: "X" is the start of several alternatives
3. LL(1) error: "X" is the start and successor of nullable structures

.

12.7 Nullability

The warning

"X" is nullable

appears, if the production "X" matches an empty text. For example "X" may be defined by:

X ::= "la" *

This rule will recognize a text like "la la la", but also the empty text "" matches, because the

382 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

'*"-repeat matches null repeats. In contrast, the production

X ::= "la" +

is not nullable.

This warning can be a hint, that a nullable alternative was created inadvertently.

Productions, which only consist of semantic actions, in principle, are nullable too. However a
warning will not be created in this case, because such a rule cannot lead to a wrong recognition, but
can be uses as helping function.

The creation of this warning can be suppressed by an according checkbox in the project options.

12.8 Start of several alternatives

The warning

LL(1) error: "X" is the start of several alternatives

appears, if alternatives are binning with the same terminal symbol. For example in the following rule:

Greeting ::= "good" "morning" | "hello" | "good" "evening"

the first and the last greeting are beginning with the word "good". If TETRA finds this word in the
input, the first alternative would be chosen, even if the word "tag" were following. The rule has to be
rewritten as follows:

Greeting ::= "good" ("morning" | "evening") | "hello"

12.9 Start and successor of nullable structures

The warning

LL(1) Warning: "X" is the start and successor of nullable structures

appears, if a nullable structure begins with the terminal symbol "X" and the same terminal symbol
can follow this structure. Nullable structures are (...)? and (...)*. An example is the following rule for
recognition of a (German) number with possible fractional digits:

Number ::= (Digits ",")? Digits
//LL(1) Warning: Digits is the start and successor of nullable structures

If the parser meets some digits, the nullable structure will be tested. If no comma follows the
program will be finished with an error message. The rule should be written reversed:

383Grammar tests

© 2002-10 Dr. Detlef Meyer-Eltz

Number ::= Digits ("," Digits)?

Because it depends on the chosen start rule which productions will be parsed, it also can depend on
the start rule, if a token is start and successor of nullable structures or not.

An example of this sentence can be obtained by a little extension of the last example. So it's
conceivable that the number production is part of a number pair production in which two numbers
shall be separated by commas. E.g.:

Pair ::= Number "," Digits

This is a serious conflict.

The creation of this warning can be suppressed by an according checkbox in the project options.

Another example is known in the literature as dangling else. The following two rules are hurting the
LL(1)-condition:

Statement ::= IfStatement | ...

IfStatement ::= "if" Expression "then" Statement
 ("else" Statement)?

The instruction:

 if a then if b then c else d

would be interpreted by TETRA as follows:

if a then
{
 if b then
 c
 else
 d
}

that means, TETRA would arrange the else-branch to the if b. In a logical point of view the following
arrangement would be possible too:

if a then
{
 if b then
 c
}
else
d

384 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

12.10 SKIP node with SKIP neighbors

The error message

"X" is a SKIP node with SKIP neighbors

appears, if in one alternative more than one SKIP node is contained.

Until now, in TETRA has no algorithm to treat such cases.

Example:

Rule1 ::=
(
"TETRA"
| SKIP
)*

Rule2 ::=
(
"Texttransformer"
| SKIP
)*

Rule3 ::= Rule1 | Rule2

A simple reformulation resolves the problem here:

Rule3 ::=
(
"TETRA"
|"Texttransformer
| SKIP
)*

The situation is more difficult, if the neighbored SKIP nodes belong to different kinds of structures.

12.11 Different SKIP followers

Enter topic text here.

12.12 Different ANY followers

Enter topic text here.

12.13 Left recursion

Another possible error of a grammar is the left recursion. The following rule is the simplest example
of a left recursion:

385Grammar tests

© 2002-10 Dr. Detlef Meyer-Eltz

a = a | B

To test this rule leads to an infinite regress. To test a, requires to test a before b and so on. Left
recursion is not permitted in TETRA; but there is no automatic test for left recursion.

Fortunately left recursion is avoidable. The left recursive rule
:

a = a C | B

can be rewritten. Clearly a has to begin with B. On B C can follow and on B C another C can follow.
So the formal result is:

a = B C *

Applied to the first example, C is an empty symbol, with the result:

a = B

Remark:
Productions of the well-known parser generator Yacc frequently are left recursive. For Yacc this is no
problem, because it doesn't uses a top down analysis like TETRA, but a bottom up parser.
(Because of this Yacc can't manage right recursion.) To translate a Yacc grammar into a TETRA
grammar, the rule above helps.

12.14 Circular look-ahead

A look-ahead cannot be executed, if it is circular

E.g. the following look-ahead would be obviously circular:

expression ::=

IF(expression())

...

In the look-ahead expression is tested again and in this test once more etc..

However, the circularity also can be hidden like in the following productions:

expression ::=

IF(factor())

...

factor ::=

IF(expression())

...

TETRA tries to detect such circularities and creates according error messages.
As an additional security procedure the stack is limited for the look-ahead productions.

TextTransformer

Part

XIII

387Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

13 Code generation

In the professional version of TextTransformer you can export source code for a c++ class of the
created parser. TextTransformer produces all code, which is required for an independent executable
program. The generated code can as well be used as a part of a larger application .

The use of the generated code has three advantages compared to the use of a project with the
TextTransformer:

· the program made with the code can be used independently from the TextTransformer

· the program is faster

· the semantic actions aren't restricted to the subset of the C++ instructions, which can be
interpreted by the TextTransformer

In the introduction already was explained, that a production could be considered as a specification
for the creation of o function. The generation of code now is the application of this specification, i.e.
for each production an according function will be built.

The c++ code for the semantic actions is written into the generated code, according to the project
option, simply by copying or by reconstruction. The code for the parser will be written at indicated
positions in a code frame.

To compile a parser generated by the TextTransformer you need the library of regular expressions
from Dr. Maddock and the some supporting C++ code:

13.1 Code frames

The code for the parser will be written at indicated positions in code frames.
The name of the generated parser class is derived from the name of the start rule.
There is

1. a frame for the header
2. a frame for the implementation
3. a frame for the call of the parser

The given standard frames can specifically be adapted to the project.

In addition a file with the name jamfile.txt is generated, which helps to create a "jamfile" for the use
with with boost bjam.

13.1.1 Name of the parser class

The name of the production, which is chosen as start rule, is the basis for the name of the generated
parser class.

An upper 'C' will precede this name and the word "Parser" will be appended.

388 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

Example: If the name of the start rule is "Pascal", the name of the parser class will be:

"CPascalParser":

Remark: the 'C' is for "class". This corresponds to the convention in Visual C++.

13.1.2 Header frame

The unmodified frame for the header is as follows:

//--
// ttparser_h.frm
// TextTransformer C++ Support Frame
// Author: Dr. Detlef Meyer-Eltz
// http://www.texttransformer.de
// http://www.texttransformer.com
// Meyer-Eltz@t-online.de
//
// March, 2006 Version 1.1.0
//--

#ifndef -->ParserHeaderSentinel
#define -->ParserHeaderSentinel

#ifndef tt_parserH
#include "tt_parser.h"
#endif

#ifndef tt_symbolentryH
#include "tt_symbolentry.h"
#endif

// the following includes and the according typedefs can be removed,
// if you don't use them

#include "boost/format.hpp"

#ifndef tt_mapH
#include "tt_map.h"
#endif

#ifndef tt_vectorH
#include "tt_vector.h"
#endif

#ifndef tt_nodeH

389Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

#include "tt_node.h"
#endif

namespace tetra
{

class -->ParserClassName : public CTT_Parser< -->CharType, -->PluginType >
{
 typedef CTT_Parser< -->CharType, -->PluginType > inherited;
public:

 typedef CTT_Node<char_type> node;
 typedef CTT_Map<str, bool > mstrbool;
 typedef CTT_Map<str, int > mstrint;
 typedef CTT_Map<str, unsigned int > mstruint;
 typedef CTT_Map<str, char > mstrchar;
 typedef CTT_Map<str, str > mstrstr;
 typedef CTT_Map<str, node > mstrnode;
 typedef CTT_Vector< bool > vbool;
 typedef CTT_Vector< int > vint;
 typedef CTT_Vector< unsigned int > vuint;
 typedef CTT_Vector< char > vchar;
 typedef CTT_Vector< str > vstr;
 typedef CTT_Vector< node > vnode;

 -->ScannerEnum

 -->ParserClassName();

-->StartRuleDeclaration
-->InterfaceDeclarations

private:

-->ParserRuleDeclarations
-->InitProcDeclaration

};

} // namespace tetra

#endif // -->ParserHeaderSentinel

The arrow "-->" and the following key word indicate the positions, where the TextTransformer will
write the code.

-->ParserHeaderSentinel will be replaced by an expression, which is constructed from the name of
the start rule of the parser. For example, if this name is "Pascal" the sentinel will look as follows:

390 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

#ifndef PascalparserH
#define PascalparserH
...
#endif // PascalparserH

-->ScannerEnum denotes the position, where some enumeration types are defined. The values of
the enumerations are indices for the differen mini-scanner.

-->ParserClassName is a dummy for the name of the parser class.

The second occurrence of -->ParserClassName denotes the constructor of the parser class. Into
the following parenthesis additional parameters can be inserted.

StartRuleDeclaration denotes the public function to call the parser. The name of this function is
constructed from the name of the start rule. For example:

"void Pascal(cts xtBegin, cts xtEnd);"

cts is a typedef for std::string::const_iterator

InitProcDeclaration will be replaced by:

void Init();

This is the declaration of a procedure, by which the member variables are initialized.

InterfaceDeclarations is a dummy for the sequence of declarations of functions, by which the
parser can be called (beneath the start rule). In the local options create interface must be activated,
to stimulate the creation of these functions. The declarations have the same form as the declaration
for the start rule.

ParserRuleDeclarations denotes the position, where the list of declarations for the productions and
sub-classes to scan the input are inserted. So for each production, there will be a function of the
same name. Especially the start rule will be declared here:

"void Pascal(tetra::sps& xState);"

sps is a typedef for CTT_ParserState, a class, which represents the state (especially the positions)
of the parsing process, and which is passed and actualized from rule to rule.

13.1.3 Implementation frame

The unmodified frame for the implementation of a parser class is as follows:

//--
// ttparser_cpp.frm
// TextTransformer C++ Support Frame
// Copyright: Dr. Detlef Meyer-Eltz
// http://www.texttransformer.de

391Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

// http://www.texttransformer.com
// Meyer-Eltz@t-online.de
//
// March, 2006 Version 1.1.0
//--

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#include "-->ParserHeaderName"
#include <iostream>
#include "tt_exception.h"
#include "tt_guard.h"
#include "tt_localscanner.h"
#include "tt_parsestateplugin.h"
#include "tt_scanner.h"

#define indent xState.GetPlugin()->GetIndentPtr()

using namespace std;
using namespace tetra;

// return types
typedef -->ParserClassName::node node;
typedef -->ParserClassName::str str;

-->TokenList

-->ParserClassName::-->ParserClassName()
-->MemberInitialization
{
 try
 {
 CreateScannerArray(eScannerLast);
 Init();
 }
 catch(boost::regex_error& xErr)
 {
 cleanup();
 throw CTT_Message(xErr.what());
 }
 catch(CTT_Message& eMsg)
 {
 cleanup();
 // did you use the actual token file?
 throw eMsg;
 }
 catch(...) // std::bad_alloc

392 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

 {
 cleanup();
 // did you use the actual token file?
 throw CTT_Message("parser creation failed");
 }
}

-->StartRuleHeading
{
-->StartRule
}

-->InitProcImplementation

-->InterfaceImplementations

-->ParserRules

-->ParserHeaderName becomes to Pascalparser.h, remaining at the example of the previous page.

-->TokenList will be replaced by a list of the names and definitions of the tokens. This list helps to
understand the following code.

-->ParserClassName has the same meaning as explained above. Inside the parenthesis behind the
second occurrence of this dummy, you can write declarations of parameters according to those in
the header.

-->MemberInitialization, is used to for the initialization of member variables, as e.g. functions
tables.

-->StartRuleHeading corresponds to ParserCallDeclaration of the header frame. This is the
heading of the public function to call the parser.

-->StartRule is a placeholder for the function block of the function, by which the parser is called.
You can include it by a try catch block, if desired.

-->InitProcImplementation is the place, where the procedure will be inserted, by which the class
variables are initialized.

-->InterfaceImplementations is the dummy of the sequence of interface methods, created
because of the activation in the local options.

-->ParserRules finally is the position, where the implementations of the functions will be written,
which are corresponding to the productions.

393Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

13.1.4 main-file frame

A main function is produced per default for a console application with the following main file frame.

//--

// ttmain_c.frm

// TextTransformer C++ Support Frame

// Copyright: Dr. Detlef Meyer-Eltz

// http://www.texttransformer.de

// http://www.texttransformer.com

// dme@texttransformer.com

//

// June, 2009 Version 1.7.0

//--

#ifdef __BORLANDC__

#pragma hdrstop

#endif

#include "-->ParserHeaderName"

-->XercesInclude

using namespace std;

using namespace tetra;

-->XercesUsingNamespace

typedef -->ParserClassName::string_type string_type;

void usage()

{

 cout << "\nParameters:\n"

 " -s source file\n"

 " -t target file\n"

 << endl;

}

int main(int argc, char* argv[])

{

 string_type sTest;

 const char* pSourceName = NULL;

 const char* pTargetName = NULL;

 if (argc < 2)

 {

 usage();

 return 1;

 }

 int iParam;

 for(iParam = 1; iParam < argc; iParam++)

 {

 if(argv[iParam][0] != '-')

 {

 usage();

394 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

 return 2;

 }

 if(!strcmp(argv[iParam], "-s"))

 {

 if(++iParam < argc)

 pSourceName = argv[iParam];

 }

 if(!strcmp(argv[iParam], "-t"))

 {

 if(++iParam < argc)

 pTargetName = argv[iParam];

 }

 }

 if(pSourceName == NULL)

 {

 usage();

 return 3;

 }

 if(pTargetName == NULL)

 {

 usage();

 return 4;

 }

 if(!-->LoadFile)

 {

 cout << "could not load source file: " << pSourceName;

 return 5;

 }

 -->Ostream

 if(!fout)

 {

 cout << "could not open target file: " << pTargetName;

 return 6;

 }

 -->PluginType plugin(fout);

 InitPluginPaths(plugin, pSourceName, pTargetName);

 plugin.UseExcept(true);

 -->XercesInit

 -->ParserClassName Parser;

 try

 {

 Parser.-->StartRuleName(sTest.begin(), sTest.end(), &plugin);

 }

 catch(CTT_ErrorExpected& xErr)

 {

 cout << "expected: "

 << xErr.GetWhat()

 << " in "

 << xErr.GetProduction()

 << "\n";

 }

395Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

 catch(CTT_ErrorUnexpected& xErr)

 {

 cout << "unexpected token in: "

 << xErr.GetProduction()

 << "\n";

 }

 catch(CTT_ParseError& xErr)

 {

 cout << xErr.GetWhat();

 }

 catch(CTT_Message& xErr)

 {

 cout << xErr.what();

 }

 /*

 catch(boost::system_error& xErr)

 {

 cout << xErr.what();

 }*/

 catch(exception& xErr)

 {

 cout << xErr.what();

 }

 /* xerces catches

 catch (const OutOfMemoryException&)

 {

 cout << ccpXercesOutOfMemory;

 }

 catch (const DOMException& e)

 {

 cout << "xerces error code: " << e.code << endl;

 char *pMsg = XMLString::transcode(e.getMessage());

 cout << pMsg;

 XMLString::release(&pMsg);

 }

 catch (XMLException& e)

 {

 char *pMsg = XMLString::transcode(e.getMessage());

 cout << pMsg;

 XMLString::release(&pMsg);

 }

 */

 if(plugin.HasMessage())

 {

 -->PluginType::ctvmsg t, tEnd = plugin.MsgEnd();

 for(t = plugin.MsgBegin(); t != tEnd; ++t)

 cout << (*t).what() << endl << endl;

 }

 return 0;

}

The program expects two parameters: one for the source path and one for the target path.

There are five new placeholders in the frame which are not in the other frames

396 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

XercesInclude
XercesUsingNamespace
XercesInit
LoadFile
OstreamType

The first three placeholders are deleted if dnode isn't used in the project.

-->LoadFile is substituated by:

load_file_binary(sTest, pSourceName)

for binary open mode of the source file or by

load_file(sTest, pSourceName)

-->Ostream is substituded either by ofstream or by wofstream, depending on the activation of the
selected wide-char option and the flag ios::binary is set according to the open mode for the target
file.

If dnode's are used, the plugin-type CTT_ParseStateDomPlugin has to be set.

-->XercesInclude includes tt_xerces.h

->XercesUsingNamespace inserts the following line:

using namespace xercesc;

-->XercesInit creates an instance of CTT_Xerces and passes a pointer to it to the plugin.

 CTT_Xerces Xerces("root", "UTF-8", false, true, true, true);

 //Xerces.setDTDParams("", "", "");

 plugin.SetXerces(&Xerces);

 Ctranslation_unitParser::dnode::SetDefaultLabel(L"default_label");

13.1.5 Project specific frame

For each project you can create specific frames, if you want. It will be saved at the address specified
in the project options.
In this frame for example class members or methods can be defined or additional include directives
can be written. You can use the dummy explained above. For example a global pointer to an
instance of the parser could be defined as follows:

extern -->ParserClassName* _-->ParserClassName;

It is important, that the character immediately following "-->ParserClassName" is not alphanumeric,
because otherwise the dummy would be ignored.

397Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

13.1.6 jamfile

When the c++ code is generated, in addition a file with the name jamfile.txt is generated, which
helps to create a "jamfile" for the use with with the boost build system.

http://www.boost.org/doc/tools/build/index.html

Followingly, an example of such a file is represented, which was produced for a project with the start
rule translation_unit and which uses dnode's.

frame for a bjam jamfile

lib regex : : <name>[name of the regex lib] <search>[search path for the regex lib] ;

lib filesystem : : <name>[name of the filesystem lib] <search>[search path for the filesystem lib] ;

lib xerces : : <name>[name of the xerces lib] <search>[search path for the xerces lib] ;

CPP_SOURCES =

tt_boost_config tt_exception tt_lib tt_msg tt_node tt_domnode tt_xerces

;

exe translation_unit : [path of the TextTransformer code]/$(CPP_SOURCES).cpp [glob *.cpp] filesystem regex xerces

 : <include>[path to the boost directoy] // e.g. C:/Program Files (x86)/boost/boost_1_38

 <include>[path to the TextTransformer code] // e.g. C:/Program Files (x86)/TextTransformer/Code

 <include>[path to the xerces source] // e.g. C:/Program Files (x86)/xerces-c-3.0.1/src

;

If CTT_ParseStateDomPlugin is not set as plugin-type the lines concerning xerces don't appear in
jamfile.txt. The boost filesystem library isn't always required either. However, this isn't automatically
checked.

13.2 Supporting code

To compile a parser generated by the TextTransformer you need the code of some additional
classes, which are used in the projects: Most classes are situated in header files alone ("header
only"), i.e. their source code doesn't have to be included into the projects of C++ compilers
explicitly. The structure of the tetra directory shows, which files must be included: those of the
tetra/source directory namely.

The complete list of the classes is:

CTT_Error
CTT_ParseError
CTT_Parser
CTT_ParseState
CTT_Scanner
CTT_Tst
CTT_Match
CTT_Guard
CTT_Mstrstr

398 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

CTT_Mstrfun
CTT_Node
CTT_DomNode
CTT_ParseStatePluginAbs
CTT_ParseStatePlugin
CTT_ParseStateDomPluginAbs
CTT_ParseStateDomPlugin
CTT_RedirectOutput
CTT_Indent
CTT_Xerces

An implementation of the helping functions

stod
stoi
dtos
itos
etc.

can be found in tt_lib.h/cpp

13.2.1 Code directory

The supporting code for TextTransformers parsers is in the directory tetra. The structure of this
directory is orientated at the model of the boost libraries and reflects, which files must be included in
C++ compiler projects.

tetra

 |

 --- config

 |

 --- source

 | |

 | --- xercesdom

 |

 --- xercesdom

Only the files of the subdirectory source must be included and if dnode's are used, also the
directory source/xercesdom. All files in the root directory tetra and in the directory tetra/xercesdom
are header files.

13.2.2 CTT_Parser

template <class char_type> class CTT_Parser

CTT_Parser a simple base class for the parser generated by the TextTransformer. The template
parameter either can be char or wchar_t.
When required you can derive your own class from the generated parser and overwrite some of its
virtual methods, for example the parser events.

399Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

13.2.2.1 Methods

The virtual methods of the class CTT_Parser are partly overwritten in generated parsers or can be
overwritten by the developer in a class of his own.

 virtual int GetNext(state_type& xState,

 int xiNode,

 int xiScannerIndex = -1,

 int xiSkipScannerIndex = -1,

 ELState xe = eDefault,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL);

 virtual int ConstGetNext(state_type& xState,

 int xiNode,

 int xiScannerIndex = -1,

 int xiSkipScannerIndex = -1,

 ELState xe = eDefault,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL) const;

 virtual bool LA_GetNext(state_type& xState,

 int xiNode,

 int xiScannerIndex = -1,

 int xiSkipScannerIndex = -1,

 ELState xe = eDefault,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL) const;

 virtual int GetStartSym(state_type& xState,

 int xiScannerIndex,

 int xiSkipScannerIndex,

 int xiNode,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL);

 virtual int ConstGetStartSym(state_type& xState,

 int xiScannerIndex,

 int xiSkipScannerIndex,

 int xiNode,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL) const;

 virtual int LA_GetStartSym(state_type& xState,

 int xiScannerIndex,

 int xiSkipScannerIndex,

 int xiNode,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL) const;

 virtual bool AcceptAndGetNext(state_type& xState,

 int xiSym,

 int xiScannerIndex,

 int xiSkipScannerIndex,

 ELState xe,

 const char* xpProduction = NULL,

400 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

 const char* xpSymbol = NULL);

 virtual bool LA_AcceptAndGetNext(state_type& xState,

 int xiSym,

 int xiScannerIndex,

 int xiSkipScannerIndex,

 ELState xe,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL) const;

 virtual bool ConstAcceptAndGetNext(state_type& xState,

 int xiSym,

 int xiScannerIndex,

 int xiSkipScannerIndex,

 ELState xe,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL) const;

 virtual bool Accept(state_type& xState,

 int xiSym,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL);

 virtual bool ConstAccept(state_type& xState,

 int xiSym,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL) const;

 virtual bool AcceptSkip(state_type& xState,

 int xiSym,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL);

 virtual bool ConstAcceptSkip(state_type& xState,

 int xiSym,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL) const;

 virtual bool LA_Accept(state_type& xState,

 int xiSym,

 const char* xpProduction = NULL,

 const char* xpSymbol = NULL) const;

 virtual int CheckInclusion(state_type& xState, int xiNode, const char* xpProduction, const char* xpBranch)

 {return 0;}

 virtual int ConstCheckInclusion(state_type& xState, int xiNode, const char* xpProduction, const char* xpBranch) const

 {return 0;}

 virtual int LA_CheckInclusion(state_type& xState, int xiNode, const char* xpProduction, const char* xpBranch) const

 {return 0;}

 virtual GUARD ProductionBegin(state_type& xState,

 int xiScannerIndex,

 int xiSkipScannerIndex,

 ELState xe,

 int xiProdIndex,

 const char* xpProduction);

 virtual GUARD ConstProductionBegin(state_type& xState,

401Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

 int xiScannerIndex,

 int xiSkipScannerIndex,

 ELState xe,

 int xiProdIndex,

 const char* xpProduction) const;

 virtual GUARD LA_ProductionBegin(state_type& xState,

 int xiScannerIndex,

 int xiSkipScannerIndex,

 ELState xe,

 int xiProdIndex,

 const char* xpProduction) const;

 virtual void OnErrorExpected(state_type& xState,

 int xiSym,

 const char* xpProduction,

 const char* xpBranch);

 virtual void OnErrorExpected(state_type& xState,

 int xiSym,

 const char* xpProduction,

 const char* xpBranch) const;

 virtual void OnErrorSkipExpected(state_type& xState,

 int xiSym,

 const char* xpProduction,

 const char* xpBranch);

 virtual void OnErrorSkipExpected(state_type& xState,

 int xiSym,

 const char* xpProduction,

 const char* xpBranch) const;

 virtual void OnErrorUnexpected(state_type& xState,

 const char* xpProduction,

 const char* xpBranch);

 virtual void OnErrorUnexpected(state_type& xState,

 const char* xpProduction,

 const char* xpBranch) const;

 virtual void OnErrorStandstill(state_type& xState,

 const char* xpProduction,

 const char* xpBranch);

 virtual void OnErrorStandstill(state_type& xState,

 const char* xpProduction,

 const char* xpBranch) const;

 virtual void OnErrorIncomplete(state_type& xState,

 const char* xpProduction,

 const char* xpBranch);

 virtual void OnErrorIncomplete(state_type& xState,

 const char* xpProduction,

 const char* xpBranch) const;

 virtual void AddMessage(state_type& xState,

 const string_type& xs) const;

402 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

 virtual void AddWarning(state_type& xState,

 const string_type& xs) const;

 virtual void AddError(state_type& xState,

 const string_type& xs) const;

 virtual void GenError(state_type& xState,

 const string_type& xs) const;

 virtual void AddMessage(state_type& xState,

 const string_type& xs,

 difference_type xuiLastPosition,

 difference_type xuiPosition,

 const char* xpProductionm,

 const char* xpSymbol,

 EMsgType xeMsgType) const;

 virtual void SourceName(const string_type& xsSourcename,

 bool xbIsLastFile = true);

 virtual void TargetName(const string_type& xsTargetname);

 virtual void SourceRoot(const string_type& xsSourceRoot);

 virtual void TargetRoot(const string_type& xsTargetRoot);

 virtual void AddDynamicTokens(plugin_ptr_type xpPlugin) const {} // has to be overwritten

 virtual void OnAcceptToken(state_type& xState) {/* to be overwritten */};

 virtual void OnAcceptToken(state_type& xState) const {/* to be overwritten */};

 virtual void OnParseError(state_type& xState) {/* to be overwritten */};

 virtual void OnParseError(state_type& xState) const {/* to be overwritten */};

 virtual void OnEnterProduction(state_type& xState) {/* to be overwritten */};

 virtual void OnEnterProduction(state_type& xState) const {/* to be overwritten */};

 virtual void OnExitProduction(state_type& xState) {/* to be overwritten */};

 virtual void OnExitProduction(state_type& xState) const {/* to be overwritten */};

 virtual bool IsDone(state_type& xState, int xi) const;

13.2.3 CTT_ParseState

template <class char_type, class plugin_type> class CTT_ParseState

CTT_ParseState represents the actual state of a parser. The class contains a
boost::match_results<iterator>-member, with the information about the last match and iterators
marking positions in the input text.
The first template parameter either can be char or wchar_t. The second template parameter is either
 CTT_ParseStatePlugin or a type derived from it.

403Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

13.2.4 CTT_Scanner

template <class char_type> class CTT_Scanner

Instances of the class CTT_Scanner are organizing the extraction of the next tokens at the decision
points of the parser. The template parameter either can be char or wchar_t.

CTT_Scanner distributes his task over local scanners:
CTT_IgnoreScanner: removes ignorable characters
CTT_LiteralScanner: tests on literals
CTT_DynamicScanner: tests on dynamic literals
CTT_RegexScanner: tests on regular expressions
CTT_SkipScanner: tests on the next occurrence of a token in the text.

13.2.5 CTT_Tst, CTT_TstNode

template <class char_type> class CTT_Tst

CTT_Tst is the implementation of a ternary search tree for literal tokens.
CTT_TstNode is a node in the ternary search tree.
The template parameter either can be char or wchar_t.

13.2.6 CTT_Match

template <class char_type > class CTT_Match
 : public CTT_Token<char_type>

CTT_Match is a class, to remember the result of a token test. As opposed to the base class
CTT_Token it contains a match_results element from the boost regex library.

The template parameter either can be char or wchar_t.

13.2.7 CTT_Token

template <class char_type > class CTT_Token

The class CTT_Token is used, to remember the result of a token test. As opposed to the derived
class CTT_Match it doesn't contain a match_results element and therefore is used to store the
recognized tokens in the token buffer efficiently.

The template parameter either can be char or wchar_t.

404 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

13.2.8 CTT_Buffer

template <typename char_type> class CTT_BufferAbs

template <typename char_type> class CTT_BufferBase : public CTT_BufferAbs<char_type>

template <typename char_type> class CTT_BufferLL1ex : public CTT_BufferBase<char_type>

template <typename char_type > class CTT_BufferAll : public CTT_BufferBase<char_type>

When a text is parsed at least the token recognized last and the next token are buffered. The
buffering happens with these classes.

CTT_BufferLL1ex contains three CTT_Match elements: two for the tokens just mentioned and
perhaps a third token to which is jumped by SKIP.

CTT_BufferAll contains a Stack from CTT_Token to buffer the look-ahed tokens.

The template parameter either can be char or wchar_t.

13.2.9 CTT_Guard

template <class char_type, class plugin_type> class CTT_Guard

At the beginning of every production the constructor of an instance of the class CTT_Guard takes
care that a stack is updated which consists of the scanners - more exactly: pointers to scanners -
which has to be tested at the end of the call of a production.When leaving the function, the
destructor of CTT_Guard actualizes the stack again, by removing the last added scanner. The
destructor is used since other instructions wouldn't be executed any more after a return instruction.

The first template parameter either can be char or wchar_t. The second template parameter is either
 CTT_ParseStatePlugin or a type derived from it.

Macros:

The code produced by the TextTransformer shall be portable, i.e. it shall work on different systems
and with different c++ compilers. Because Microsoft Visual Express C++ behaves differently than
other compilers, it is required to include the complete code of a production into a try-catch block - by
means of two macros - so that the call of the destructor is actually carried out at the desired time.

#define ENTER_GUARD(number, production) \

 GUARD Guard = ProductionBegin(xState, xiScannerIndex, xiSkipScannerIndex, xeLS, number, production); \

 try {

(ENTER_CONST_GUARD and ENTER_LA_GUARD are corresponding macros for const parsers and
lookaheads.)

#define EXIT_GUARD(number, returnvalue) \

} \

405Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

 catch (...) { \

 if(xiScannerIndex > -2) \

 throw; \

 } \

 Guard.StayAlive(); \

 return returnvalue;

An "optimization" takes care in Visual express C++ that the CTT_Guard variable is destroyed again
immediately after its creation. To keep the variable at life up to the moment, where the production is
left, the Microsoft compiler must be led to believe that the variable would be needed again. Therefore
the otherwise useless StayAlive function of the CTT_Guard class is called after the catch-block.
This function only will be passed, when the production doesn't return a value. Otherwise the return is
already carried out within the try-catch block. If an exception is actually catched, it is thrown again
in any case. The condition:

if(xiScannerIndex > -2)

is always true, as result of the code generator. However, for the compiler the StayAlive call seems to
be reachable.

Without the last line of the macro the code wouldn't compile.

return returnvalue;

If the production doesn't return a value, returnvalue remains empty. If the production, however,
returns a value, a default value must be known for the return type although the line is actually never
executed. This value can therefore be arbitrary as long as it matches the corresponding return type.
For the interpreter code the return value is generated automatically. But if a return type is defined in
code only for the export a default value must be given. This can be done in the field for the return
type by appending a slash and the value. E.g.::

{_ CProduktion* _}/NULL

13.2.10 CTT_Mstrstr

template <class char_type> class CTT_Mstrstr

CTT_Mstrstr has the same interfaces as mstrstr of the interpreter. Inside of the generated code
mstrstr is defined by:

typedef CTT_Mstrstr<char> mstrstr;

CTT_Mstrstr is derived from std::map<Key, T, Compare, Allocator > and so also has the interfaces
of a std::map.

406 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

13.2.11 CTT_Mstrfun

template <class char_type, class object_pointer, class return_type, class memfun_pointer> class
CTT_Mstrfun

CTT_Mstrstr is derived from std::map<Key, T, Compare, Allocator >. By this class, assignments of
pointers to parser class member functions to names are stored.

13.2.12 CTT_Node

template <class char_type> class CTT_Node

CTT_Node is a class written especially for the TextTransformer, which represents the type node in
the exported c++-code and which is used in the code of the TextTransformer itself.
The template parameter either can be char or wchar_t.

13.2.13 CTT_DomNode

class CTT_DomNode;

dnode's in the interpreter are defined as typedef of CTT_DomNode in the exported code.
CTT_DomNode capsules a xercesc DOMElement with a xercesc DOMText child. So you can use
CTT_DomNode in the same manner as CTT_Node, The name of the DOMElement represents the
label of the node and the value of the DOMText is the value of the node. If you write a CTT_DomNode
into a XML file, you get:

<label>value</label>

While the memory is internally managed for a CTT_Node by reference count of all nodes of a tree, a
CTT_DomNode is managed by xerces.

If you use dnodes, you have to chose CTT_ParseStateDomPlugin, and the Xerces library has to be
linked to the produced code.

Before a parser is called in the generated c++ code, the default label has to be set. CTT_DomNode
has a static method for this purpose.

dnode::SetDefaultLabel(L"default_label");

407Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

13.2.14 CTT_ParseStatePluginAbs

template <class char_type >
CTT_ParseStatePluginAbs<char_type>

Abstract basis class for CTT_ParseStatePlugin and for CTT_ParseStateDomPluginAbs.

13.2.15 CTT_ParseStatePlugin

template <class char_type> class CTT_ParseStatePlugin

CTT_ParseStatePlugin is the class for the plugin. From this class a user defined class can be
derived, which contains methods and data, which are valid during exactly one pass of the parser.
The template parameter either can be char or wchar_t.
The plugin type has to be set in the project options.

13.2.16 CTT_ParseStateDomPluginAbs

template <class char_type >
class CTT_ParseStateDomPluginAbs : public CTT_ParseStatePluginAbs<char_type>

13.2.17 CTT_ParseStateDomPlugin

template <class char_type> class CTT_ParseStateDomPlugin

This class has the same data and functions as CTT_ParseStatePlugin. In addition it contains a
pointer to a CTT_Xerces class, which capsules a xerces DOMDocument.
The plugin type has to be set in the project options. If you use dnodes, you have to chose
CTT_ParseStateDomPlugin, and the Xerces library has to be linked to the produced code.

13.2.18 CTT_RedirectOutput

template <class char_type > class CTT_RedirectOutput

This class manages the redirection of the output into files.
The template parameter either can be char or wchar_t.

13.2.19 CTT_Indent

template <class char_type > class CTT_Indent

A simple indentation stack. The template parameter either can be char or wchar_t.

408 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

13.2.20 CTT_Xerces

class CTT_Xerces

This class capsules a xerces DOMDocument and contains some functions to use it.
A pointer to an instance of this class is contained in CTT_ParseStateDomPlugin. So the document
can be created in the parser and used afterwards..

 CTT_Xerces();

 CTT_Xerces(const std::string& xsRootElementName,

 const std::string& xsEncoding,

 bool xbWriteBOM = false,

 bool xbPrettyPrint = true,

 bool xbWriteDOMDeclaration = true,

 bool xbStandalone = true);

 ~CTT_Xerces();

 XERCES_CPP_NAMESPACE::DOMDocument* GetDocument();

 void setDTDParams(const std::string& xsName,

 const std::string& xsPublicID,

 const std::string& xsSystemID);

 bool createDocument();

 void destroyDocument();

 bool writeToFile(const std::string& xsFilename);

 bool writeToString(std::string& xsResult);

 bool writeToString(std::wstring& xsResult);

 bool writeToStream(std::ostream& xos);

 bool writeToStream(std::wostream& xos);

 bool hasDOM() const;

13.3 Error handling

Functions for the treatment of errors are listed at the plugin methods. Further there are four events,
which force the parser to abort and there is a treatment routine for each of these events, which
normally throws a corresponding exception type. These methods are virtual and can be overwritten.

 void OnErrorExpected(state_type& xParseState,
 int xiSym,
 const char* xpProduction,
 const char* xpBranch) const;

The token with the number xiSym was expected, however, wasn't it found in the production with the
name xpProduction at the branch with the name xpBranch.

 void OnErrorUnexpected(state_type& xParseState,
 const char* xpProduction,

409Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

 const char* xpBranch) const;

Another token was expected, however, wasn't it found in the production with the name xpProduction
at the branch with the name xpBranch.

 void OnErrorIncomplete(state_type& xParseState,
 const char* xpProduction,
 const char* xpBranch) const;

The input couldn't be parsed completely by the production with the name xpProduction.

 void OnErrorStandstill(state_type& xParseState,
 const char* xpProduction,
 const char* xpBranch) const;

The parser is in an endless loop in the production with the name xpProduction at the branch with the
name xpBranch. (This bug cannot occur at the moment, since only tokens covering at least one
character are allowed.)

CTT_Message is the basic class for all messages, warnings, errors and exceptions. It contains a
message string and details on the current status of the parser

CTT_Message(const std::string& xsWhat,
 unsigned int xuiLastPosition,
 unsigned int xuiPosition,
 const char* xpProduction,
 const char* xpSymbol = NULL,
 EMsgType xeMsgType = eMessage,
 unsigned int xui = 0)

From CTT_Message directly or indirectly derived are:

CTT_Exit
CTT_Warning
CTT_Error
CTT_ParseError
CTT_ErrorExpected
CTT_ErrorUnexpected
CTT_ErrorStandstill
CTT_ErrorIncomplete
CTT_SemError
CTT_NodeError

410 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

13.4 Compiler compatibility

The generated C++ code is essentially portable. It was tested successfully with the following
compilers:

Windows

Borland CBuilder 6
Borland CodeGear C++ Builder 2009

Visual C++ 2008 Express

Linux

gcc 4.2

Perhaps smaller customizations of the code frames and of the supporting code could be required
with other compilers and other systems.

The c++ code generated by the TextTransformer uses the library of regular expressions of Dr.
Maddock at

http://www.boost.org/

The library conforms to the stl and was tested nearly with all actual operating systems and different
compilers. Details can be found at

http://www.boost.org/development/tests/trunk/developer/summary.html

Xerces-C++ is portable too. A list of the supported operations systems and compilers is at:

http://xml.apache.org/xerces-c/

For TETRA Xerces-C++ was made with Borlands CBuilder 6. To avoid a conflict with dll also
delivered by Borland, the suggested name "XercesLib" was changed in "TTXercesLib".

13.5 License

 TextTransformer Library

 Copyright (c) 2002-2007 Dr. Detlef Meyer-Eltz
 ALL RIGHTS RESERVED

 The entire contents of this file is protected by
 International Copyright Laws. Unauthorized reproduction,
 reverse-engineering, and distribution of all or any portion of
 the code contained in this file is strictly prohibited and may

411Code generation

© 2002-10 Dr. Detlef Meyer-Eltz

 result in severe civil and criminal penalties and will be
 prosecuted to the maximum extent possible under the law.

 RESTRICTIONS

 THIS SOURCE CODE AND ALL RESULTING INTERMEDIATE FILES
 (OBJ, DLL, BPL, ETC.) ARE CONFIDENTIAL AND PROPRIETARY TRADE
 SECRETS OF DR. DETLEF MEYER-ELTZ. THE REGISTERED DEVELOPER IS
 LICENSED TO DISTRIBUTE THE TEXTTRANSFORMER LIBRARY AS PART
 OF AN EXECUTABLE PROGRAM ONLY.

 THE SOURCE CODE CONTAINED WITHIN THIS FILE AND ALL RELATED
 FILES OR ANY PORTION OF ITS CONTENTS SHALL AT NO TIME BE
 COPIED, TRANSFERRED, SOLD, DISTRIBUTED, OR OTHERWISE MADE
 AVAILABLE TO OTHER INDIVIDUALS WITHOUT WRITTEN CONSENT
 AND PERMISSION FROM DR. DETLEF MEYER-ELTZ.

 CONSULT THE END USER LICENSE AGREEMENT FOR INFORMATION ON
 ADDITIONAL RESTRICTIONS.

TextTransformer

Part

XIV

413TetraComponents

© 2002-10 Dr. Detlef Meyer-Eltz

14 TetraComponents

The TetraComponents allow to use TextTransformer projects in Delphi and CBuilder programs.
They are executed (interpreted) with the freely available tetra_engine.dll. The components
encapsulate this dll.

Among other things some parse-events can be handled by the components. Thereby numbers are
passed for tokens and productions (in OnAcceptToken and OnEnterProduction).

These enumeriated values are written by default into the frame "enums_pas.frm":

unit -->NameSpace;

interface

type

 EToken = (

 -->TokenEnums

);

 EProduction = (

 -->ProductionEnums

);

const

 Tokens := TStringList.Create;

-->TokenNames

);

 Productions := TStringList.Create;

-->ProductionNames

);

implementation

end.

The arrow "-->" and the following key word indicate the positions, where the TextTransformer inserts
special code for a project. The frame can be edited.

TextTransformer

Part

XV

415Messages

© 2002-10 Dr. Detlef Meyer-Eltz

15 Messages

In this chapter some warnings and error messages are explained, which can occur, when parsing or
executing a project.
If such messages occur, they are listed in the error box. The complete text is show by a click on the
according item. The message appears in the central message window. If the item is clicked once
and the F1 button is pressed, the according text of this help is shown.

15.1 Unknown symbol: "xxx"

The test of completeness failed.

15.2 "X": can't derive to terminals

Not all non-terminal symbols are derivable to terminal symbols.

15.3 Circular derivation: "X" . "Y"

There is a circle in the grammar.

15.4 "X" is nullable

A nullable structure was found:

15.5 LL(1) Error: "X" is the start of several alternatives

The grammar is not LL(1)-conform.
.

15.6 LL(1) Warning: "X" is the start and successor of nullable
structures

The LL(1)-test has found a possible conflict.

15.7 "X" is a SKIP node with SKIP neighbors

The grammar test has found a SKIP node with unpredictable followers.

416 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

15.8 Nullable structure in a repetition or option

The meaning of a "(...)+" repeat or a "(...)*" repeat or an "(...)?" onption isn't clear if it contains a
nullable structure.

Examplee:

("a"?)+ "b"

The structure "("a"?)+" could be as interpreted as nullable. An occurrence of b without previous "a"
would be accepted. But you could argue too that the loop has to be passed once at least.

("a"* {{iCount++;}})* "b"

How often should iCount be incremented for several "a" in the input? Thar's not clear!

15.9 "X" is used circulary in a look-ahead

This message appears if a look-ahead cannot be executed because it is circular.

15.10 Inclusion not found

A not existing inclusion production is set in the project options or in the local options of a
production.

15.11 Conflict with an inclusion

The token, which follows in the grammar is also the beginner of an inclusion production.

15.12 No matching next token found

None of the actual allowed tokens can match the actual text.

15.13 The rest of the text consists of ignored chars

This message points out, that some ignorable characters - according to the project options - remain
at the end of the input text, without being copied to the output text. This message is only a hint and
doesn't signalize an error.

417Messages

© 2002-10 Dr. Detlef Meyer-Eltz

15.14 SKIP token matches at actual position

This message is shown in the log window, if a token was recognized at the actual text position,
which only was expected at a position behind some text, which should be skipped.

Example:

SKIP "end"

applied on the text

"end ..."

the SKIP symbol only is accepted, if there is text containing of not ignorable characters between the
actual position and the token:

"... end"

15.15 "SKIP ANY" is not possible

An explicitly defined set of tokens is required for SKIP.

15.16 Matching but not accepted token

This message is shown in the log window, if a token was recognized in the text that in accordance
with the grammar isn't permitted.

Example:

Input: Text2Html.ttp

Rule: SKIP? EOL

Message: Matching but not acceptet token: ID (7), \w+

"Text2Html" has been recognized as an identifier ID, though the whole "Text2Html.ttp" should have
been skipped.

As a way out either the option of global scanners for regular expressions can be disabled or the rule
can be redrafted:

Rule: (SKIP | ID)* EOL

418 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

15.17 Matching token not in first set

This message is shown in the log window, if a token was not chosen, because it doesn't belong to
the actual first set.

Example

15.18 Matching look-ahead xxx cannot start with yyy

This message appears if a look-ahead was successful but the token, by which it started, is not
contained int the first set of the IF-branch. This can be the case, when a token has been recognized
in the main parser, which is not contained in the first set of the IF-branch, but the same text is
nevertheless recognized from other tokens in the look-ahead.

15.19 Unexpected symbol in ...

A syntax error inside of a production occurred. A part of text cannot be interpreted. Either a not
defined word was used or a permitted keyword can be misspelled. Often wrong brackets or quotation
marks are the cause. An expected parameter possibly is missing.

15.20 Parenthesis are needed

You get the warning: Parenthesis are needed, if the first semantic action contains a variable
declaration for the whole production, for productions of the kind

{-...-}
A | B ...

Frequently the first semantic action contains declarations of variables, which shall be used in all
alternatives. But then, you have to put the alternatives into parenthesis. E.g.:

{- str s; -}
(
"a" | "b"

)
{-return s;-}

Without parenthesis

{- str s; -}
 "a"
| "b"
{-return s;-}

you get the error message:

419Messages

© 2002-10 Dr. Detlef Meyer-Eltz

Unknown identifier: s

for {-return s;-}, because there are implicit parenthesis like

(
{- str s; -}
 "a"

)
|
(
"b"
{-return s;-}

)

15.21 Unexpected method (also might be ...

The message:

Unexpected method (also might be member-function, which returns a value)

appears, if an instruction begins with an identifier followed by a dot and then followed by a symbol,
which does not denote a method. E.g.

s.unknown

This message can result from a wrong chaining of methods. E.g. clear is, a method without return
value. Therefore you can't append a second method call on clear.

s.clear().clear();

This message also appears, if you tried to call a member-function, which returns a value; e.g. for the
string s:

s.length();

The following would be correct:

int i = s.length();

In the syntax of c++, this is correct. But the instruction makes no sense, because the returned value
is not used. So here an error message appears.

15.22 "X" expected

According to the grammar a token of the type "X" should have followed the last recognized token in
the text. If for example the rule for a salutation is:

"Hello" Name "!"

420 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

and the text is: "Hello !",

this error message appears, because after "Hello" a name is expected.

15.23 Incomplete parse

 says, that the parsing of the input has been canceled before reaching the end of the text.

The message "Incomplete parse" refers to the grammar of the parser. This was not processed
completely before the input text ended. That means, that at the end of the text further tokens had
been expected.

15.24 Missing closing quotation mark

A literal token is immediately defined inside of a production, but the closing quotation mark is either
forgotten or it is not in the same line as the opening quotation mark.

15.25 Literal tokens may not be empty

Empty strings are no token. Particularly tokens directly defined inside of a production must consist
in one character at least.

15.26 Continuation with c++ code expected

This error message appears, if the bracket of a semantic action was not closed. The production
parser recognizes this by the beginning of a new action. For example:

{{
str s;
// missing closing bracket
(expression[s])*
{{
return s;
}}

15.27 The type of the function xxx doesn't match the function table

All functions of a function table must have the same return type and the same number and types of
parameters.

421Messages

© 2002-10 Dr. Detlef Meyer-Eltz

15.28 No default function is defined for function-table

Each function table must contain a default function. The default function is inserted into the table
with an empty string as key. The default function is called, if a node is visited by the visit method
and the value of the label of the node is not contained as a key in the function table.

15.29 In a const parser you have to call the according method of
State

If the const option is set in the project options, plugin methods cannot be called directly. Instead,
you have to call them as methods of xState.

Example:

instead of

str s = AddToken("Print". "USERFUNCTION");

you have to write

str s = xState.AddToken("Print". "USERFUNCTION");

15.30 Sub-expressions (> 0) are not stored in the la-buffer

You cannot access the sub-expressions marked by brackets in the semantic actions if the
look-ahead tokens are buffered

15.31 A production cannot be used as an inclusion

A production cannot be used as an inclusion, if it is used by another production (unless a recursive
call inside of the inclusion).

15.32 Inclusion with paramters

A production which starts an inclusion may not have parameters. A grammar can be "interrupted" by
an inclusion in an arbitrary position. Therefore there isn't any place at which a parameter could be
submitted. To exchange information between the main parser and an inclusion, class variables can
be used.

If source code for const parser is produced, it is advisable to use variables of the plugin for the
information transport.

422 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

15.33 Inclusions don't work with a la-buffer

You cannot use inclusions if the look-ahead tokens are buffered

15.34 State parameter is required

This message only appears, if the check box xState parameter for member functions is checked in
the project options on the register page warnings/errors.
Then xState must be the first parameter in a call of a user defined class method. Only if this is the
case, the code of the interpreter also can be exported as c++-code.

15.35 Empty alternative

The complete error message is:

Empty alternatives must be combined with a semantic action

A detailed explanation of this point is given on the page about alternatives inside of productions.

15.36 Error while parsing parameters

A message like:

xxx: Error while parsing parameters "unexpected symbol" in: type_specifier_Alt0

appears, if the text in the parameter field of the rule "xxx" was not parsed correctly. This may be
caused by a writing mistake of the parameter type or the interpreter may not know the type.
Eventually the parameter was not intended for the interpreter, but for the export. (See: Parameter
and {{...}}).

15.37 Mismatch between declaration and use of parameters

This error message (or warning, see below) appears either, if a production or token is called with a
wrong number of parameters or if the types of the parameters are not convertible.

For example a parameter declaration of the production XXX may be:

Parameter: int xs

and the production is called by:

423Messages

© 2002-10 Dr. Detlef Meyer-Eltz

{{str s = "Hello";}}

XXX[s] // wrong parameter type

A variable of the type string cannot be converted to an "int"-value. Also to leave out the parameter
results in the same message.

XXX // missing parameter

As a warning this message appears if the production is used within a look-ahead production. In
look-ahead productions no semantic actions are carried out and not therefore no parameter is used
either. In complex projects, however, it can happen that the same production is used also with
semantic actions, what may lead to an error only at execution of the transformation program.

To be sure, that no error can happen, you can use dummy parameters.

15.38 Wrong number of (interpretable) arguments

A script, for which a special number of parameters were defined, is called with another number of
arguments.
For example for the production Name two parameters could be defined:

Parameters: str sFirstName, str sLastname

If this is called by:

Name["John"]

the error message appears.

The reason of the message also can be, that an argument passed to the production is not
interpretable. If in the project options is set, that not parenthetic text only is copied to the exported
code, the following code results in the error:

Parameter: {= star str, str sLastname =}

Call: Name["John", "Smith"]

15.39 Not const method

The message:

Not const method xxx called for const object XXX

appears, if the object XXX has been declared as const, but the method xxx of the object, would
modify it.

Example:

424 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

In a function with the

Parameter: const mstrstr& xm

the cursor of xm shall be set to the next value:

xm.gotoNext();

But the cursor and its position "belong" to mstrstr. So the map would be modified by this action. The
parameter has to be declared not const.

Parameter: mstrstr& xm

15.40 Maximum stack size of "x"exceeded

This message appears, if the value for the internal stack, which is set in the project options, was
exceeded.

Remark: The internal stack here is greater than the shown stack, because it in addition contains the
branches to sub rules.

15.41 Error on parsing parameters of the parser call

This message results from an error, which only can occur, if the start rule of the parser needs
parameters. In this case, the names of the variables must be extracted from the parameter
declaration, notwithstanding if the declaration is interpretable or not.

Example:

The name of a start rule may be "Startrule" and its parameter declaration may be

int xi

So the following code will be created:

void CStartruleParser::Params(ctsr xtBegin, cts xtEnd, int xi)
{
 sps xState(xtBegin, xtEnd);
 Startrule(xState, xi);
}

The name "xi" was extracted from the declaration "int xi". If this operation had caused an error the
message "Error on parsing parameters of the parser call" had been appeared.

425Messages

© 2002-10 Dr. Detlef Meyer-Eltz

15.42 There is at least one path on which no string value is returned

For a production or a token a return type xxx may be declared, but there is a possibility, to walk
through the code of the script, without returning a value.
For example a token script could be used to return different strings depending of a recognized
number:

str sDefault;
switch(xState.itg())
{
case 1:
return "eins";
case 2:
return "zwei";
default:
sDefault = xState.str();

}

In the default case, no value will be returned.

15.43 Recognized, but not accepted token

If the execution of a TETRA program was broken by an error, there may be a hint to a matching but
not recognized token in the log window.
Presumably an error occurred inside of the interpreter before the parser could accept the token. Or
a return-statement was put in front of the ascertainment of the next token inadvertently.

Example:

ID

{{ return true; }}
NUMBER

A number NUMBER is expected after the first identifier ID here. However, NUMBER cannot be
recognized since the production is exited before by return.

Another possibility is, that a global scanner for regular expressions was used, although two tokens
of this scanner can conflict.

If, for example, a little table consists of the columns version and price of a product and these tokens
are defined as:

Version = \d\.\d\d
Price = \d\d?\.\d\d

that means a price can have one or two digits in front of the point and a version only one. The
content of the table can be parsed by:

Table = (Version Price)*

426 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

If a global scanner is used, it is not clear, whether a number with one digit in front of the dot will be
recognized by Price or by Version. If the number is in the first column, nevertheless Price might
recognize it. In this case the parsing is stopped and the error message occurs, that Price matched,
but was not accepted.
By using local scanners, this is no problem. A number in the first column will be always only tested
by Version and a number in the second column always only by Price.

15.44 BREAK outside of a loop

The BREAK symbol only can be used inside of a loop (...)* or (...)+ and in the same production as
the loop itself. Using it at another position causes the error message, when the production is
parsed.

15.45 Standstill

Despite of parsing, the position in the input wasn't changed.

A token, which matches the text, must match at least one character. A token like

Token A:: = a*

Production ::= A

would match at any position of the text, because the character 'a' will be there at least null times. A
production like (A)* would cause an endless loop. An optional occurrence of a concatenation of
'a'-characters should be written as:

Token A ::= a+

Production ::= (A)?

15.46 Standstill in look ahead

There is the danger of an infinite recourse in a look-ahead if at the beginning of a production just this
production is used for the look-ahead in an IF condition. Example:

ab = IF(ab) ...

Before a look-ahead is started therefore will be checked whether the parser already is in a
look-ahead. If this is the case and if there hasn't been progress in the text in the look-ahead yet, the
parser is stopped and the error message appears:

Standstill in look-ahead

427Messages

© 2002-10 Dr. Detlef Meyer-Eltz

15.47 Unknown identifier : xxx

The message "Unknown identifier : xxx" is caused by an error of the interpreter. A variable was
used, which had not been declared before or the scope, where it was declared is left.
This message also can appear as a consequence of another previous error.

EXAMPLE

The assignment

s = "Hallo";

can't be used, without preceding declaration of s:

str s;
s = "Hallo";

or combined to one instruction:

str s = "Hallo";

For the interpreter invisible export code

The error message appears, if the declaration wrongly was set into the brackets for export code "{_"
and "_}:

{_str sComment;_}

while the variable is used in the interpreter code:

(
 Comment[sComment]
)+

If interpretable is activated in the project options Parameter and "{{...}}"
sComment will be seen by the interpreter, but isn't declared.

Hidden Scopes

A variable exists as long as its scope exists. A scope is the whole text of a production/token or the
section included into the braces '{' and '}' or defined indirectly by alternatives.
For example in the text of the production:

if(xi == 1)
{
 str s = "one";
 out << s;
}
s = "two" // error

428 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

the string s doesn't exist any longer after the closing '}'. So nothing can be assigned to it there.

Attention: Alternatives define scopes, which are not visible directly.

Example

The following production causes the error message "Unknown identifier: s", although the string s
seems to be correctly declared:

{{str s; }}
 "a"
| "b"
 print[s]

But by the alternatives hidden scopes are introduced:

{{str s; }}
 "a"

and

 "b"
 print[s]

have their owns scopes respectively. This becomes clear in the syntax tree of the production:

The semantic action, which declares the string, is executed immediately before the recognition of
"a" and is not preceding the whole alternative. To achieve this, the alternatives must be enclosed into
parenthesis:

{{str s; }}
(
 "a"
| "b"
 print[s]
)

Now the syntax tree looks as:

429Messages

© 2002-10 Dr. Detlef Meyer-Eltz

The declaration now precedes all alternatives and the variable s can be accessed in the whole
production.

15.48 It's not possible to convert "xxx" to "yyy"

This message is caused by an interpreter error. The attempt to assign a value to a variable failed,
because the value is not convertible to the type of the variable.

Example

int i = "Hallo";

A String cannot be converted to an integer.

15.49 No return type declared

In the interpreter code a value is returned by return, but the field of the return type of the script is
empty.

15.50 "X" cannot be applied on "Y"

The interpreter creates this error, if an operation "X" is tried to be applied to a type "X", which is not
defined for this type.
For example:

str s;
s++;

15.51 break or continue instruction at invalid position

A break- or a continue instruction can be used only inside of the loop of a for-, while-or do-while
-statement. break also is used in switch-statements. At other positions the use of break and
continue is invalid.

This error only is recognized, while the program is running.

430 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

15.52 forbidden transitional action

Only such transitional actions are permitted which leave the state of the parser unchanged before
and after use of the production for a look-ahead. There is at least one function in chain of the
transitional action for which this isn't ensured.

15.53 Error output programmed from the user

Messages beginning with:

Error output programmed from the user:

stems from the interpreter instruction:

throw CTT_Error("message");

15.54 Cannot add branch

This message appears in the log window and finishes the execution of a program, if a node-object,
which is already contained in a tree, is tried to be added again.

15.55 Token error

There is an error in the definition of a regular expression on the token page.

15.56 Matches empty string

Token may not match an empty text -> standstill

15.57 Token is defined as string and as token with an action

The warning:

"xxx" is defined as string and as token with an action

happens, if a token is defined as well inside of a production as a string, as, associated with an
action, on the token page. Principally you can use both inside of one project, if they are not direct
alternatives. But often is hardly to discover, whether this is the case or not. So it is recommended to
use only one definition. Otherwise unintentional (non-) execution of the action could occur.
If there is no action associated with a token, this message will not be shown.

431Messages

© 2002-10 Dr. Detlef Meyer-Eltz

15.58 boost::regex error

By this message in the log window the execution of a TextTransformer program is stopped, if an
error occurs in the class for regular expressions of the boost library.
Presumably the cause is, that the expression is too complex. Remedy is the Friedl scheme, or, if
necessary you can split literal parts of the expression and shift the whole expression into a
production.

15.59 System overlap

Productions can be used in a fourfold way in the TextTransformer. If a certain production is used in
multiple way, then the set of the tokens that is tested inside of it, is determined by use parsed first.

15.60 Token action or member function cannot be exported

A token action or member function cannot be exported, if it consists of parts of interpretable code
interrupted by a part of code, which only is exportable.

Example:

{= ... =} // interpretable and exportable code
{_ ... _} // code only for the export
{= ... =} // interpretable and exportable code

15.61 Only code for initializations is allowd here!

Simple code for the initialization of a variable may be written only into the In the text field of the
element page. Other code will produce the error message: Only code for initializations is allowed
here.

15.62 Parameters and local variables may not be used in a
look-ahead production!

This error message appears, if parsing with a production is production is used directly or indirectly -
as well in the main parser as for a look-ahead and the production is controlled by a parameter or by
semantic code which accesses a variable declared locally. This is not permitted, because semantic
code can produce side effects like a doubled output in look-ahead productions: So all semantic code
is ignored, as far as it doesn't immediately belong to the condition of an IF or WHILE structure.

Example:

IF(Prod())

 ...

432 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

The production Prod is used in an IF structure as a look-ahead production. Prod contains a WHILE
structure, iwhich depends on the locally declared variable b.

Prod ::=

{{

bool b = true;

}}

WHILE (b)

... {{b = false;}}

END

The use of class variables is tolerated in such cases, but it is dangerous So a member variable m_b
could be declared on the element page and the code could be changed to:

WHILE (m_b)

... {{b = false;}}

END

But inside of the look-ahead this would result in an endless loop, because in a look-ahead "b =
false" is not executed. Also such use of class variables can hurt const conditions in the generated
code.

15.63 Encoding cannot be written into the output window of the IDE

This message appears in the output window if the encoding of a XML document cannot be
represented there.

15.64 An invalid or illegal XML character is specified

This message is shown in the log window, if a character was used for the definition of a dnode,
which isn't allowed there.

Example:

nLine.add(",", xState.str()); // => runtime error

15.65 TextTransformer not registered

Index operations are permitted only in the registered version of the TextTransformer.
Index operations are operations, by which you access single elements of a structure. Examples are
the access of elements of the container class mstrstr or of the sub-expressions of the recognized
token. What exactly may be done with the free version can be seen in this help.

433Messages

© 2002-10 Dr. Detlef Meyer-Eltz

15.66 Internal error: ...

Error messages, which are introduced by the words "Internal error", hopefully should not appear to
you. They are created, if internal conditions of the program are not fulfilled. They point out an error of
the TextTransformer itself.
If such an error occurs, please tell it to me, including the circumstances, which led to the error.
Please use the Feedback form. By this you help to improve the software.

15.67 No help

Unfortunately, it might happen, that after pressing the F1 button no help window appears or this
window appears or even that an error message is shown telling you, the help file were corrupt. Be
unconcerned: the help file is completely all right. The Windows help system produces this report
automatically if it cannot process a help call correctly. Please, support the development of the
TextTransformer and inform under which circumstances the help system failed.

TextTransformer

Part

XVI

435References

© 2002-10 Dr. Detlef Meyer-Eltz

16 References

16.1 References

The TextTransformers owes its origin some publications mentioned below. I have to thank all of the
authors.

The TextTransformer is based on the concept for the top down compiler compiler Coco from P.
Rechenberg and H. Mössenböck, which they have published together in their book: Ein
Compiler-Generator für Mikrocomputer, Carl Hanser Verlag München Wien 1988.

H. Mössenböck (ETH Zürich) has written the original version of Coco in Oberon-2. This version was
ported to Modula-2 from Marc Brandis (ETH Zürich) and Pat Terry (Rhodes University,
Grahamstown, South Africa). Finally Frankie Arzu (Universidad del Valle, Guatemala, Central
America) has published a version of Coco in c.
The actual versions of Coco or. Coco/R, which can produce also code in other target languages than
c++, can be found at:

http://www.ssw.uni-linz.ac.at/Reserach/Projects/#Coco

The TextTransformer makes use of some boost libraries.

http://www.boost.org

These libraries are also required to compile the code which is produced by the TextTransformer.

The source code for the regular expressions is from Dr. John Maddock.

The Format library of Samuel Krempp. It is used in the interpreter for the optional formatting of
the output.

The portable functions for the path and file treatment are based on the filesystem library from
Beman Dawes.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

436 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

The parser for the interpreter is based on a ANTLR grammar, which can be found at

http://www.antlr.org/grammars/cpp

/*
 * PUBLIC DOMAIN PCCTS-BASED C++ GRAMMAR (cplusplus.g, stat.g, expr.g)
 *
 * Authors: Sumana Srinivasan, NeXT Inc.; sumana_srinivasan@next.com
 * Terence Parr, Parr Research Corporation; parrt@parr-research.com
 * Russell Quong, Purdue University; quong@ecn.purdue.edu
 *
 * VERSION 1.2
 *
 * SOFTWARE RIGHTS
 *
 * This file is a part of the ANTLR-based C++ grammar and is free
 * software. We do not reserve any LEGAL rights to its use or
 * distribution, but you may NOT claim ownership or authorship of this
 * grammar or support code. An individual or company may otherwise do
 * whatever they wish with the grammar distributed herewith including the
 * incorporation of the grammar or the output generated by ANTLR into
 * commerical software. You may redistribute in source or binary form
 * without payment of royalties to us as long as this header remains
 * in all source distributions.
 *
 * We encourage users to develop parsers/tools using this grammar.
 * In return, we ask that credit is given to us for developing this
 * grammar. By "credit", we mean that if you incorporate our grammar or
 * the generated code into one of your programs (commercial product,
 * research project, or otherwise) that you acknowledge this fact in the
 * documentation, research report, etc.... In addition, you should say nice
 * things about us at every opportunity.
 *
 * As long as these guidelines are kept, we expect to continue enhancing
 * this grammar. Feel free to send us enhancements, fixes, bug reports,
 * suggestions, or general words of encouragement at parrt@parr-research.com.
 *
 * NeXT Computer Inc.
 * 900 Chesapeake Dr.
 * Redwood City, CA 94555
 * 12/02/1994

437References

© 2002-10 Dr. Detlef Meyer-Eltz

 *
 * Restructured for public consumption by Terence Parr late February, 1995.
 *
 * DISCLAIMER: we make no guarantees that this grammar works, makes sense,
 * or can be used to do anything useful.
 */

The function table wizard was built by means of the open source wizard component from William Yu
Wei, which is part of the Jedi-Vcl :

http://homepages.borland.com/jedi/jvcl/
http://sourceforge.net/projects/jvcl

Xerces-C++ is made available under the Apache Software License, Version 2.0.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
 See the License for the specific language governing permissions and
 limitations under the License.

The "ATBinHex" component of Alexey Torgashin was used for the input viewer..

http://atorg.net.ru/delphi/atbinhex.htm

The viewer was extended by the possibility to set breakpoints. The exteded version is available
at

http://www.texttransformer.org

The ATBinHex is subject to the MOZILLA PUBLIC LICENSE Version 1.1, which is added
there too,

My special thanks to Dr. Hans-Peter Diettrich, who gave me some valuable notes to improve

the program and Andreas Busch, who helped me to make TextTransformer multi-user compatible.

438 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

TextTransformer

Part

XVII

440 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

17 Glossary

17.1 First set

Each node in the TETRA syntax tree and each symbol of the grammar are characterized by two
sets of token: the first set and the follow set. The first set is of special interest for a top down
analysis, because it determines the progress of the analysis.

The first set of a node contains all token, by which the parser will be guided to the node.
If the actual text isn't matched by one of the token of the first set, an other node will be chosen,
namely the node with the first set that contains a token, which matches. If there is no such
alternative the parsing is stopped with an error message. To guarantee that the decision between
alternatives is definite, the first sets of the alternatives must be disjunctive, i.e.: there may not be a
token contained in two alternative first sets.

So the first sets are essential for the progress of the text analysis and the calculation of these sets
is the central task of the TextTransformer. To calculate these sets, several cases have to be
distinguished:

The simplest case is, a node of a terminal symbol. Here the first set exactly contains this
symbol.

Example:

The first set of "TETRA" is the set with the Token "TETRA" as its only element.

The first set of a concatenation of symbols is the first set of its first member (if its not nullable, see
below)

Example:

The first set of "TETRA" "means" "Texttransformer" ... is the set with the token "TETRA" as its only
element.

More elements are contained in nodes, which contain alternatives. The first set of such a node
consists in the union of the first sets of the alternatives.

Example:

The first set of ("TETRA" ... | "Texttransformer" ...) is the set of the token "TETRA" and
"Texttransformer".

Quite difficult the calculation of first sets of nullable nodes can be. These are the options "(...)? and
optional repetitions "(...)*". At first all the tokens belong to the first set, by which the alternative
chains inside of the structure can begin. For:

("very"+ | "super")? "good"

this is the set of the token "very" and "super". Because the node is optional, the parsing must

441Glossary

© 2002-10 Dr. Detlef Meyer-Eltz

continue, even if "very" or "super" are not found at the actual position. The parsing shall continue
with the token "good", or more general, it shall be continued with one of the token, which can follow
the nullable structure. The first set of a nullable structure must be united with its follow set: in this
case the result is {"very", "super", "good"}. (Again, all set must be disjunctive, see above)

The follow set is the set of all the tokens, which can follow a node.

Semantic actions also are presented in the syntax tree as nodes. They are nullable nodes. Their
first set exactly is their follow set.

17.2 ASCII/ANSI-set

ASCII is an acronym for "American Standard Code for Information Interchange". The ASCII-code is
an assignment of numbers to the characters of the US-American alphabet, to the digits and to the
punctuation characters. Furthermore the ASCII-code contains so-called control characters.

In the extended ASCII-code also characters of other languages can be denoted; for example the
German umlauts.

Beside of the ASCII-code there are other codes. Windows prefers the ANSI-code (more exact:
Windows-1252). For some years has there been the Unicode set which can represent almost all
written languages of the world.

Examples:

The upper 'A' has an ASCII-code of 65. The ASCII-code of a space is 32.

You can see the whole table in the TextTransformer: Help->ASCII-table.

Warning: the ASCII-code of a digit is not identical with its numeric value. The digit '2' for example
has the ASCII-code 50.

17.3 Backtracking

If the actual information doesn't suffice to decide how to continue the analysis, the possibilities must
be tested by a further look-ahead in the text. If such a look-ahead fails, it must be returned to the
first state, to test the next possibility. The return to the initial state is called backtracking.

442 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

17.4 Binary file

Opposed to a text file the bytes of binary files aren't interpreted necessarily as text characters. E.g.
such files are interpreted and represented by special algorithms as pictures or sounds. The
documents of word processings are also binary files and complicated algorithms are used to decode
the formatting information.

Bytes with the value 0 can occur in binary files. This isn't permitted in text files. This circumstance is
used by the example BinaryCheck.

17.5 Compiler

A compiler is a program, that translates a higher programming language into a language (binary
code) that is understood by the machine.
In a broad sense every translation program of programming languages can be called a compiler. In
this sense also the TextTransformer is a compiler, as it compiles the scripts of a project to a
text-transforming program.

17.6 Control characters

These characters are used to control the output of the other characters. For example, the line feed
character causes that the following characters will be presented in a new line. To denote a control
character the backslash is preceded an ordinary character.

17.7 Debug

To debug is the process of finding and eliminating program errors (bugs).

17.8 Deterministic

Grammars are called deterministic, if in each state of the analysis the next step is determined.
Deterministic grammars don't need backtracking.

17.9 Escape sequences

The backslash character (\) is used to introduce an escape sequence, which allows the visual
representation of certain nongraphic characters. For example, the constant \n is used to the single
newline character.
A backslash is used with octal or hexadecimal numbers to represent the ASCII symbol or control
code corresponding to that value; for example, '\03' for Ctrl-C or '\x3F' for the question mark. You can
use any string of up to three octal or any number of hexadecimal numbers in an escape sequence,
provided that the value is within legal range for data type char (0 to 0xff). (For the definition of regular

443Glossary

© 2002-10 Dr. Detlef Meyer-Eltz

expression only too hexadecimal numbers are taken.) Larger numbers generate the compiler error
"value is too large". For example, the octal number \777 is larger than the maximum value allowed
(\377) and will generate an error. The first nonoctal or nonhexadecimal character encountered in an
octal or hexadecimal escape sequence marks the end of the sequence.

Take this example.

out << "\x0072.1A Simple Operating System";

This is intended to be interpreted as \x007 and "2.1A Simple Operating System". However, C+
+Builder compiles it as the hexadecimal number \x0072 and the literal string ".1A Simple Operating
System".
To avoid such problems, rewrite your code like this:

out << "\x007" "2.1A Simple Operating System";

Ambiguities might also arise if an octal escape sequence is followed by a nonoctal digit. For
example, because 8 and 9 are not legal octal digits, the constant \258 would be interpreted as a
two-character constant made up of the characters \25 and 8.

All escape sequences which can be used both in literal tokens and in regular expressions are
summarized in the following table. There are even further escape sequences for regular expressions.

Note: You must use \\ to represent an ASCII backslash, as used in operating system paths.

Sequence Value Char What it does
\a 0x07 BEL Audible bell
\b 0x08 BS Backspace
\f 0x0C FF Formfeed
\n 0x0A LF Newline (linefeed)
\r 0x0D CR Carriage return
\t 0x09 HT Tab (horizontal)
\v 0x0B VT Vertical tab
\\ 0x5c \ Backslash
\' 0x27 ' Single quote (apostrophe)
\" 0x22 " Double quote
\? 0x3F ? Question mark
\O any O=a string of up to three octal digits
\xH any H=a string of hex digits
\XH any H=a string of hex digits

444 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

17.10 Friedl scheme

The Friedl scheme is a pattern, which J.E.F. Friedl formulates in his book: Regular Expressions, to
avoid eternal matching.

Friedl mentions as an example, which is an extremely unhappy case of eternal matching:

"(\\.|[^"\\\r\n]+)*"

This expression defines a string as consisting of the outer double quotes, and an inner repetition.
The repetition consists in an alternative of a backslash followed by an arbitrary character (to assure,
that the backslash not stands immediately before the closing double quote) and a sequence of
characters, which are neither line breaking characters nor a double quote (which would finish the
string).
The problem with this expression is, that sequences of characters before a backslash can be
interpreted in different manners and that (with a POSIX-NFA regex, as is used in the
TextTransformer) all permutations will be tested. Because of the nested repeat-operators '*' and '+',
there are extremely much possibilities (three characters are a sequence of one and two characters
or a sequence of two and one character). Such a testing (backtracking) leads to a very slow
recognition of the whole text. Friedl gives an example, where the evaluation of such an expression
exceeds the lifetime of the programmer.

The eternal matching can be avoided, if the expression above is reformulated as:

"([^"\\\r\n]*(\\.[^"\\\r\n]*)*)"

The new expression is subject to the scheme:

opening normal * (special normal*)* closing
where the beginning of special and normal may not be the same

normal forbids a backslash: [^"\\\r\n]
and special demands it: \\.
(opening == closing == ")

At every location of the text there is a clear alternative now. Indeed, the Friedl scheme is an
LL(1)-optimization.

17.11 Interpreter

An interpreter is a program that parses program code and executes it immediately. In contrast to a
compiler no storable machine code is produced.

17.12 Lexical analysis

The lexical analysis takes a source text into its elementary pieces that are the lexemes, which are
interpreted as token. This process precedes the parsing of the text at least by one step. The parsing
analyses the grammatical connections of the token.

445Glossary

© 2002-10 Dr. Detlef Meyer-Eltz

17.13 LL(k)-grammar

A grammar is called LL(k) (= from left to right with left canonical derivation and a look-ahead of k
symbols deterministic recognizable), if a top down analysis can decide by the next k symbols, how
to continue.
Especially a grammar is LL(1), if one token suffices for this decision.

17.14 Numeric systems

We are used to specify integer numbers by 10 different digits. Computers however only know 0 and
1. For example the number 156 of our decimal system expressed in the binary computer format is

10011100

Because such binary numbers can be transformed to octal and hexadecimal representations very
easily, the c++ language has conventions for representing octal and hexadecimal values. Leading
zeros are used to signal an octal constant and starting a number with "0x" indicates a hexadecimal
constant.
The transformation of the binary value above into an octal number is done by separating the binary
value in groups of 3 numbers and than replacing these group according to the table below:

10 011 100

 2 3 4

In c++ the resulting octal number is written in c++ as: 0234

The procedure of converting the binary number into a hexadecimal representation is analogously, but
you have to separate the digits into groups of four digits this time:

1001 1100

 9 C

In c++ the resulting hexadecimal number is written in c++ as: 0x9C

Escape sequences are a similar representation of characters by octal numbers or hexadecimal
numbers.

Binary Octal
000 0
001 1
010 2
011 3
100 4
101 5

446 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

110 6
111 7

Binary Hexadecimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

17.15 Parser

A parser in the narrow sense is a program, which executes the syntactical analysis of a text. In a
broader sense this word is used in this help to comprise also the lexical analysis and the execution
of the actions.

In the TextTransformer several parser take part. The TextTransformer is a parser generator. So

1. the TextTransformer has a parser to parse the scripts and
2. the TextTransformer creates new parser. The created parser either

a) exists in the working memory to transform loaded texts, or
b) exists as a parser class in form of source code

17.16 Parser generator

A parser generator is a program, which creates a parser out of a simple description of a grammar.

17.17 Parse Trees and AST's

In tree structures the input text can be represented with a structure that conforms to the
grammar. Such a tree is called a parse trees or AST (abstract syntax tree).
The advantages of a previous creation of such parse trees in contrast to an immediate translation

447Glossary

© 2002-10 Dr. Detlef Meyer-Eltz

(one-pass compiler) is:

· You can make multiple passes over the data without having to re-parse the input.

· You can first perform transformations on the tree itself.

· You can evaluate things in any order you want.

Generally spoken, a tree consists of a number of nodes, connected to each other.

In the following picture a tree structure is depicted, as the variable inspector shows it.

This picture shall demonstrate the relationships of the nodes.

Each node, which has a child, is marked by a little square; the leafs of the tree don't have such a

square. A colon and the value of the node follow the label. All node in the picture have the same

label: element; only the root node at the top of the tree has the label: document.

If you pick out the node with the value Program_Info following relationships exist:

Parent-node is: element : XML_DIZ_INFO
first Child node is : element : Program_Name
last Child node is: element : File_Info
next Sibling node not exists.
previous Sibling node is: element : Company_Info
first Sibling node is: element : Company_Info.
last Sibling node is: element : Program_Info
bottom first Child node is: CharData : TextTransformer

448 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

bottom last Child node is : CharData : 3.86

For the root node
bottom first Child node is: CharData : Detlef Meyer-Eltz
bottom last Child node is : CharData : 3.86

Walk through a tree

A walk through the tree can be done in descending or ascending order. The descending order
goes exactly parallel to the line numbers, in which the nodes appear in the picture above. Beginning
with the root node:

document :
element : XML_DIZ_INFO
element : Company_Info
element : Company_Name
CharData : Detlef Meyer-Eltz
element : City_Town
CharData : Hamburg
element : Country
CharData : Germany
element : Contact_Info
element : Author_Email
CharData : dme@texttransformer.com
element : Program_Info
element : Program_Name
CharData : TextTransformer
element : Program_Version
CharData : 0.9.7.9
element : File_Info
element : File_Size_MB
CharData : 3.86

The ascending order is exactly the reversed order.

17.18 Syntax

Syntax is the theory of the structure of a language. A syntactical approach ignores meaning and
context of expressions and only looks at their structural relationships.

17.19 Start rule

The start rule is the production, by which the processing of the input begins. Starting from the start
rule the matching sub-rules will be called. Therefore the start rule is superior to the other productions
of the transformation.

449Glossary

© 2002-10 Dr. Detlef Meyer-Eltz

17.20 Text file

For a computer scientist text is a sequence of characters, a character string. The pool of characters
a computer can handle is numbered. So a number in the working memory represents a character.
The control characters are included in this enumeration.
Which numbers are assigned to which characters, depends on standards for the operating system
and the country. The most important standard, also used in the TextTransformer, defines the ASCII
set.

In fonts little pictures are assigned to the characters, which represent them on the screen. If in a font
there is no picture for a character, the character is represented by a dummy picture: an empty
square.

17.21 Top down analysis

The principle of the (deterministic) top down analysis is, to start the analysis of a text with the most
general rule - the start rule (top) - and to test, which sub-rule (down) will match the next section of
text, and so on.
In contrast to this method, the bottom up analysis begins with the text and looks for a matching
rule.

17.22 Token and lexemes

Token are the elements of a text, into which pieces the lexical analysis takes the text. Typical
tokens are words, numbers, punctuation characters etc. The tokens of a programming language for
example are key words like "double" or "while". In the case of key words, there is a 1:1-relationship
between the tokens and the Lexemes. A lexeme is a section of text, which represents a token. For
example in case of a number there are many lexemes representing the same token; for example:
"12", "14.8" or "1001". Such general tokens are described by patterns of text. Inside of the
TextTransformer the description of the patterns is done by means of regular expressions.
A problem consists in overlapping tokens. For example: "<" and "<=". The TextTransformer
automatically chooses in such conflicting cases the longer lexeme: "<=".

Which parts of a text are tokens, in the end depends on the interpretation of the text.

17.23 Unicode

Unicode is a coding standard that was developed by the Unicode Consortium. Unicode can
represent almost all written languages of the world.

However, all the individual characters cannot be represented by a single byte any more as it is the
case for the ASCII/ANSI set. There are different methods how the characters can be represented by
means of several bytes.

· For the representation of every single character two (or four) bytes are used. This method is used

450 TextTransformer

© 2002-10 Dr. Detlef Meyer-Eltz

in the Windows operating system.

· Different characters are coded depending on her general meaning with a different number of bytes.
A very common standard, which uses this method, is UTF-8. In the UTF-8 coded Unicode, the first
128 characters of the ASCII code only use one byte. ASCII code and Unicode are identical here.
The 128 characters following in the ANSI code are represented in UTF-8 by two bytes each and all
further characters need still more bytes for their representation.

Example:

If an UTF-8 coded file is opened in ANSI mode the German word "für" appears as:

fÃ¼r

The German Umlaut 'ü' needs two bytes in the UTF-8 encoding, which are shown as two characters
in ANSI mode. But if the file is opened in UTF-8 mode the word is shown correctly.

17.24 Line breaks

Line breaks in text files are represented by special control characters. In the Windows operation
systems this is a combination of a carriage return character '\r' and a linefeed character '\n'. If e.g.
the single characters of the three-line text:

1. Line
2. Line
3. Line

are listed in a table, this table looks like:

1 . L i n e \r \n

2 . L i n e \r \n

3 . L i n e

In UNIX operation systems instead of the '\r\n' combination a single linefeed character is used. The
same text there is a little bit shorter:

1 . L i n e \n

2 . L i n e \n

3 . L i n e

In the TextTransformer editor the Windows convention is always used. If UNIX texts are loaded, then
a carriage return character is put in front of all linefeed characters automatically. A corresponding
warning note is shown than.

In most transformation projects line breaks are ignored. If they are, however, constitutive for the
structure of the text to be analyzed, you have to take the additional '\r' characters into account. In
the extreme case the exetution of a project then can have different results, depending on whether it
happens in the TETRA-working bench or in the transformation manager or with the command line
tool, which both treat the unchanged texts.

451Glossary

© 2002-10 Dr. Detlef Meyer-Eltz

Both, on Windows and on UNIX, line breaks are recognized by the following token (if the line breaks
aren't ignored):

EOL ::= \r?\n

TextTransformer

Part

XVIII

453Naming conventions

© 2002-10 Dr. Detlef Meyer-Eltz

18 Naming conventions

In the help and in the examples some name conventions are used almost generally. They shall
simplify reading the scripts. The use of such conventions in your source text also can be of a great
use if you want to work on it with the TextTransformer later once. However, the use of the
conventions is completely up to you. The use of the TextTransformer depends on it in no way.

Exception: the function table wizard doesn't work correctly with function tables, if the name doesn't
begin with "m_ft".

An abbreviated type name is put in front of variables.

type identifier example

bool b bVar

char c cVar

int i iVar

unsigned int ui uiVar

double d dVar

str s sVar

node n nLeaf

vector v vParams

map m mReplace

cursor cr cr1

function table ft ftPrint

m_ is put in front of the names of class variables.

Example: m_sColor a class variable of the type str

x is put in front of the names of parameter variables.

Example: xsColor a parameter of the type str

TextTransformer454

© 2002-10 Dr. Detlef Meyer-Eltz

Index

- ! -
!: Operator 324

!=: Operator 323

- $ -
$ 248

- % -
% 344

%: Operator 321

%=: Operator 322

- & -
& 56

&&: Operator 324

&: Operator 324

&=: Operator 322

- * -
* 251, 268

*: Operator 321

*=: Operator 322

- . -
. 248, 281

- / -
// 240

/: Operator 321

/=: Operator 322

- - -
-: Operator 321

--: Operator 321

- ? -
? 251, 268

?: Operator 325

- [-
[...] 244, 282

- \ -
\` 248

\< 248

\> 248

\a 248, 442

\b 248

\d 244

\e 442

\f 442

\l 244

\n 328, 442, 450

\r 442, 450

\s 244

\t 442

\u 244

\v 442

\w 141, 244

\z 248

- ^ -
^ 244, 248

^: Operator 324

^=: Operator 322

- _ -
_ 241

- { -
{-...-} 280

{_..._} 280

{{...}} 142, 263, 280

Index 455

© 2002-10 Dr. Detlef Meyer-Eltz

{} 251, 268

{=...=} 280

- | -
| 250, 266

|: Operator 324

||: Operator 324

|=: Operator 322

- ~ -
~: Operator 324

- + -
+ 251, 268

+: Operator 321

++: Operator 321

+=: Operator 322

- < -
<: Operator 323

<< 328

<<: Operator 324

<<=: Operator 322

<=: Operator 323

- = -
=: Operator 322

- - -
-=: Operator 322

- = -
==: Operator 323

- - -
--> 388, 390

- > -
>: Operator 323

>=: Operator 323

>>: Operator 324

>>=: Operator 322

- A -
-a 232

aborting a loop 330

Accept changes in scripts automatically 133

Action 31, 50, 194, 280, 387

add 303, 312

addChildBefore 312

addChildFirst 312

addChildLast 312

AddError 229, 364

AddMessage 229, 364

Addresses 260

AddToken 108, 109, 281, 362

AddWarning 229, 364

aka Latin1 146

Alexey Torgashin 435

Algorithm 253, 373, 374

alnum 244

alpha 244

Alternative 250, 266, 382

Ambiguity 373, 379

Analysis step by step 44

Anchor 248

and 324

Andreas Busch 435

ANSI 122, 441

ANSI set 184

ANSI table 184

ANSI2DOS 165

antlr 435

ANY 271

ANY options 272

Apache 435

append_path 339

Arithmetic operators 321

Arzu 435

ascending order 446

TextTransformer456

© 2002-10 Dr. Detlef Meyer-Eltz

ASCII 146

ASCII set 441

Assignment operators 322

AST 446

Asterix 251, 268

ATBinHex 435

attrib 313

Attribute 313

Auto-save layout 134

- B -
-b 232

back 299

background color of a script editor 188

Backslash 180, 241, 243, 265, 295, 442

Backslash example 296

Backtracking 257, 441

Backup 136, 226, 229

Backup of the project 122

basename 337

BC_CPP 258

BC_PAS 258

BC_XML 258

Beman Dawes 435

bin 329

Binärdatei 145

Binär-Modus 145

binary 358

Binary file 70, 442

Binary files 260

Binary mode 341

Binary number 445

binary open mode 393

Binary output 329

Bitwise operators 324

bjam 397

blank 244

Block commands (editor) 235

BOM 146

bool 293

bool_bin 329

bool_mstrfun 309

boost 253, 410, 435

boost buid 387

Boost Build 397

Boost Software License 435

bottomFirstChild 316

bottomLastChild 316

BranchName 349

break 269, 330

break or continue instruction at invalid position 429

Breakpoint 202, 213, 214

buffer 356

Buffer anchor
"\A" 248

Buffering the look-ahead tokens 144, 421, 422

Byte order mark 146

- C -
C++ 31, 280, 292, 387

C++ compiler projects 398

C++ header 139

c++ instructions 282

c++ instructions listed 286

Call of a method 284

Calling a parser 393

Calling a production from the interpreter 365

Calling parameters 282

Calling th parser 129

Cannot add branch 430

Cariiage return 442

Carriage return 145, 442

carriage return character 450

Case sensitive 178, 335

Case sensitivity 261, 362

Casesensitive 141, 154

C-Builder 413

Chaining 250

Change start rule 199

change_extension 98, 338

char 294

char_bin 329

CHAR_CPP 257

Character class
predefined 244

Character class calculator 180

Character type 151, 281

Checking success 211

childCount 313

Circular derivation 415

Index 457

© 2002-10 Dr. Detlef Meyer-Eltz

Circular look-ahead 385

Circularity 380

Circulary look-ahead 416

Class 119

class elements 282, 283

Class members 61

class method 284

class variables 61, 216

clear 295, 299, 303

Clear output 132

Clear semantic code 191

Clear semantic code on all pages 125

clear_indent 359

ClearIndents 359

ClearScopes 361

ClearTokens 362

clock_sec 347

clog 329

clone 312

cntrl 244

Coco 113

Coco/R 98, 99, 113, 272, 277

Cocor 435

Code frame 387

Code generation 270, 387

Col 349

Collapsing semantic code 194

Collating Element Names 246

Collating elements 246

Command line parameter 232

Command line version 232

Comment 239, 264, 285, 370, 375

Comment as inclusion 74

Comments 37, 93, 145, 258

Compiler 442

Compiler compability 410

Completeness 379

Compliment 244

component support 139

ComponentSupport 136

ComponentSupport_Extension 136

Concatenation 266

Conditional operator 325

CONFIG 135

ConfigParam 144, 357

Conflict 375

Conflict detecting 75

conflict resollution 277

Conflict resolution 366

Conflict treatment 76, 269, 380, 384

const 321, 423

const code 151

const parser 152, 306, 355

Constructor example 281

Container 298

Container classes 16

containsKey 303

containsValue 307

continue 330

Control character 295

Control characters 442

Control structures 325

copy 349

Copy code 152

Corrections 230

Corrupt help file 433

cout 328

Cpp_Header_Extension 136

Cpp_ParserHeader 136

Cpp_ParserSource 136

Cpp_Source_Extension 136

Create interface 154

Creating a line parser from an example text 168

Creating a production from an example text 171

CSV wizard 167

ctohs 334

ctos 334

CTT_BufferAbs 404

CTT_BufferAll 404

CTT_BufferBase 404

CTT_BufferLL1ex 404

CTT_DomNode 406

CTT_DynamicScanner 403

CTT_Error 270, 330, 408, 430

CTT_ErrorExpected 408

CTT_ErrorIncomplete 408

CTT_ErrorStandstill 408

CTT_ErrorUnexpected 408

CTT_Exit 408

CTT_Guard 404

CTT_IgnoreScanner 403

CTT_Indent 407

TextTransformer458

© 2002-10 Dr. Detlef Meyer-Eltz

CTT_LiteralScanner 403

CTT_Match 403

CTT_Message 408

CTT_Mstrfun 309, 406

CTT_Mstrstr 405

CTT_Node 406

CTT_NodeError 408

CTT_ParseError 408

CTT_Parser 398

CTT_ParseState 402

CTT_ParseStateDomPlugin 152, 407

CTT_ParseStateDomPluginAbs 407

CTT_ParseStatePlugin 152, 407

CTT_RedirectOutput 407

CTT_RegexScanner 403

CTT_Scanner 403

CTT_SemError 408

CTT_SkipScanner 403

CTT_Token 403

CTT_Tst 403

CTT_TstNode 403

CTT_Warning 408

CTT_Xerces 358, 408

current_path 339

cursor 306, 307

Customize layout 160

- D -
dangling else 382

Data field 260

DATA FOLDER 136

Dates 257

Dawes 435

dbl 349

dbl_mstrfun 309

DD_MM_YYYY 257

Debug mode 44, 134, 155, 208

DebugDefault 208

DebugDefault.ds 155

Debugger 442

Debugging 209

Debugging a look-ahead 100

declaration 55

Decrement 321

Default function 309, 421

Default label 146

Default layout 155

Default return value 263, 404

Default value 198, 285, 293

Delphi 129, 413

Derivability 379, 415

Derivable rules 380

descendentsCount 313

descending order 446

detach_node 312

deterministic 442

digit 244

Digraph 246

Disabling actions 197

Disabling interpreter 197

dnode 119, 146, 152, 311, 320, 393

dnode label 320

dnode_mstrfun 309

do 327

Docking windows 156

document type definition 149

DOM 170, 216, 358, 408

DOMDocument 216

DOS2ANSI 165

Dot 248

double 294

Double quote 442

double_bin 329

Dr John Maddock 410, 435

Dr. Hans-Peter Diettrich 435

Dr. Maddock 253

DTD 149

dtos 333

dummy parameter 422

Dynamic scanner 108, 152, 261, 362

- E -
EBCDIC 146

ebcdic-cp-us 146

EBNF 86, 115

Edit 125

Edit header frame 129

Edit main frame 129

Edit mode 134, 155, 188

Edit source 129

Index 459

© 2002-10 Dr. Detlef Meyer-Eltz

EditDefault.ds 155

Edit-mode 177

Element list 184

else 277, 325

E-mail address 72

empty 295, 307

Empty alternative 266, 381

Enabling actions 197

Enabling interpreter 197

Encoding 122, 145, 146

END 277, 279

End of file 271

endl 59, 328

ends 329

ENTER_CONST_GUARD 404

ENTER_GUARD 404

ENTER_LA_GUARD 404

enums_pas.frm 136, 139

Environment options 135, 136

EOF 102, 260, 271

EPS 266

Equality operator 323

Equivalence classes 246

Error expected 371

Error handling 330, 364, 408

Error message 190, 264, 379, 415

Error on parsing parameters of the parser call 424

Error while parsing parameters 422

Escape sequence 243

Escape sequences 442

eternal matching 444

Euro symbol 146

Events 173, 368

Example GrepUrls 64

Examples 40

exception 330

Exchange of words 41

Excluding individual files 220, 228

Excluding successful transformed files 228

Execute 211

Execution of a project 41

Execution step by step 209

exists 340

EXIT 270

EXIT_GUARD 404

Expected error 371

Expected output 370

expected token 133

Export 122, 194

Extended Backus-Naur form 86

Extender 192

extension 338

Extensions 136

external cursor 306

Extra parameters 220

ExtraParam 144, 357

- F -
F1 415

Failure alternatives for ANY 272

Failure alternatives for SKIP 275

false 293

Family concept 37, 379

Feedback 163

File 122

File extension 136

file filter 137

file mask 137

file_size 70, 340

filesystem 397

filter 137, 220

find 296

find_file 98, 341

find_first_not_of 296

find_first_of 296

find_last_not_of 296

find_last_of 296

findChildId 318

findChildLabel 318

findChildValue 318

Finding 126

findKey 303

findNextId 318

findNextLabel 318

findNextValue 307, 318

findParentId 318

findParentLabel 318

findParentValue 318

findPrevId 318

findPrevLabel 318

findPrevValue 307, 318

TextTransformer460

© 2002-10 Dr. Detlef Meyer-Eltz

findValue 307

First set 202, 203, 440

firstChild 316

firstSibling 316

float_bin 329

Folder structure 223

follow 316

Follow set 202, 203, 273, 440

F-Option 275

for 326

format 344

format example 65

Formatting 342

Formfeed 442

Frame directory 136

Frame for component support 413

Frame path 139

Frames 136

Friedl scheme 257, 444

front 299

function table 309

Function table example 105

Function-Table-Wizard 174

- G -
Generate c++ code 129

GenError 364

getCursor 299, 303, 306

GetDocumentElement 320, 358

GetMsgType 364

GetState 349

GetUseExcept 364

Global scanner 142, 154, 403

Go to the actual position 218

gotoNext 307

gotoPrev 307

Grammar 374

Grammar test 379

graph 244

greedy 271

GrepUrls example 64

Group 370

Grouping 250, 267

- H -
hasAttrib 313

hasChildren 313

hasCurrent 307

HasError 364

HasMessage 364

Header frame 388

Header/Chapters/Footer wizard 169

header-only 397

Help directory 136

Help file 433

Help system 433

HEX_CPP 256

HEX_PAS 256

hexadecimal 70

Hexadecimal code 47

Hexadecimal escape sequence 243

Hexadecimal number 243, 445

hexadecimal numbers 349, 442

Highlighting during look-ahead 210

hstoi 332

Html-Tags 251

- I -
ibm037 146

ibm1047 146

ibm1140 146

Icon of a node 200

id 254, 313

if 70, 277, 325

IF structure 197

Ignorable characters 93, 139, 259, 416

IGNORABLE_PAS 259

IGNORE_CPP 259

IGNORE_XML 259

Ignored characters 154

Implementation frame 390

Implicit xState parameter 284

Import 111, 113, 122, 192

Include directories 97

Include files 96, 98

Inclusion 74, 375, 421, 422

Inclusion does not exist 416

Index 461

© 2002-10 Dr. Detlef Meyer-Eltz

Inclusions 35, 37, 93, 145

Incomplete parse 420

incr_indent 359

Increment 321

IncrIndent 359

indent 359

indent_str 359

Indentation 359

Indentations in the generated code 152

IndentStr 359

Info 219

Ini file 313

Initialization 285, 431

InitProcDeclaration 388

InitProcImplementation 390

Input 370

Input window 121, 196

Instructions for the interpreter 282

instructions of c++ 286

int 256, 294

int_bin 329

int_mstrfun 309

Interactivity 197, 198

Interaktivity 154

Interface method 154

InterfaceDeclarations 388

InterfaceImplementations 390

internal cursor 306

Interpreter 31, 110, 280, 444

Interpreter instructions 282

invalid cursor 306

is_directory 98, 340

isAncestor 313

isDescendant 313

IsLastFile 356

IslastFile example 66

ISO-8859-1 146

ISO-EBNF 86

isSibling 313

IsSubCall 349

isValid 307

itg 349

itohs 334

itos 333

- J -
jamfile 387, 397

Java 98

Jedi-Vcl 435

- K -
key 303

Keyboard shotcuts 234

Krempp 435

- L -
la_copy 349

la_length 349

la_str 349, 366

label 313

la-buffer 144, 421, 422

Language 135

lastChild 316

LastPosition 349

lastSibling 316

LastSym 349

Layout 134

LC 258

Left recursion 150, 384

length 295, 349

level 313

Level of look-ahead 210, 215

Lexem 449

Lexical analyser 373

Lexical analysis 30, 373, 444, 449

Library for regular expressions 410, 435

License 410

Line 349

Line anchor 248

Line begin 248

Line break 259, 341, 450

Line breaks 152

Line comment 240

Line end 248

Line feed 442

Linefeed 145, 328, 442

linefeed character 450

TextTransformer462

© 2002-10 Dr. Detlef Meyer-Eltz

list of all instructions 286

Literal 177, 178, 241

literals 241

LL(1) analysis 379

LL(1) conflict 75, 277, 366

LL(1) principle 35

LL(1) test 380

LL(k) grammar 445

Load layout 161

load_file 98, 341

load_file_binary 341

LoadFike 393

Loading data 118

Local options 93, 116, 154

Local scanner 142, 403

local variables 216

locale 245, 246

log 329

Log file analyzis 168

Log window 121, 219

Log-file 222

Logical operators 324

Look ahead 277

Look ahead example 99, 100

Look ahead finishing 270

Look-ahead 35, 197, 210, 281, 366, 385, 416

look-ahead debugging 100

Look-ahead example 70

Look-ahead level 215

Look-ahead stack 150

Look-ahead token buffer 144

Look-ahead, no variable inspector 216

lower 244

lp_copy 349

lp_length 349

lp_str 349

- M -
-m 232

Macro 252

Maddock 410, 435

main 393

Main parser 35

Management 67, 112, 219, 232

Management.ttp 112

Mangement 231

map 303

Mark recognized/expected token 212

Marked token 133

mask 220

Match 373

match_results 403

matched 349

Matching but not accepted token 417

MemberInitialization 390

memory leaks 362

Meta character 264

Meta characters 243

Methods of CTT_Parser 399

MIME-parser 72

Minimal distance for character ranges 180

Mismatch between declaration and use of parameters
 422

Modulo 321

Mössenböck 435

MsgBegin 364

MsgEnd 364

mstrbool 303

mstrchar 303

mstrdbl 303

mstrdnode 303

mstrfun 309

mstrint 303

mstrnode 303

mstrstr 303

mstruint 303

Multiline regular expression 252

Multiple replacement of characters wizard 165

Multiple replacement of strings wizard 165

Multiple replacement of words wizard 164

Multithreading 151, 152

Multi-user compatibility 130

- N -
N:1 222

N:1 example 67

N:1: Transformation 227

N:N 222

N:N Transformation 223

Name 239, 262, 283, 369

Index 463

© 2002-10 Dr. Detlef Meyer-Eltz

Name of a node 200

Named literal 241

Named literal tokens 129

Named literals 241

Navigation 189

New project wizard 122, 163

Newline (linefeed) 442

next 316

Next token 209

next_copy 349

next_length 349

next_size 349

next_str 349

nextLeaf 316

nextSibling 316

NFA-Option 275

NF-Option 275

No failure alternatives for ANY 272

No failure alternatives for SKIP 275

no help 433

node 119, 200, 311, 312

Node breakpoint 214

node/dnode differences 312

node::npos 316

node_mstrfun 309

Non circularity 379

Non-breaking space 244

Non-circularity 380

Nongraphic characters 442

Non-terminal 379, 380

Non-terminal symbol 30, 33, 380

Nonterminalsymbol 32

not 324

npos 296, 316

NULL 70, 260

Nullability 381, 415

Nullable structure 382

Nullable structure in a repetition 416

Numbers 256

Numeric systems 445

- O -
Octal number 445

octal numbers 349, 442

OK 270

Oktal number 243

OnAcceptToken 368

OnBeginBranch 368

OnBeginDocument 368

OnEndBranch 368

OnEndDocument 368

OnEnterProduction 368

one-pass compiler 446

OnErrorExpected 408

OnErrorIncomplete 408

OnErrorStandstill 408

OnErrorUnexpected 408

OnExitProduction 368

Only code for initializations is allowed hereI 431

OnParseError 349, 368

Open 122

Open mode 145, 393

Operating system 152

Operators 321

Option 251

Options 130

or 324

Ostream 393

out 328, 358

Output 328

output buffer 356

Output in a second file 119

Output window 121

Overlap 431

- P -
-p 232

Paramerter 284

Parameter 282

Parameter and {{...}} 142

Parameter declaration 239, 263

Parameter field 56, 263

Parameter wizard 172

parent 316

parse 346

Parse all connected scripts 189

Parse all scripts 190

Parse single script 189

Parse start rule 189

Parse system 271

TextTransformer464

© 2002-10 Dr. Detlef Meyer-Eltz

Parse Tree 86, 110, 174, 446

Parse tree example 102

Parser 374, 446

Parser call 129

Parser class 387, 388, 390

Parser generator 30, 446

Parser interface 349

Parser system 375

ParserClassName 388, 390

ParserHeaderName 390

ParserHeaderSentinel 388

ParserRuleDeclarations 388

ParserRules 390

ParseTree 311

Parse-tree 170

Pascal 96

PATH 136

path_separator 342

Pipe character 250, 266

Placeholder token 108, 261, 281, 362

Plugin method 152, 355

Plugin type 152

Plugin-type 393

Plugin-variables 216

Plus 251, 268

pop_back 299

pop_indent 359

PopIndent 359

PopScope 109, 281, 361

Popup menu 202

Position 349

POSIX 253

Predefined character classes 180

Predefined tokens 253

Predicate 277

Preprocessor 71, 138

Pretty-print 146

prev 316

Preview of the target files 228

prevLeaf 316

prevSibling 316

print 244

printf 342, 344

Processing instructions 93

Production 30, 33, 110, 262, 265

Production as function 33

Production as look-ahead 366

Production list 184

Production system 375

ProductionName 349

PROGRAM FOLDER 136

Project directory 136

Project frame 396

Project menu 154

Project options 137

punct 244

push_back 299

push_indent 359

PushIndent 359

Pushscope 109, 281, 361

- Q -
Question mark 251, 268, 442

Quick wizard for function tables 176

Quotation mark 265

Quote 178

Quotes 257

Quoting escape 243

- R -
-r 232

random 348

Reachable 379

REAL 256

Rechenberg 435

Reckognized
but not acceptet token 425

Recognized token 133, 215

Redirection 119

Redirection of the output 358

RedirectOutput 358

RedirectOutputBinary 358

Redo 125

Referenz 56

Refresh 228

Regex Test 80, 178

Registration 18, 432

Regular expression 31, 178, 242
multiline 252

Relational operators 323

Index 465

© 2002-10 Dr. Detlef Meyer-Eltz

remove 299, 303

Remove all scripts 191

removeChild 312

Repeat 251, 268

replace 295

replaceChild 312

Replacing 126

Report transformation results 230

Repository 379

reset 212, 299, 303

ResetOutput 358

Restoring default Debug layout 162

Restoring default editing layout 162

Results 229

return 330

Return type 239, 263, 404

Return value 263, 404

return value of productions 59

returning a value 330

RFC 822 72

rfind 296

Roll back 231

root 316

Root label 146

RTF 51

Rule 33, 265

- S -
-s 232

Samuel Krempp 435

Save 122

Save layout 161

Scaffolding for semantic actions 172

Scanner 373

ScannerEnum 388

Scope 109, 361, 427

ScopeStr 361

Script 238
accept changes 188

cancel changes 188

delete 188

edit 188

insert 187

rename 189

Search window 126

Searching 126

Section of text 197

Select source files 220

Select target directory 223

Semantic action 240

semantic actions 282

Semantic code 194

Semantical action 387

Set target to source directory 223

setAttrib 313

SetDefaultLabel 406

setId 313

SetIndenter 359

setLabel 313

SetPosition 349, 362

Sets 244

SetState 349

Setting pattern for the target files 226

Settings folder 130, 162

setValue 299, 303, 313

Single quote 442

size 295, 307, 346, 349

SKIP 178, 203, 215, 248, 273, 384

SKIP node with SKIP neighbours 384, 415

Skip options 275

SKIP text 336

SKIP token matches at actual position 417

sortCildrenD 320

sortCildrentA 320

source code 398

source folder 398

Source text 196, 197

Source window 121

SourceName 356

SourceName example 65

SourceRoot 356

SourceRoot example 65

space 244

SQL 94

stack 150, 301

Stack size maximum 150, 424

Stack window 215

standstill 426, 430

Standstill in look ahead 426

Star 268

Start 211

TextTransformer466

© 2002-10 Dr. Detlef Meyer-Eltz

Start a transformation 229

Start and successor of nullable structures 382, 415

Start mode 208

Start of several alternatives 382, 415

Start parameter 144

Start position 132, 197

Start rule 37, 138, 198, 271, 379, 448

StartRule 390

StartRuleDeclaration 388

StartRuleHeading 390

State 349, 354

status bar color 211

stay on top 216

std::string 295

std::vector 299

std::wstring 295

Step into 209

Step over 209

stoc 332

stod 85, 331, 349

stoi 332, 349

str 295, 346, 349

str method of the plugin 358

str() 356

str::npos 296

str_mstrfun 309

string 257, 295

string_bin 329

struct 119

Structure 119

Sub parser 365

Sub-expression 178, 250, 354

Sub-parser 35, 37, 98, 118

substr 295

Supporting code 397

switch 327

Symbol number 215

Symbolic name 243

Symbolic names 246

Syntactical analysis 373, 446

Syntax 448

Syntax highlighting 309, 379

Syntax tree 32, 184, 200
presentation 133

Syntaxbaum 32

System 375

System overlap 431

- T -
-t 232

Tab 442

Tabulator 442

Target 136

Target text 328

Target window 121, 328

TargetName 356

TargetRoot 356

Template parameter for plugin character type 153

temporary file 226, 229

Terminal symbol 30, 31, 380

Terminalsymbol 32

Ternary operator 325

Test 38

Test all connected scripts 189

Test all literals 142

Test all scripts 190

Test definition 370

Test list 184

Test output 371

Test script 369

Test single script 189

Testing of all literals 116

TETRA 16, 30

tetra folder 398

TETRA script language 33, 110

tetra_cl.exe 232

TetraComponents 129, 368, 413

Text 349, 449

Text breakpoint 213

Text file 70

Text mode 341

Text scope 108, 362

Text section 197

Text-Modus 145

Text-scope 361

TextTransformer 16, 30

this 216

throw 330, 430

time_stamp 347

to_lower_copy 335

to_upper_copy 335

Index 467

© 2002-10 Dr. Detlef Meyer-Eltz

Token 30, 31, 32, 238, 265, 379, 449

Token definition 240

Token lis 184

Token set 374, 375

Token text 240

Token window 215

TokenList 390

Tool bar 121, 186

Toolbar 121

Topdown analysis 445, 449

Torgashin 435

Transformation manager 219

Transformation manager example 67

Transformation of groups of files 219

Transformation options 222

Transformations-Manager 16

Transitional action 281

Tree wizard 173

Tree-Wizard 173

trim_copy 336

trim_left_copy 335

trim_right_copy 336

true 293

tte 192

tti 192

ttm 231

tto 137

ttparser_c.frm 136, 139

ttparser_h.frm 136, 139

ttr 192

ttt 192

ttx 192

TTXercesLib 410

Type 284

Type conversion 331, 332, 333, 429

Typedef 108

- U -
UCS4 146

uint_bin 329

uint_mstrfun 309

Underline 241

Undo 125

Unexpected symbol 418

Unicode 86, 151, 449

Unix 152

Unknown identifier 427

Unknown symbol 415

unsigned int 294

Upgrade 18

upper 244

URI_ANGLE_DELIM 254

URI_QUOTE_DELIM 254

URI_WS_DELIM 254

UseExcept 364

User data 130, 136

User error 430

UTF-16 146

UTF-8 86, 122, 146, 358, 449

- V -
value 307, 313

Value is too large 442

Variable 431

variable declaration 55

Variable types 293

Variable-Inspector 16, 216

Vasant Raj 260

vbool 299

vchar 299

vdbl 299

vector 299

Version number 153

Versions 16

Video 40, 155, 167, 173

Viewer 196

vint 299

Virtual methods 399

visit 309

Visual Express C++ 404

vnode 299

vstr 299

vuint 299

- W -
Warning 190, 379, 381, 415

wchar_t 151

while 279, 326, 327

WHILE structure 197

TextTransformer468

© 2002-10 Dr. Detlef Meyer-Eltz

Wide character 151

Window list 159

Windows 152

Windows menu 155

Windows-1252 146, 441

Wizard for a Header/Chapters/Footer frame 169

Wizard for a new project 122

Wizard for creating a line parser from an example text
 168

wizard for CSV files 167

Wizard for multiple replacement of characters 165

Wizard for multiple replacement of strings 165

Wizard for multiple replacement of words 164

Wizard for the creation of a production from an
example text 171

Wizards 163

word 244

Word anchor 248

Word begin 248

Word boundaries 261

Word boundary 178

Word bounds 141

Word end 248

word processing 442

WORD_EN 255

WORD_FR 255

WORD_GE 255

Words 255

wregex 151

WriteDocument 320, 358

wstring 151, 295

- X -
xdigit 244

Xerces 320, 358, 397, 408

Xerces (license) 435

Xerces portability 410

xercesdom folder 398

XercesInclude 393

XercesInit 393

XercesLib 410

XercesUsingNamespace 393

XML 86, 320

xState 349, 354

xState parameter 284

xState.str(index) 250

- Y -
Yacc 384

Yu Wei 435

YYYY_MM_DD 257

- Z -
Zeilenumbruch 145

	About this help
	Registration
	Most essential operation elements
	Most essential syntax elements
	How to begin with a new project?
	Practice

	Introduction
	How does the TextTransformer work?
	Analysis
	Synthesis
	Regular expressions
	Syntax tree
	Productions or non-terminal symbols
	Productions as functions
	Four uses of productions
	Looking-ahead
	Inclusions / comments
	Sub-parser
	Family concept
	Tests

	Examples
	Exchange of words
	Execution of a project
	Production
	Analysis step by step
	Using tokens

	Conversion of an Atari text
	Tokens
	Productions
	Actions
	Conversion into RTF

	Calculator
	Tokens
	Production: Calculator1
	Production: Expression
	Productions: Term and Factor
	Production: Number
	Return values

	Text statistics
	Class members
	Token
	Productions

	GrepUrls
	Productions
	Member variables and methods
	Put together
	Search in whole directory

	BinaryCheck
	Look-ahead
	Use as preprocessor

	E-mail address
	Syntax specification
	Productions and token
	Detecting a conflict
	Solving the conflict

	Guard
	Startrule: guard
	Copying source text
	Tokens
	Productions: block, outer_block
	Improvement: '{' and '}' in strings

	Bill
	Production
	Tokens

	XML
	ISO-XML
	XML document
	Tree generation
	Tree evaluation
	Character references
	Comments and processing instructions
	Insert client data

	Unit_dependence
	Productions
	Containers and parameters
	Include files

	Java
	Coco/R adaptation
	Simple look-ahead production
	Negative look ahead
	Complex look ahead
	Debugging a look-ahead
	Parse-Tree
	Function-Table

	C-typedef
	Typedef
	Scopes

	TETRA productions
	TETRA-EditProds
	TETRA interpreter
	TETRA import
	TETRA-Management
	Cocor import
	Ignorable characters
	Tokens
	Productions
	Post processing
	Semantic actions

	How to ...
	Load data
	Structure data
	Write into additional target files

	User interface
	Tool bar
	Main menu
	Menu: File
	Menu: Edit
	Menu: Search
	Menu: Project
	Menu: Start
	Menu: Code generation
	Menu: Options
	User data
	Options of the user interface
	Transformation
	Editing
	View
	Layouts

	Environment options
	CONFIG
	EXTENSIONS
	FRAMES
	PATH
	File filter

	Project options
	Names and Directories
	Start rule
	Test file
	Preprocessor
	Frame path

	Parser/Scanner
	Ignorable characters
	Case sensitive
	Word bounds
	Parameter and {{...}}
	Global scanner
	Look-ahead buffer

	Start parameters
	Inclusions (comments)
	Encoding
	xerces DOM
	DTD

	Warnings/Errors
	Stack maximum

	Code generation
	const
	Use wide characters
	Only copy all code
	Characters and increment of indentation
	Operating system
	Plugin type
	Template parameter for plugin character type

	Version information

	Local options
	Local options

	Menu: Windows
	Docking Windows
	Caption Dialog

	Window list
	Customize layout
	Save Layout
	Restore default layout

	Menu: Help
	Feedback
	Wizards
	New project wizard
	Multiple replacements of words
	Multiple replacement of strings
	Multiple replacements of characters
	CSV-wizard
	Creating a line parser from an example text
	Header/Chapters/Footer
	Actions

	Creating a production from an example text
	Parameter-Wizard
	Tree-Wizard
	Tree type

	Function-Table-Wizard
	Quick wizard for function tables

	Input tables

	Regex test
	Character class calculator
	ANSI table

	Script management and parsing
	Tool bar and menu
	Insert
	Delete
	Edit
	Cancel
	Accept
	Rename
	Navigation
	Parse/Test single script
	Parse/Test all connected scripts
	Parse/Test all scripts
	Error messages
	Clear semantic code
	Import
	Export
	Collapsing semantic code

	Debugging and executing
	Source text
	Section of text
	Enabling actions
	Choosing a start rule
	Interactive change of a start rule
	Change of the start rule
	Parse start rule
	Syntax tree
	Pop up menu
	Show first sets

	Start mode
	Execution step by step
	Execute a look-ahead step-by-step
	Execution at a stretch
	Checking success
	Reset
	Mark recognized/expected token
	Breakpoints
	Text breakpoint
	Node breakpoint

	Recognized token
	Stack window
	Variable-Inspector
	To the actual position
	Info box
	Log window

	Transformation of groups of files
	Transformation manager
	Defining a new filter
	Selecting source files
	Transformation options
	N:N Transformation
	Select target directory
	Setting pattern for the target files
	Backup

	N:1: Transformation

	Preview of the target files
	Start the transformation
	Results
	Report

	Corrections
	Roll back
	Management

	Command line tool
	Parameter

	Keyboard shortcuts
	Block commands

	Scripts
	Token definitions
	Input mask for a token
	Name
	Return type
	Parameter declaration
	Comment
	Text
	Semantic action

	Literals
	Named literals

	Regular expressions
	Single characters
	Meta-characters
	Special characters
	Sets of characters
	Character classes
	Locale dependant features
	Collating elements
	Equivalence classes
	Collating Element Names

	Wildcard
	Anchors
	Concatenation
	Groupings
	Alternatives
	Repeats
	Macros
	boost regular expression library

	Predefined tokens
	Identifier
	Words
	Numbers
	Quotes
	Dates
	Comments
	Ignorable
	Line break
	Binary null
	Addresses
	Data field

	Placeholder

	Productions
	Input mask for a production
	Name
	Return type
	Parameter declaration
	Comment
	Text

	Elements
	Concatenation
	Alternatives
	Grouping
	Repeats
	BREAK
	EXIT
	EOF
	ANY
	Options

	SKIP
	Options

	IF...ELSE...END
	WHILE...END
	Actions
	Transitional action

	Calling parameters

	Class elements and c++ instructions
	Input mask for class elements
	Name
	Type
	Parameter
	Comment
	Text/Initialization

	List of all instructions
	Interpreted C++ instructions
	C++
	Variable types
	bool
	char
	int
	unsigned int
	double

	str
	Searching

	Container
	vector
	Stack

	map
	cursor
	General cursor methods

	Function table

	node / dnode
	node: Construction
	node: Information
	node::npos
	node: Neighbors
	node: Searching
	node: Sorting
	dnode specials

	const
	Operators
	Arithmetic operators
	Assignment operators
	Relational operators
	Equality operators
	Logical operators
	Bitwise operators
	Conditional operator

	Control structures
	if, else
	for
	while
	do
	switch

	Output
	out
	log
	Binary output

	return
	break
	continue
	throw

	String manipulation
	stod
	stoi
	hstoi
	stoc
	dtos
	itos
	itohs
	ctohs
	ctos
	to_upper_copy
	to_lower_copy
	trim_left_copy
	trim_right_copy
	trim_copy

	File handling
	basename
	extension
	change_extension
	append_path
	current_path
	exists
	is_directory
	file_size
	find_file
	load_file
	path_separator

	Formatting instructions
	How it works
	Examples
	Syntax
	Methods

	Other functions
	clock_sec
	time_stamp
	random

	Parser class methods
	Parser state
	Sub-expressions

	Plugin methods
	Source and target
	Start parameters
	Redirection
	xerces DOM
	Indentation stack
	Text-scope stack
	Dynamic scanner
	Error handling

	Calling a production
	Sub parser
	Look-ahead

	Events

	Test scripts
	Name
	Group
	Comment
	Input
	Code
	Expected output
	Test output
	Error expected

	Algorithms
	Scanner algorithm
	Parser algorithm
	Token sets

	Grammar tests
	Completeness
	Reachable rules
	Derivable rules
	Non-circularity
	LL(1)-Test
	Warnings
	Nullability
	Start of several alternatives
	Start and successor of nullable structures
	SKIP node with SKIP neighbors
	Different SKIP followers
	Different ANY followers
	Left recursion
	Circular look-ahead

	Code generation
	Code frames
	Name of the parser class
	Header frame
	Implementation frame
	main-file frame
	Project specific frame
	jamfile

	Supporting code
	Code directory
	CTT_Parser
	Methods

	CTT_ParseState
	CTT_Scanner
	CTT_Tst, CTT_TstNode
	CTT_Match
	CTT_Token
	CTT_Buffer
	CTT_Guard
	CTT_Mstrstr
	CTT_Mstrfun
	CTT_Node
	CTT_DomNode
	CTT_ParseStatePluginAbs
	CTT_ParseStatePlugin
	CTT_ParseStateDomPluginAbs
	CTT_ParseStateDomPlugin
	CTT_RedirectOutput
	CTT_Indent
	CTT_Xerces

	Error handling
	Compiler compatibility
	License

	TetraComponents
	Messages
	Unknown symbol: "xxx"
	"X": can't derive to terminals
	Circular derivation: "X" . "Y"
	"X" is nullable
	LL(1) Error: "X" is the start of several alternatives
	LL(1) Warning: "X" is the start and successor of nullable structures
	"X" is a SKIP node with SKIP neighbors
	Nullable structure in a repetition or option
	"X" is used circulary in a look-ahead
	Inclusion not found
	Conflict with an inclusion
	No matching next token found
	The rest of the text consists of ignored chars
	SKIP token matches at actual position
	"SKIP ANY" is not possible
	Matching but not accepted token
	Matching token not in first set
	Matching look-ahead xxx cannot start with yyy
	Unexpected symbol in ...
	Parenthesis are needed
	Unexpected method (also might be ...
	"X" expected
	Incomplete parse
	Missing closing quotation mark
	Literal tokens may not be empty
	Continuation with c++ code expected
	The type of the function xxx doesn't match the function table
	No default function is defined for function-table
	In a const parser you have to call the according method of State
	Sub-expressions (> 0) are not stored in the la-buffer
	A production cannot be used as an inclusion
	Inclusion with paramters
	Inclusions don't work with a la-buffer
	State parameter is required
	Empty alternative
	Error while parsing parameters
	Mismatch between declaration and use of parameters
	Wrong number of (interpretable) arguments
	Not const method
	Maximum stack size of "x"exceeded
	Error on parsing parameters of the parser call
	There is at least one path on which no string value is returned
	Recognized, but not accepted token
	BREAK outside of a loop
	Standstill
	Standstill in look ahead
	Unknown identifier : xxx
	It's not possible to convert "xxx" to "yyy"
	No return type declared
	"X" cannot be applied on "Y"
	break or continue instruction at invalid position
	forbidden transitional action
	Error output programmed from the user
	Cannot add branch
	Token error
	Matches empty string
	Token is defined as string and as token with an action
	boost::regex error
	System overlap
	Token action or member function cannot be exported
	Only code for initializations is allowd here!
	Parameters and local variables may not be used in a look-ahead production!
	Encoding cannot be written into the output window of the IDE
	An invalid or illegal XML character is specified
	TextTransformer not registered
	Internal error: ...
	No help

	References
	References

	Glossary
	First set
	ASCII/ANSI-set
	Backtracking
	Binary file
	Compiler
	Control characters
	Debug
	Deterministic
	Escape sequences
	Friedl scheme
	Interpreter
	Lexical analysis
	LL(k)-grammar
	Numeric systems
	Parser
	Parser generator
	Parse Trees and AST's
	Syntax
	Start rule
	Text file
	Top down analysis
	Token and lexemes
	Unicode
	Line breaks

	Naming conventions

